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Abstract: The non-redescending convex functions degrade the filtering robustness, whereas the
redescending non-convex functions improve filtering robustness, but they tend to converge towards
local minima. This work investigates the properties of convex and non-convex cost functions from
robustness and stability perspectives, respectively. To improve filtering robustness and stability to
the high level of non-Gaussian noise, a sequential mixed convex and non-convex cost strategy is
presented. To avoid the matrix singularity induced by applying the non-convex function, the M-
estimation type Kalman filter is transformed into its information filtering form. Further, to address the
problem of the estimation consistency in the iterated unscented Kalman filter, the iterated sigma point
filtering framework is adopted using the statistical linear regression method. The simulation results
show that, under different levels of heavy-tailed non-Gaussian noise, the mixed cost strategy can
avoid the non-convex function-based filters falling into the local minimum, and further can improve
the robustness of the convex function-based filter. Therefore, the mixed cost strategy provides a
comprehensive improvement in the efficiency of the robust iterated filter.

Keywords: cost function; local minimum; non-Gaussian noise; M-estimation; Kalman filter; iterative
methods; spacecraft relative navigation

1. Introduction

Spacecraft relative navigation techniques serve extensive applications in spacecraft
rendezvous and docking, spacecraft formation flight, and active space debris removal.
Considering autonomy, complexity, and high reliability requirements of space missions,
the navigation system needs to be capable of providing high navigation accuracy and
coping with complex noise environment. For spacecraft long-range relative navigation,
microwave radar can generally serve as an ideal sensor due to its wide operating range
from tens of kilometers to a few meters. Observations provided by microwave radars
usually obey the heavy-tailed non-Gaussian distribution, whereas Gaussian filters are
not robust to this type of observation noise. To address this problem, the robust filtering
method based on maximum likelihood estimation has been developed.

Maximum likelihood estimation-based filters are a group of robust Kalman filters [1–3].
Robust filters can suppress the impact of heavy-tailed non-Gaussian noise on estimation,
and different cost functions give the robust filters different robustness to the anomalous
observations. Therefore, the work on the properties of the cost functions is particularly
important. The most extensively implemented cost function is the Huber function, which
was first proposed for application in robust statistics [4]. Subsequently, the Huber function
was combined with the linear Kalman filter, the extended Kalman filter, and the sigma point
Kalman filter, respectively, from which various types of robust Kalman filters emerged [5,6].

The Huber function is a combination of the L1-norm function and the L2-norm func-
tion [5]. Since the tuning parameter of the Huber threshold is 1.345 and greater than 1,
residuals above this threshold contribute to the robust estimator as the L1-norm of the
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residuals, and the absolute values corresponding to the residuals greater than 1 are less
than their L2-norm, which indicates that the impact of the greater residuals on the estimator
is bounded, and thus robustness is achieved. Furthermore, the Huber function is convex
throughout the domain of definition, which prevents the Huber-based estimation from
falling into local minima, hence the Huber function balances robustness and numerical
stability. The flaws of the Huber function are also noticeable. Due to its non-redescending
property, the great residuals still affect the cost function of the Huber-based estimator, thus
the Huber function is not robust to outliers [7].

To improve the filtering robustness to outliers, Chen et al. [8] combined the maxi-
mum correntropy criterion (MCC) with the Kalman filter, where the Gaussian function
allows the filter to obtain stronger robustness than the Huber-based one. Among the
robust filtering theories, the MCC-based filter has also attracted much attention since
its introduction [9–11]. The MCC is a novel local similarity metric, but the MCC-based
Kalman filter possesses almost the same filtering process as that of the Huber-based one,
and the only difference is the adopted cost function. Therefore, the Gaussian function is
more robust than the Huber function, as shown in the Gaussian influence function or its
weight function, their values corresponding to the great residuals rapidly tend to 0, which
renders the great residuals unable to affect the estimator. A similar property can also be
found in the G-M function [12]. To further develop the MCC theory, the mixture MCC was
presented [13,14], but the kernel widths and mixed ratios are given by simulation and lack
theoretical guidance. For the asymmetric distribution of residuals, Chen et al. [15] adopted
an asymmetric Gaussian function to replace the original symmetric Gaussian function [16],
while the kernel width of the asymmetric Gaussian function is another urgent problem.

The Huber function and the Gaussian function have been investigated relatively
more; we introduce a few functions, which are less used in robust filtering but have
better performance. The Cauchy function has similar properties to the Gaussian function,
and compared with the Huber function, the Cauchy function has an advantage in robustness
to larger outliers [17]. Huang and Zhang [18] replaced the Gaussian function in the MCC-
based filtering framework with the Student’s t function. which can better model the
heavy-tailed non-Gaussian distribution using more tuning parameters, and thus Student’s
t-based filters achieve higher estimation accuracy compared to the MCC-based filters,
but more tuning parameters imply more complicated tuning procedures. Li et al. [19]
instead used the dynamic-covariance-scaling (DCS) function [20,21], which is incorporated
into the information filtering framework and obtains strong robustness. Similar functions
are the Hampel function and the Tukey function [22].

Another important part of robust estimation is the iterative strategy, but there are
relatively few studies have developed the robust and iterative strategy. The extensively
implemented iterative strategy is the fixed-point iteration [5,23]. To build a more accurate
linearized regression model, several linearization methods are adopted, including the first-
order Taylor polynomial expansion, the statistical linearization method, and the statistical
linear regression (SLR) method. However, these strategies fail to build an accurate linear
regression model; the reason is that the linearized model is built based on the prior estimates
rather than the more accurate posterior estimates. To incorporate the posterior estimates,
Chang et al. [6] built a nonlinear regression model and then followed the iterated unscented
Kalman filter (IUKF) to derive a robust IUKF [24]. As for the nonlinear regression model,
Karlgaard [25] used the Gauss–Newton method to iteratively solve the problem, and the
method mainly follows the iterated extended Kalman filter (EKF). Wang et al. [26] used
the Gauss–Newton and Levenberg–Marquardt methods to derive two robust iterated
filters, respectively, where the SLR method is adopted in linearizing the nonlinear function.
Li et al. [19] followed the iterated unscented Kalman filter (IUKF) to derive a different
robust IUKF.

This work focuses on the properties of different cost functions in M-estimation.
The contributions are summarized as follows:
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1. This work gives a detailed investigation of convex and non-convex functions from
robustness and stability perspectives, respectively.

2. A sequential mixed convex and non-convex cost strategy is presented to combine
their properties, and further the switching strategy from the convex function to the
non-convex one is proposed.

3. The analytical determination method of the DCS and Gaussian tuning parameters
is given.

4. The iterated sigma point Kalman filter is incorporated into robust estimation, and fur-
ther the information filtering form is given to address the matrix singularity problem.

The remainder is outlined as follows. Section 2 gives the problem statement. Section 3
analyzes the properties of several cost functions and further presents a mixed cost strategy.
Section 4 introduces a robust iterated sigma point information filter. Section 5 gives
evaluations of the proposed algorithm. Section 6 discusses the simulation results. Section 7
gives conclusions.

2. Problem Statement

Regarding the first problem, robust cost functions can be roughly classified into
two groups: convex functions (e.g., the Huber function) and non-convex functions (e.g.,
the Gaussian, Cauchy, and DCS functions). The non-redescending property of the convex
functions limits their robustness, whereas the non-convex functions are redescending and
hence completely eliminate the impact of high level non-Gaussian noise. However, the non-
convex functions tend to induce estimation to fall into local minima and further results in
the filtering divergence. Therefore, the non-convex function is not entirely advantageous
over the Huber function. This paper first analyzes the properties of the cost function in
detail from both robustness and stability perspectives.

Regarding the second problem, the application of non-convex functions induces the
matrix singularity problem, and iteration is also required in the robust filters, hence an
iterated information filtering framework is needed to incorporate robust filtering. From the
results given in [27], we find that the iterated unscented Kalman filer is not a consistent
estimator, and further that the combination of different iterative strategies and the cost
functions yields different properties. Therefore, we detail the properties of the robust and
iterative strategy.

Through the above analysis, when the robust cost function and the information filter
are used to cope with the high level of non-Gaussian noise, there are still many problems to
be addressed in this work.

3. Cost Functions for M-Estimation
3.1. Robustness of Different Cost Functions

The property of the cost function affects an estimator’s robustness to outliers, thereby
affecting filtering efficiency. It is therefore essential to select an appropriate cost function.
This section will detail the properties of several extensively implemented cost functions
given in Tables 1 and 2, including the L2-norm criterion, the Huber function, the Cauchy
function, the Gaussian function, and the DCS function, as shown in Figure 1.

To analyze the robustness of the cost functions, the residuals are divided into three
ranges: the Gaussian noise, the non-Gaussian noise, and the outlier. The Gaussian noise
refers to the range where the residuals are less than the tuning parameter, the non-Gaussian
noise refers to the range where the residuals are greater, but not much greater than, the tun-
ing parameter, and the range where the residuals are much greater than the tuning pa-
rameter is considered as the outlier. Note that the three ranges do not have exact bounds,
but are relative concepts. Before giving the property of these cost functions, we need
to define several concepts, including the cost function, the influence function, and the
weight function. The cost function is defined as the function that evaluates the discrepancy
between the observed quantity and the predicted quantity. This discrepancy is denoted by
ρ(ξ), where ξ = x − x̂, ξ is the residual, x is the observed quantity using sensors, and x̂ is
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the predicted quantity using the system model. The influence function is defined by the
following equation: ψ(ξ) = dρ/dξ, i.e., the influence function is a first-order derivative of
the cost function. The weight function is defined by the equation ϕ(ξ) = ψ(ξ)/ξ, which
can be expressed as the ratio of the influence function to the residual.
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Figure 1. Dependence between different functions and residuals.
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Table 1. Several extensively implemented cost functions.

Function Name Cost Function Influence Function Weight Function

L2-norm ξ2/2 ξ 1

Huber
{

|ξ| < ηh
|ξ| ≥ ηh

{
ξ2/2
ηh|ξ| − η2

h/2

{
ξ
sgn(ξ)ηh

{
1
ηh/|ξ|

Gaussian −η2
g exp

(
− ξ2

2η2
g

)
ξ exp

(
− ξ2

2η2
g

)
exp

(
− ξ2

2η2
g

)
Cauchy η2

c ln
(

1 + (ξ/ηc)
2
)

2

ξ(
1 + (ξ/ηc)

2
) 1(

1 + (ξ/ηc)
2
)

DCS
{

ξ2 < ηd
ξ2 ≥ ηd


ξ2/2
ηd
(
3ξ2 − ηd

)
2(ξ2 + ηd)


ξ

4η2
dξ

(ηd + ξ2)
2


1

4η2
d

(ηd + ξ2)
2

Table 2. Tuning parameters of cost functions for M-estimation.

Function L2-Norm Huber Gaussian Cauchy DCS

Tuning parameter none 1.345 2.1105 2.3849 3.6035

In the Gaussian noise range, the Huber and DCS functions do not impose bounds
on the observations, whereas the Cauchy and Gaussian functions do. From the weight
functions shown in Figure 1, even in the Gaussian noise, the Cauchy and Gaussian weight
functions are less than 1, which reduces the optimality of the L2-norm-based estimation
and induces the loss of high-quality observation information, whereas the Huber and DCS
weight functions are still 1, which preserves the optimality of the L2-norm-based estimation.
As shown in Figure 1, the L2 influence function tends to increase linearly with increasing
residuals, which indicates that the L2-norm criterion is not robust to non-Gaussian noise
and outliers, and this degrades the optimality of the L2-norm-based estimator, whereas the
robust influence function also increases gradually with increasing residuals in the Gaussian
noise range. In the non-Gaussian noise range, the influence function corresponding to
greater residuals decreases gradually, which indicates that the influence of greater residuals
is effectively bounded by the robust cost function, thereby achieving robustness to non-
Gaussian noise and outliers.

The robustness of the robust cost function also varies over the outlier range. As shown
in Figure 1, the Huber influence function does not reach 0, even when the residuals are
much greater, which indicates that the Huber function fails to suppress the effect of outliers
on estimates. Conversely, the Cauchy influence function shows suppression of outliers,
i.e., as the residuals increase, the influence function gradually converges to 0, and the
Cauchy weight function exhibits a similar tendency. The Gaussian and DCS functions show
stronger robustness to outliers, i.e., the Gaussian and DCS influence functions converge
fast to 0 within the outlier range, which indicates that they can effectively eliminate the
effect of outliers on estimates.

3.2. Stability of Different Cost Functions

Another property is that the cost functions with outlier rejection capability exhibit
non-convexity, and this renders estimation prone to local minima. Specifically, the Cauchy
function is discussed as an example. If the second-order differential of a function is
constantly more than or equal to 0, this indicates that the function is convex. That is,
if f̈ (x) ≥ 0, then f (x) is a convex function, and, conversely, f (x) is a non-convex function.
The second-order differential of the Cauchy function is given as

ρ̈c(ξ) =

(
η4

c − η2
c ξ2)

(η2
c + ξ2)

2 (1)
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where η is the tuning parameter. As shown in Equation (1) and Figure 2, when −ηc ≤ ξ ≤ ηc,
ρ̈c(ξ) ≥ 0, the interval is the convex interval of the Cauchy function, and when ξ ≤ −ηc
and ξ ≥ ηc, ρ̈c(ξ) < 0, then the interval is the non-convex interval of the Cauchy function.
Similarly, the second-order differential of the Gaussian function is given as

ρ̈g(ξ) =

(
1 − ξ2

η2
g

)
exp

(
− ξ2

2η2
g

)
(2)

As shown in Equation (2) and Figure 2, the Gaussian function is not always convex
over the whole domain, and it is convex only in the interval −ηg ≤ ξ ≤ ηg. The second-
order differential of the DCS function is given as

ρ̈d(ξ) =


1, ξ2 < ηd
4η3

d − 12η2
dξ4 − 8η3

dξ2

(ηd + ξ2)
4 , ξ2 ≥ ηd

(3)

Its convex interval is −√
ηd ≤ ξ ≤ √

ηd, and its non-convex interval is ξ < −√
ηd and

ξ >
√

ηd.
From the above analysis, we find that the Cauchy function, the Gaussian function,

and the DCS function all risk falling into the local minimum, whereas the Huber function
shows an advantage. The second-order differential of the Huber function is all positive,
that is

ρ̈h(ξ) =

{
1, |ξ| < ηh
0, |ξ| ≥ ηh

(4)

As shown in Equation (4) and Figure 2, the Huber function is entirely a convex function
in all domains, and it does not risk falling into the local minimum.
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Figure 2. Dependence between second-order differentials of cost functions and residuals.

3.3. Determination of Tuning Parameters

The tuning parameter is a key parameter that affects the properties of the cost function.
Despite the extensive research on M-estimation, the determination of the tuning parameter
typically relies on simulation, i.e., the tuning parameter is set to different values, and then
the optimal estimation accuracy is evaluated by simulation results [28]; this process al-
lows for the determination of the optimal tuning parameter. The simulation results are
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inherently random, and the given parameters are typically imprecise and fall within an ap-
proximate range, e.g., this method generally yields tuning parameters of 2 for the Gaussian
function [29] and [2.3, 3.5] for the DCS function [19].

This section will present an analytical derivation of the exact tuning parameter, which
is given according to the 95% asymptotic efficiency on the standard normal distribution.
The tuning parameter of the Gaussian function is first given based on this criterion. As elab-
orated in [30], the M-estimator is asymptotically minimum variance estimation under
Gaussian distribution, and its asymptotic variance is given as

V[ψ(ξ), p(ξ)] =

∫ +∞
−∞ ψ2(ξ)p(ξ)dξ(∫ +∞
−∞ ψ̇(ξ)p(ξ)dξ

)2 (5)

where V[·] is the asymptotic variance of the M-estimator; ψ(·) is the influence function;
p(·) is the probability density function (PDF) of the standard normal distribution with the
form of

p(ξ) =
1√
2π

exp
(
− ξ2

2

)
(6)

and its first-order differential is

ṗ(ξ) = − ξ√
2π

exp
(
− ξ2

2

)
(7)

As discussed in [30], when the influence function ψ(ξ) is not continuous, we can
replace

∫ +∞
−∞ ψ̇(ξ)p(ξ)dξ in Equation (5) by −

∫ +∞
−∞ ψ(ξ) ṗ(ξ)dξ to avoid the first-order

differential ψ̇(ξ), and then we have

V[ψ(ξ), p(ξ)] =

∫ +∞
−∞ ψ2(ξ)p(ξ)dξ(∫ +∞
−∞ ψ(ξ) ṗ(ξ)dξ

)2 (8)

The reason for this is explained as follows: according to the rule of integration by
parts, we have ∫ +∞

−∞
ψ̇(ξ)p(ξ)dξ = ψ(ξ)p(ξ)

∣∣+∞
−∞ −

∫ +∞

−∞
ψ(ξ) ṗ(ξ)dξ (9)

The influence function is bounded at infinity and p(ξ) tends to zero, hence
ψ(ξ)p(ξ)

∣∣+∞
−∞ = 0, which further yields∫ +∞

−∞
ψ̇(ξ)p(ξ)dξ = −

∫ +∞

−∞
ψ(ξ) ṗ(ξ)dξ (10)

The relative efficiency of the M-estimator is defined as

RE =
Vm[ψm(ξ), p(ξ)]
Vr[ψr(ξ), p(ξ)]

(11)

where Vm[·] is the asymptotic variance of the M-estimator; Vr[·] is the asymptotic variance
of the robust estimator. Note that the M-estimator is applied as a reference estimator, and it
is equivalent to the L2-norm-based estimator under the Gaussian distribution, whereby it
can be considered as the optimal estimator.

Substituting the influence function of the M-estimator and Equations (6) and (7) into
Equation (8) yields the variance of the M-estimator under standard normal distribution:
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Vm(ψm(ξ), p(ξ)) =

∫ +∞
−∞ ξ2 1√

2π
exp

(
−1

2
ξ2
)

dξ(∫ +∞
−∞ −ξ

ξ√
2π

exp
(
−1

2
ξ2
)

dξ

)2 =

2√
2π

∫ +∞
0 ξ2 exp

(
−1

2
ξ2
)

dξ(
2√
2π

∫ +∞
0 ξ2 exp

(
−1

2
ξ2
)

dξ

)2 (12)

Substituting the Gamma function
∫ +∞

0 ξ2 exp
(
−ξ2/2

)
dξ =

√
2Γ(3/2) =

√
2π/2 into

Equation (12) yields
Vm[ψm(ξ), f (ξ)] = 1 (13)

Therefore, Equation (11) can be reduced to

RE =
1

Vr[ψr(ξ), p(ξ)]
(14)

Substituting the Gaussian influence function ξ exp
(
−ξ2/2η2

g

)
and Equations (6) and (7)

into Equation (8) yields

Vg
(
ψg(ξ), p(ξ)

)
=

∫ +∞
−∞

(
ξ exp

(
− ξ2

2σ2

))2 1√
2π

exp
(
−1

2
ξ2
)

dξ(∫ +∞
−∞ ξ exp

(
− ξ2

2σ2

)
× ξ√

2π
exp

(
−1

2
ξ2
)

dξ

)2 =

2√
2π

∫ +∞
0 ξ2

(
exp

(
− ξ2

2σ2

))2

exp
(
−1

2
ξ2
)

dξ(
2√
2π

∫ +∞
0 ξ2 exp

(
− ξ2

2σ2

)
exp

(
−1

2
ξ2
)

dξ

)2 (15)

Finding an analytical solution to Equation (15) is challenging, whereas numerical inte-
gration can be employed to solve the improper integral problem. The numerical solution of
the anomalous integral is demonstrated by solving

∫ +∞
0 ξ2 exp

(
−ξ2

/
2η2

g

)
exp

(
−ξ2/2

)
dξ

as an example. Given the tuning parameter ηg, the upper bound of the integral is continu-
ously increased until the change of the integral is less than a preset small value, i.e., the final
value is the result of the improper integral. Note that the influence function is bounded
at infinity, and exp

(
−ξ2

/
2η2

g

)
and exp

(
−ξ2/2

)
tend to zero, thereby allowing the result

of
∫ +∞

0 ξ2 exp
(
−ξ2

/
2η2

g

)
exp

(
−ξ2/2

)
dξ to converge, hence the improper integral can be

solved using the numerical integration.
Substituting the results of improper integral Equation (15) into Equation (14) yields

the relative efficiency between the Gaussian function-based estimator and the M-estimator.
By setting different values of the tuning parameter, the relative efficiency reaches 95%,
and the corresponding value is the required optimal tuning parameter. The optimal tuning
parameter is 2.1105, and the relationship between the tuning parameter and the relative
efficiency is illustrated in Figure 3 and Table 3.

Table 3. Relative efficiency of cost functions corresponding to different tuning parameters.

Relative Efficiency 50% 90% 95% 99%

Tuning parameter of Gaussian function 0.8024 1.6852 2.1105 3.3522
Tuning parameter of DCS function 0.6476 2.6268 3.6035 6.010

The work on the DCS function [19,21] has not provided an exact value of the tun-
ing parameter. This part will derive the optimal tuning parameter of the DCS function.
Different from the Gaussian function, the DCS function is piecewise, and therefore the
integration of the piecewise function is required. Substituting the DCS influence function
and Equations (6) and (7) into Equation (8), the variance of the DCS-based M-estimator is

Vd[ψd(ξ), p(ξ)] =

∫ +∞
−∞ ψ2

d(ξ)p(ξ)dξ(∫ +∞
−∞ ψd(ξ) ṗ(ξ)dξ

)2 (16)
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where

∫ +∞
−∞ ψ2

d(ξ)p(ξ)dξ =
2√
2π

(∫ √
ηd

0 ξ2 exp
(
− ξ2

2

)
dξ+

∫ +∞√
ηd

16η4
dξ2

(ηd + ξ2)
4 exp

(
− ξ2

2

)
dξ

)
∫ +∞
−∞ ψd(ξ) ṗ(ξ)dξ = − 2√

2π

(∫ √
ηd

0 ξ2 exp
(
− ξ2

2

)
dξ+

∫ +∞√
ηd

4η2
dξ2

(ηd + ξ2)
2 exp

(
− ξ2

2

)
dξ

) (17)

The improper integrals involved in Equation (17) also can be solved using numerical
integration, which is not repeated herein. Substituting the results of improper integral
Equation (16) into Equation (14) yields the relative efficiency between the DCS-based
estimator and the M-estimator. Following the method in the Gaussian function, the optimal
tuning parameter is 3.6035, and the relationship between the tuning parameter and the
relative efficiency is illustrated in Figure 3 and Table 3.
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Figure 3. Dependence between different functions and tuning parameters.

3.4. Sequential Mixed Cost Function

As discussed in Sections 3.1 and 3.2, the Gaussian and DCS functions are robust to
outliers, but their non-convexity induces the estimates to fall into the local minimum,
whereas the Huber function is convex but not robust to outliers. Therefore, we synthesize
the advantages of the two types of robust cost functions, thereby proposing a sequential
mixed cost strategy using both the non-convex and convex cost functions. This strategy
allows the estimator to combine robustness and stability. Specifically, an iterative update
is required for the robust estimator, the convex robust cost function is applied until the
filter converges in the first few iterations, and then the non-convex robust cost function is
applied in the subsequent iterations to eliminate outliers. Generally, the Huber function is
selected as the convex function, and the Cauchy, Gaussian, or DCS function is selected as
the non-convex function.

This section further gives the switching strategy from the convex function to the non-
convex function. Due to the stability of convex functions and the robustness of non-convex
functions, iterative updates should be carried out based on convex functions as much
as possible until a satisfied estimate is obtained, and fewer iterative updates should be
carried out based on non-convex functions to eliminate the impact of the high level of
non-Gaussian noise. Therefore, this work recommends performing only one non-convex
iteration in the last iteration.

4. Robust Iterated Sigma Point Information Filter

This section incorporates the iterated sigma point Kalman filter (ISPKF) into robust
estimation and further gives its information filtering form for numerical stability [31].
The derived robust ISPKF holds the same prediction step as the conventional sigma point
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Kalman filter (SPKF), and the only difference lies in the update step. Therefore, this section
only introduces the iterative update step of the robust filter.

4.1. ISPKF-Based Robust Iterative Update

Consider the following nonlinear model:

xk = f (xk−1) + ϖk−1
zk = g(xk) + υk

(18)

where f (·) and g(·) are the nonlinear process model and observation model, respectively;
xk and zk are the state vector and observation vector, respectively; ϖk and υk are the process
noise and observation noise, respectively; and Qk and Rk are the process noise covariance
and the observation noise covariance, respectively.

Take the jth iteration as an example to illustrate the ISPKF-based robust iterative
update. According to the statistical linear regression theory, the observation model is
transformed into a linear one [26]:

zk = G(j)
x,kxk + G(j)

c,k + υ
(j)
t,k (19)

where G(j)
x,k =

(
P̂(j)

xz,k

)T(
P̂(j−1)

k

)−1
is the linearized observation matrix; G(j)

c,k = ẑ(j)
k −

G(j)
x,k x̂(j−1)

k is the constant matrix; j denotes the index of the jth iteration; x̂(j−1)
k is the

posterior state estimate; ẑ(j)
k is the predicted observation; P̂(j)

xz,k is the cross-covariance; P̂(j−1)
k

is the posterior covariance; υ
(j)
t,k is the total observation noise, consisting of the linearization

error υ̃
(j)
k and the original observation noise υk; the total observation noise covariance

is R(j)
t,k = P̂(j)

z,k − G(j)
x,kP̂(j−1)

k

(
G(j)

x,k

)T
+ Rk, the covariance induced by linearization errors

is compensated for in the total observation covariance, which improves the estimation
consistency and accuracy; P̂(j)

z,k is the covariance of predicted observation; and p(·) is the
Gaussian probability density function. That is,

ẑ(j)
k =

∫
g(xk)p

(
xk; x̂(j−1)

k , P̂(j−1)
k

)
dxk

P̂(j)
xz,k =

∫ (
xk − x̂(j−1)

k

)(
g(xk)− ẑ(j)

k

)T
p
(

xk; x̂(j−1)
k , P̂(j−1)

k

)
dxk

P̂(j)
z,k =

∫ (
ẑ(j)

k − g(xk)
)(

ẑ(j)
k − g(xk)

)T
p
(

xk; x̂(j−1)
k , P̂(j−1)

k

)
dxk

(20)

The weighted least-squares cost function for the ISPKF-based update is built as

Ω(j)
k =

∥∥∥xk − x̂k|k−1

∥∥∥2

P̂−1
k|k−1

+
∥∥∥zk − G(j)

x,kxk − G(j)
c,k

∥∥∥2(
R(j)

t,k

)−1 (21)

where x̂k|k−1 is the prior state estimate; P̂k|k−1 is the prior covariance. That is,

x̂k|k−1 =
∫

f (xk−1)p
(

xk−1; x̂k−1, P̂k−1
)
dxk−1

P̂k|k−1 =
∫ (

f (xk−1)− x̂k|k−1

)(
f (xk−1)− x̂k|k−1

)T
p
(
xk−1; x̂k−1, P̂k−1

)
dxk−1 + Qk−1

(22)

To reduce the effect of non-Gaussian noise or outliers on estimation, the residuals
in Equation (21) are bounded by the robust cost function. Thus, the cost function in
Equation (21) is modified as

Ω(j)
r,k =

m

∑
i=1

ρ
(

ξ̄
(j)
x,i

)
+

n

∑
i=1

ρ
(

ξ̄
(j)
z,i

)
(23)
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where ξ̄
(j)
x,i and ξ̄

(j)
z,i are normalized residuals, that is,

ξ̄
(j)
x =

(√
P̂k|k−1

)−1(
xk − x̂k|k−1

)
ξ̄
(j)
z =

(√
R(j)

t,k

)−1(
zk − G(j)

x,kxk − G(j)
c,k

) (24)

ξ̄ i denotes the ith component of ξ̄.
As demonstrated in [27], Equation (23) can be transformed into another equivalent

form as follows:

Ω(j)
r,k =

(
ξ
(j)
x,k

)T(
P̂(j), mod

k|k−1

)−1
ξ
(j)
x,k +

(
ξ
(j)
z,k

)T(
R(j), mod

t,k

)−1
ξ
(j)
z,k (25)

where ξ
(j)
x =

(
xk − x̂k|k−1

)
and ξ

(j)
z =

(
zk − G(j)

x,kxk − G(j)
c,k

)
are residuals; P̂(j), mod

k|k−1 is the

modified prior covariance P̂(j), mod
k|k−1 =

(√
P̂k|k−1

)(
Φ

(j)
x

)−1

(√
P̂k|k−1

)T
; R(j), mod

t,k is the modified total observation noise covariance R(j), mod
t,k =(√

R(j)
t,k

)(
Φ

(j)
z

)−1
(√

R(j)
t,k

)T
; and Φ

(j)
x and Φ

(j)
z are the weight functions, which are com-

puted as Φ
(j)
x (i, i) = ϕ

(
ξ̄
(j)
x,i

)
and Φ

(j)
z (i, i) = ϕ

(
ξ̄
(j)
z,i

)
, respectively.

Based on the posterior estimate of the (j − 1)th iteration, the posterior estimate of the
jth iteration using the Gauss–Newton method can be written as follows:

x̂(j)
k = x̂(j−1)

k + ∆x̂(j)
k (26)

where ∆x̂(j)
k is the update step of the posterior state. Substituting x̂(j)

k in Equation (26) for
xk in Equation (25) yields

Ω(j)
r,k =

(
zk − G(j)

x,k

(
x̂(j−1)

k + ∆x̂(j)
k

)
− G(j)

c,k

)T(
R(j), mod

t,k

)−1(
zk − G(j)

x,k

(
x̂(j−1)

k + ∆x̂(j)
k

)
− G(j)

c,k

)
+(

x̂(j−1)
k + ∆x̂(j)

k − x̂k|k−1

)T(
P̂(j), mod

k|k−1

)−1(
x̂(j−1)

k + ∆x̂(j)
k − x̂k|k−1

) (27)

Finding the partial derivative of Equation (27) with respect to ∆x̂(j)
k , setting it equal to

zero, and considering G(j)
c,k = ẑ(j)

k − G(j)
x,k x̂(j−1)

k , then we have(
P̂(j), mod

k|k−1

)−1(
x̂(j−1)

k + ∆x̂(j)
k − x̂k|k−1

)
−
(

G(j)
x,k

)T(
R(j), mod

t,k

)−1(
zk − ẑ(j)

k − G(j)
x,k∆x̂(j)

k

)
= 0 (28)

Further simplifying Equation (28) and applying the matrix inversion lemma, we have

∆x̂(j)
k = x̂k|k−1 − x̂(j−1)

k + K(j)
k

(
zk − ẑ(j)

k + G(j)
x,k

(
x̂(j−1)

k − x̂k|k−1

))
(29)

where K(j)
k is the Kalman gain, i.e.,

K(j)
k = P̂(j), mod

k|k−1

(
G(j)

x,k

)T
(

R(j), mod
t,k + G(j)

x,kP̂(j), mod
k|k−1

(
G(j)

x,k

)T
)−1

(30)

Substituting Equation (29) into Equation (26), we get the posterior state estimate

x̂(j)
k = x̂k|k−1 + K(j)

k

(
zk − ẑ(j)

k − G(j)
x,k

(
x̂k|k−1 − x̂(j−1)

k

))
(31)

Finding the partial derivative of Equation (25) with respect to xk, setting it equal to
zero, and substituting x̂(j)

k into xk, we have
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(
x̂(j)

k − x̂k|k−1

)T(
P̂(j), mod

k|k−1

)−1
−
(

zk − G(j)
x,k x̂(j)

k − G(j)
c,k

)T(
R(j), mod

t,k

)−1
G(j)

x,k = 0 (32)

Substituting Equation (19) into Equation (32), we have(
x̂(j)

k − xk + xk − x̂k|k−1

)T(
P̂(j), mod

k|k−1

)−1
−
(

G(j)
x,k

(
xk − x̂(j)

k

)
+ υ

(j)
t,k

)T(
R(j), mod

t,k

)−1
G(j)

x,k = 0 (33)

Simplifying Equation (33) yields

(
xk − x̂(j)

k

)
= −

((
G(j)

x,k

)T(
R(j), mod

t,k

)−1
G(j)

x,k +
(

P̂(j), mod
k|k−1

)−1
)−1((

G(j)
x,k

)T(
R(j), mod

t,k

)−1
υ
(j)
t,k +

(
P̂(j), mod

k|k−1

)−1(
xk − x̂k|k−1

))
(34)

The posterior covariance is estimated as

P̂(j)
k = E

[(
xk − x̂(j)

k

)(
xk − x̂(j)

k

)T
]
=

((
G(j)

x,k

)T(
R(j), mod

t,k

)−1
G(j)

x,k +
(

P̂(j), mod
k|k−1

)−1
)−1

(35)

Applying the matrix inversion lemma and then substituting Equation (30) into Equa-
tion (35) results in the simplification of Equation (35) to

P̂(j)
k =

(
I − K(j)

k G(j)
x,k

)
P̂(j), mod

k|k−1 (36)

where I is the identity matrix.

Remark 1. Compared to the IUKF-based robust filters given in [19,27], the ISPKF-based robust
filter proposed in this work is more robust and consistent. In IUKF, the innovations are used to
modify the posterior estimates, which have already incorporated the observation information, thereby
rendering the state correlated with the observation, but IUKF ignores the correlation between the
two mentioned above, which results in a degraded consistency of IUKF. On the contrary, in ISPKF,
the innovations are used to modify the prior estimates, where the state is not correlated with the
observation, hence the weak consistency problem of IUKF is addressed.

4.2. Information Filtering Form

As shown in Equation (30), the Kalman gain is calculated using the modified form
of total observation noise covariance R(j), mod

t,k . When the residuals are relatively great,
the corresponding weight tends to be 0, so inverting the weight matrix may potentially
induce matrix singularity, and this further results in the Kalman filter failing to work.
Therefore, we give the information filtering form to address the problem.

Applying the matrix inversion lemma to Equation (35) yields

Ŷ (j)
k = Ŷ (j),mod

k|k−1 +
(

G(j)
x,k

)T(
R(j),mod

t,k

)−1
G(j)

x,k (37)

where Ŷ (j)
k and Ŷ (j), mod

k|k−1 are the information matrices defined as Ŷ (j)
k =

(
P̂(j)

k

)−1
and

Ŷ (j), mod
k|k−1 =

(
P̂(j), mod

k|k−1

)−1
, respectively. As shown in Equation (37), the update of the

information matrix involves the inverse matrices of the prior covariance and the total
observed noise covariance

Ŷ (j),mod
k|k−1 =

(
P̂(j),mod

k|k−1

)−1
=
(√

P̂k|k−1

)−T
Φ

(j)
x

(√
P̂k|k−1

)−1

(
R(j),mod

t,k

)−1
=

(√
R(j)

t,k

)−T
Φ

(j)
z

(√
R(j)

t,k

)−1 (38)

The inverse of the weight matrices is not involved in Equation (38), thereby effectively
avoiding the matrix singularity.
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Applying the matrix inversion lemma to Equation (30) and considering the relationship
between the posterior and prior covariances in Equation (36) yields

K(j)
k = P̂(j)

k

(
G(j)

x,k

)T(
R(j),mod

t,k

)−1
(39)

Multiplying Ŷ (j)
k by the left-hand side of Equation (31) yields

Ŷ (j)
k x̂(j)

k = Ŷ (j)
k x̂k|k−1 + Ŷ (j)

k K(j)
k

(
zk − ẑ(j)

k − G(j)
x,k

(
x̂k|k−1 − x̂(j−1)

k

))
(40)

and then substituting Equation (39) into Equation (40) yields

Ŷ (j)
k x̂(j)

k =

(
Ŷ (j)

k −
(

G(j)
x,k

)T(
R(j),mod

t,k

)−1
G(j)

x,k

)
x̂k|k−1+(

G(j)
x,k

)T(
R(j),mod

t,k

)−1(
zk − ẑ(j)

k + G(j)
x,k x̂(j−1)

k

) (41)

further substituting Equation (37) into Equation (41), Equation (41) is reduced to

ŷ(j)
k = ŷ(j)

k|k−1 +
(

G(j)
x,k

)T(
R(j),mod

t,k

)−1(
zk − ẑ(j)

k + G(j)
x,k x̂(j−1)

k

)
(42)

where ŷ(j)
k and ŷ(j)

k|k−1 are information state defined as ŷ(j)
k =

(
P̂(j)

k

)−1
x̂(j)

k and ŷ(j)
k|k−1 =(

P̂(j),mod
k|k−1

)−1
x̂k|k−1, respectively. Similarly, the inverse of the weight matrices is not in-

volved in Equation (42), thereby also avoiding the matrix singularity.

Remark 2. Note that the observation noise covariance involved in Equations (37) and (42) is the
total observation noise covariance R(j)

t,k , which consists of two components: the linearized error

covariance R̃(j)
k and the original observation noise covariance Rk. The covariance induced by the

linearization errors is incorporated into the observation noise covariance of the information filter.

To avoid confusion, the algorithm is summarized in Algorithm 1.

4.3. Property of Robust and Iterative Strategy

How does the non-convex function induce estimates to fall into the local minimum?
As shown in Figure 1, the weight function corresponding to the much greater residual
rapidly approaches 0 for the Gaussian, Cauchy, and DCS functions. This property facili-
tates the estimator to eliminate the effect of the greater residuals on estimation. However,
when the initial error of the estimator is great, even if the observation information is not
contaminated by non-Gaussian noise or outliers, the residual between the observation and
its predicted value is still great, i.e., the residual of the innovation ξz = zk − ẑk is great.
The corresponding weight approaches 0, i.e., Φz ≈ 0, hence the inverse of the modified

total observation covariance approaches 0, as shown in Equation (38), i.e.,
(

R(j),mod
t,k

)−1
=(√

R(j)
t,k

)−T
Φ

(j)
z

(√
R(j)

t,k

)−1
≈ 0. Further, the corresponding state innovation also ap-

proaches 0 as shown in Equation (42), i.e.,
(

G(j)
x,k

)T(
R(j),mod

t,k

)−1(
zk − ẑ(j)

k + G(j)
x,k x̂(j−1)

k

)
≈ 0.

Therefore, the modification of the innovation to the prior estimation is significantly reduced,
or even approaching ineffectiveness, and the state is not effectively updated. The estimator
only can rely on the process model to predict the estimate. However, the estimate remains
within the neighborhood of the prior estimate, and the residual between the nominal state
and the prior estimate is still great. Consequently, the subsequent posterior updates remain
ineffective, eventually leading to filtering divergence.
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Algorithm 1: Robust iterated sigma point information filter using sequential
mixed cost

Data: x̂k−1, P̂k−1, zk
Result: x̂k, P̂k

1 Compute prior state and covariance using Equation (22);

2 Initialize iteration x̂(0)k = x̂k|k−1, P̂(0)
k = P̂k|k−1;

3 for j ∈ [1, 2, · · · ] do
4 Compute ẑ(j)

k , P̂(j)
z,k , and P̂(j)

xz,k using Equation (20);

5 Compute ξ
(j)
x,i , ξ

(j)
z,i using Equation (24);

6 if iterate using convex function then
7 Φ

(j)
x (i, i) = ϕHuber

(
ξ
(j)
x,i

)
, Φ

(j)
z (i, i) = ϕHuber

(
ξ
(j)
z,i

)
;

8 else
9 Φ

(j)
x (i, i) = ϕnonconvex

(
ξ
(j)
x,i

)
, Φ

(j)
z (i, i) = ϕnonconvex

(
ξ
(j)
z,i

)
;

10 end

11 Compute Ŷ (j),mod
k|k−1 ,

(
R(j),mod

t,k

)−1
using Equation (38) and

ŷ(j)
k|k−1 = Ŷ (j),mod

k|k−1 x̂k|k−1;

12 Compute Ŷ (j)
k , ŷ(j)

k using Equations (37) and (42);

13 Compute P̂(j)
k =

(
Ŷ (j)

k

)−1
, x̂(j)

k = P̂(j)
k ŷ(j)

k ;

14 end

5. Simulation and Results

One hundred Monte Carlo simulation runs were performed under different levels
of non-Gaussian noise. The cost functions involved in the comparison are the Huber
function, the Gaussian function, the Cauchy function, the DCS function, and the mixed
Huber and non-convex function (henceforth referred to as Huber/Gauss, Huber/Cauchy,
and Huber/DCS), respectively. The number of iterations were all set to four. For the
mixed cost strategy, the first three iterations are performed based on the Huber function,
and the subsequent iteration is based on the non-convex functions (Gauss, Cauchy, and
DCS, respectively).

5.1. Process and Observation Models

The simulation scenario is spacecraft relative navigation in an elliptical orbit, hence the
process model is the Tschauner–Hempel (T-H) equations, which are expressed as follows:

ẍk = ω2
c xk + 2ωcẏk + ω̇cyk +

µ

r2
c
− µ(rc + xk)

r3
d

+ fux,k + fwx,k

ÿk = ω2
c yk − 2ωc ẋk − ω̇cxk −

µyk

r3
d

+ fuy,k + fwy,k

z̈k = −µzk

r3
d

+ fuz,k + fwz,k

(43)

where the state vector consists of the relative positions and their first-order differentials,
i.e., xk = [xk, yk, zk, ẋk, ẏk, żk]

T; fw is the perturbing acceleration; fu is the control specific
force; µ is the gravitational constant; ωc and rc are the orbital angular velocity and orbital
radius of the chief spacecraft, respectively; rd is the orbital radius of the deputy spacecraft;
and ωc, rc, and rd are related as follows:
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r̈c = rcω2
c −

µ

r2
c

ω̇c = −2ṙcωc

rc

rd =
√
(rc + x)2 + y2 + z2

(44)

The relative observation zk is provided by the radar of the chief spacecraft and the
observation model is given as follows:

zk =



√
x2

k + y2
k + z2

k

arctan
(

yk
xk

)
arctan

 zk√
x2

k + y2
k




+ υk (45)

5.2. Simulation Condition Settings

The orbital elements of the chief spacecraft are given in Table 4. The simulation
parameters are given in Table 5.

Table 4. Orbital elements of chief spacecraft.

Orbital Element Corresponding Value

Semimajor axis 8200 km
Orbital eccentricity 0.15
Orbital inclination 50◦

Right ascension of ascending node 105◦

Argument of perigee 10◦

True anomaly 30◦

Table 5. Simulation parameters.

Simulation Parameter Corresponding Value

Initial nominal vector x0 = [(10, 15, 10)km, (0.3, 0.5, 0.3)km/s]T

Control specific force fu =

1 × 10−5, · · · , 1 × 10−5︸ ︷︷ ︸
3

km/s2

Process noise covariance Qk = diag

1 × 10−11, · · · , 1 × 10−11︸ ︷︷ ︸
3

(km/s)2

Observation noise covariance R1 = diag
[(

1.1 × 10−2km
)2

, (0.12◦) 2, (0.12◦)2
]

Dynamics discrete interval,
observation update interval 0.1s, 0.5s

Filters’ initial covariance P0 = diag

(0.3)2, · · · , (0.3)2︸ ︷︷ ︸
3

km, (0.1)2, · · · , (0.1)2︸ ︷︷ ︸
3

km/s


Filters’ initial state x̂0 ∼ N

(
x0, P̂0

)
Filters’ initial covariance R2 = α2R1

The non-Gaussian observation noise is modeled as p(υ) = (1 − ε)p1 + εp2, where ε
is the perturbing parameter; p1 and p2 are the PDFs of the nominal and contaminated
Gaussian distributions, respectively; their covariance matrices are denoted as R1 and R2,
respectively; and R2 is α2 times as large as R1. As elaborated in [27], we use the root mean
square error (RMSE) to evaluate estimation accuracy and the averaged normalized estima-
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tion error squared (ANEES) to evaluate estimation consistency [32], and the equations of
RMSE and ANEES are given as follows:

RMSEk,i =

√
1
M

M
∑

m=1

(
x̂m

k,i − xm
k,i

)2

ANEESk =
1

Mn

M
∑

m=1

(
xm

k − x̂m
k
)T(P̂m

k
)−1(xm

k − x̂m
k
) (46)

where M denotes the number of Monte Carlo simulation runs; m denotes the mth Monte
Carlo simulation run; n denotes the dimension of the state vector; the subscript k denotes
the kth instant; the subscript i denotes the ith component of the state vector; x denotes the
nominal state vector; x̂ denotes the posterior state estimate; and P̂ denotes the posterior
covariance estimate. A detailed explanation of the ANEES matrix is demonstrated in [27],
and the theoretical value of ANEES is 1. In this work, given the degrees of freedom (DOF)
Mn = 100 × 6 = 600 and the significance level of α = 5%, the critical value of the chi-
squared test can be approximated as χ2

α(Mn) ≈
(
zα +

√
2Mn − 1

)2
/2, where zα denotes

the value to the left of a critical value z, and α denotes the probability mass of the standard
normal distribution. In this work, the upper and lower bounds of the 95% confidence
interval are computed as χ2

α/2(Mn)/(Mn) = 0.8893 and χ2
1−α/2(Mn)/(Mn) = 1.1155,

respectively, where z0.025 = −1.96 and z0.975 = 1.96.

5.3. Comparison Under Gaussian Noise

Figure 4 depicts the RMSEs of the filters based on different functions under Gaussian
observation noise. We find that the filters using non-convex functions (Gaussian and DCS
functions) diverge, i.e., these filters converge to local minima, whereas the filter using the
non-convex function (Cauchy function) converges, due to its weaker robustness compared
to the other two non-convex functions, i.e., the Cauchy influence function or weight function
does not converge to 0 rapidly in the outlier range, as shown in Figure 1. The convex cost
function-based (Huber function) filter converges well, which demonstrates that the convex
function is more stable than the non-convex functions. Furthermore, by using the Huber
function, the mixed strategies (Huber/MCC, Huber/Cauchy, and Huber/DCS) can avoid
the flaws of non-convex functions, improve the filtering accuracy, and prevent non-convex
function-based filters from diverging.
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Figure 4. RMSEs of filters under Gaussian noise (ε = 0).
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5.4. Comparison Under Different Levels of Non-Gaussian Noise

Figures 5 and 6 depict the RMSEs of filters based on different functions under different
levels of non-Gaussian observation noise. Under the general level of non-Gaussian noise,
the convergence of the filters based on different functions is essentially the same as that
under Gaussian noise, whereas for the mixed strategies, the estimation accuracy of several
filters (Huber, Huber/MCC, Huber/Cauchy, and Huber/DCS) appears to be different.
Specifically, the filters using the mixed strategies obtain better estimation accuracies than
the Huber-based filter, which fully reveals the strong robustness of the non-convex functions
over the convex one. As the level of non-Gaussian noise increases, the flaws of the non-
convex functions become more obvious, and, especially, even with the help of the Huber
function, the DCS-based filter still falls into the local minimum. Furthermore, with the
help of the Huber function, the Huber/Cauchy-based filter achieves better estimation than
the Cauchy-based one; with the help of the Cauchy function, the Huber/Cauchy-based
filter achieves better estimation than the Huber-based one. The results re-emphasize that
the mixed strategy allows the filters to combine both estimation stability and robustness.
Figure 7 depicts the ANEESs of filters based on different functions; the mixed strategies
allow the filters to obtain better estimation consistency.
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Figure 5. RMSEs of filters under a general level of non-Gaussian noise (ε = 0.1, α = 5).
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Figure 6. RMSEs of filters under a high level of non-Gaussian noise (ε = 0.2, α = 10).
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5.5. Analysis on the Number of Iterations in Sequential Mixed Cost

To elaborate the switching strategy from the convex function to the non-convex function
in iterations, 100 Monte Carlo simulation runs are performed under the high level of non-
Gaussian noise (ε = 0.2, α = 10). The mixed cost strategies involved in the comparison are
Huber/Gauss, Huber/Cauchy, and Huber/DCS, respectively. The total number of iterations
are all set to four. For the mixed cost strategies, the number of Huber-based iterations are set
to one, two, and three, respectively, and then the corresponding number of non-convex-based
iterations are set as three, two, and one, respectively. The above algorithms are abbreviated
as Huber1/Gauss3, Huber1/Cauchy3, Huber1/DCS3, Huber2/Gauss2, Huber2/Cauchy2,
Huber2/DCS2, Huber3/Gauss1, Huber3/Cauchy1, and Huber3/DCS1, respectively.
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Figure 7. ANEESs of filters under different levels of non-Gaussian noise.

Figures 8 and 9 depict the RMSEs and ANEESs of filters based on the mixed cost
functions using different numbers of iterations, respectively. As shown in Figure 8, we
find that all filters using the DCS function diverge (Huber1/DCS3, Huber2/DCS2, and Hu-
ber3/DCS1), and for the Gaussian function, only the filter using one Gaussian iteration
converges (Huber3/Gauss1). On the contrary, all filters using the Cauchy function converge
(Huber1/Cauchy3, Huber2/Cauchy2, and Huber3/Cauchy1), and the estimation accuracy
and consistency of the filters gradually are improved as the number of Cauchy-based iterations
decreases and the number of Huber-based iterations increases. The same results can be seen
from the consistency metrics of the filters in Figure 9. Therefore, we can conclude that in
the sequential mixed cost strategy, as many Huber-based iterations as possible should be
performed to obtain relatively accurate estimates, and a non-convex function should be used
only in the last iteration to obtain stronger robustness. Furthermore, the Cauchy-based filters
achieve better robustness and stability compared with the other two non-convex functions;
the reason is that the Cauchy influence function or weight function does not converge to 0
rapidly in the outlier range compared with the Gaussian and DCS functions. Therefore, we
can conclude that the Cauchy function is the better choice for the non-convex iteration.
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Figure 8. RMSEs of filters using different numbers of iterations (ε = 0.2, α = 10).
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Figure 9. ANEESs of filters using different numbers of iterations (ε = 0.2, α = 10).

6. Discussion

To address the problem induced by non-Gaussian observation noise, the update step of
the Gaussian filters is modified based on M-estimation. The robustness of such robust filters
depends on the cost criterion adopted, where the more extensively used cost function is the
Huber function. As demonstrated in Section 3.1, the Huber function is non-redescending;
this property results in relatively weak robustness to cope with the high level of non-
Gaussian noise. To improve the robustness of the M-estimation type robust Kalman filter,
the redescending cost functions (e.g., the Gaussian function, the DCS function, and the
Cauchy function) emerge. However, the flaws of the redescending cost function are also
obvious. As discussed in Section 3.2, the redescending functions are non-convex and tend
to induce the estimation to fall into local minima; this flaw is also proved by the numerical
simulation in Section 5. Regarding the perspective of the stability property, the convex
functions (e.g., the Huber function) have an advantage over the non-convex functions (e.g.,
the Gaussian function, the DCS function, and the Cauchy function).
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To synthesize the advantages of the two types of robust cost functions, this work
proposes a sequential mixed cost strategy using both the non-convex and convex cost
functions. Specifically, an iterative update is required for the robust estimator, where the
convex cost function is applied until the filter converges in the first few iterations, and then
the non-convex cost function is applied in the subsequent iterations to eliminate outliers.
The iterative strategy is given based on the iterated sigma point Kalman filtering framework.

The simulation results in Section 5.4 demonstrate that the convex cost function fa-
cilitates the non-convex function to achieve more stability, and the non-convex function
facilitates the convex function to achieve stronger robustness. The best combination is
the Huber and Cauchy mixed cost strategy. The reason lies in that the Cauchy influence
function or weight function does not converge to zero rapidly in the outlier range com-
pared with the Gaussian and DCS functions. Therefore, we can conclude that the sequential
mixed cost strategy facilitates the M-estimation type robust Kalman filters to cope with
different levels of non-Gaussian noise. Furthermore, the simulation results in Section 5.5
demonstrate that as many Huber-based iterations as possible should be performed to obtain
relatively accurate estimates, and a non-convex-based iteration should be used only in the
last iteration to obtain stronger robustness. For future work, we will perform research on
more types of convex function and non-convex function mixed cost strategies, and on the
effect of iterative strategies on estimation robustness and stability.

7. Conclusions

This work investigates the robustness and stability of different cost functions in M-
estimation. Due to non-redescent, the convex cost function exhibits strong stability and
weak robustness, and due to redescent, the non-convex cost function exhibits weak stability
and strong robustness. To combine the properties of different cost functions, we propose
the sequential mixed cost strategy and provide the robust iterated sigma point information
filtering framework. The simulation results show that, under a general level of non-
Gaussian noise, the mixed strategy avoids the non-convex function-based estimation falling
into the local minimum; under a high level of non-Gaussian noise, the mixed strategy
provides more accurate estimates; in the sequential mixed cost strategy, as many Huber-
based iterations as possible should be performed to obtain relatively accurate estimates,
and a non-convex function should be used only in the last iteration to obtain stronger
robustness. Therefore, the mixed strategy can comprehensively improve the efficiency of
the M-estimation type iterated filter.

Author Contributions: Conceptualization, S.L. and W.L.; methodology, S.L.; software, S.L.; validation,
S.L. and W.L.; formal analysis, S.L. and W.L.; investigation, S.L.; resources, W.L.; data curation, S.L.;
writing—original draft preparation, S.L.; writing—review and editing, W.L.; visualization, S.L.;
supervision, W.L.; project administration, W.L.; funding acquisition, S.L. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by the China Postdoctoral Science Foundation under grant
number 2023M731788 and the National Natural Science Foundation of China under grant num-
ber 62303246.

Data Availability Statement: The original contributions presented in the study are included in the
article; further inquiries can be directed to the corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Liao, T.; Hirota, K.; Wu, X.; Shao, S.; Dai, Y. A dynamic self-tuning maximum correntropy Kalman filter for wireless sensors

networks positioning systems. Remote Sens. 2022, 14, 4345. [CrossRef]
2. Cui, B.; Chen, W.; Weng, D.; Wei, X.; Sun, Z.; Zhao, Y.; Liu, Y. Observability-constrained resampling-rree cubature Kalman filter

for GNSS/INS with measurement outliers. Remote Sens. 2023, 15, 4591. [CrossRef]
3. Liu, D.; Chen, X.; Xu, Y.; Liu, X.; Shi, C. Maximum correntropy generalized high-degree cubature Kalman filter with application

to the attitude determination system of missile. Aerosp. Sci. Technol. 2019, 95, 105441. [CrossRef]

http://doi.org/10.3390/rs14174345
http://dx.doi.org/10.3390/rs15184591
http://dx.doi.org/10.1016/j.ast.2019.105441


Remote Sens. 2024, 16, 4384 21 of 21

4. Huber, P.J. Robust estimation of a location parameter. In Breakthroughs in Statistics: Methodology and Distribution; Springer:
Berlin/Heidelberg, Germany, 1992; pp. 492–518.

5. Karlgaard, C.D.; Schaub, H. Huber-based divided difference filtering. J. Guid. Control. Dyn. 2007, 30, 885–891. [CrossRef]
6. Chang, L.; Hu, B.; Chang, G.; Li, A. Huber-based novel robust unscented Kalman filter. IET Sci. Meas. Technol. 2012, 6, 502–509.

[CrossRef]
7. Huang, Y.; Zhang, Y.; Li, N.; Wu, Z.; Chambers, J.A. A novel robust Student’s t-based Kalman filter. IEEE Trans. Aerosp. Electron.

Syst. 2017, 53, 1545–1554. [CrossRef]
8. Chen, B.; Liu, X.; Zhao, H.; Principe, J.C. Maximum correntropy Kalman filter. Automatica 2017, 76, 70–77. [CrossRef]
9. Wang, G.; Zhang, Y.; Wang, X. Iterated maximum correntropy unscented Kalman filters for non-Gaussian systems. Signal Process.

2019, 163, 87–94. [CrossRef]
10. Huai, L.; Li, B.; Yun, P.; Song, C.; Wang, J. Weighted Maximum Correntropy Criterion-Based Interacting Multiple-Model Filter for

Maneuvering Target Tracking. Remote Sens. 2023, 15, 4513. [CrossRef]
11. Wang, D.; Zhang, H.; Huang, H.; Ge, B. A redundant measurement-based maximum correntropy extended Kalman filter for the

noise covariance estimation in INS/GNSS integration. Remote Sens. 2023, 15, 2430. [CrossRef]
12. MacTavish, K.; Barfoot, T.D. At all costs: A comparison of robust cost functions for camera correspondence outliers. In Proceedings

of the 2015 12th Conference on Computer and Robot Vision, Halifax, NS, Canada, 3–5 June 2015; pp. 62–69.
13. Chen, B.; Wang, X.; Lu, N.; Wang, S.; Cao, J.; Qin, J. Mixture correntropy for robust learning. Pattern Recognit. 2018, 79, 318–327.

[CrossRef]
14. Dang, L.; Huang, Y.; Zhang, Y.; Chen, B. Multi-kernel correntropy based extended Kalman filtering for state-of-charge estimation.

ISA Trans. 2022, 129, 271–283. [CrossRef] [PubMed]
15. Chen, B.; Xie, Y.; Li, Z.; Li, Y.; Ren, P. Asymmetric correntropy for robust adaptive filtering. IEEE Trans. Circuits Syst. II Express

Briefs 2021, 69, 1922–1926. [CrossRef]
16. Qu, H.; Wang, M.; Zhao, J.; Zhao, S.; Li, T.; Yue, P. Generalized asymmetric correntropy for robust adaptive filtering: A theoretical

and simulation study. Remote Sens. 2022, 14, 3677. [CrossRef]
17. Qi, L.; Shen, M.; Wang, D.; Wang, S. Robust Cauchy kernel conjugate gradient algorithm for non-Gaussian noises. IEEE Signal

Process. Lett. 2021, 28, 1011–1015. [CrossRef]
18. Huang, H.; Zhang, H. Student’s t-Kernel-Based Maximum Correntropy Kalman Filter. Sensors 2022, 22, 1683. [CrossRef]
19. Li, S.; Cui, N.; Mu, R. Dynamic-covariance-scaling-based robust sigma-point information filtering. J. Guid. Control. Dyn. 2021,

44, 1677–1684. [CrossRef]
20. Agarwal, P. Robust graph-based localization and mapping. Ph.D. Thesis, Albert-Ludwigs-Universität Freiburg, Freiburg,

Germany, 2015.
21. Agarwal, P.; Tipaldi, G.D.; Spinello, L.; Stachniss, C.; Burgard, W. Robust map optimization using dynamic covariance scaling. In

Proceedings of the 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, 6–10 May 2013; pp. 62–69.
22. Zhang, Z. Parameter estimation techniques: A tutorial with application to conic fitting. Image Vis. Comput. 1997, 15, 59–76.

[CrossRef]
23. Wang, X.; Cui, N.; Guo, J. Huber-based unscented filtering and its application to vision-based relative navigation. IET Radar

Sonar Navig. 2010, 4, 134–141. [CrossRef]
24. Zhan, R.; Wan, J. Iterated unscented Kalman filter for passive target tracking. IEEE Trans. Aerosp. Electron. Syst. 2007,

43, 1155–1163. [CrossRef]
25. Karlgaard, C.D. Nonlinear regression Huber-Kalman filtering and fixed-interval smoothing. J. Guid. Control. Dyn. 2015,

38, 322–330. [CrossRef]
26. Wang, G.; Li, N.; Zhang, Y. Distributed maximum correntropy linear and nonlinear filters for systems with non-Gaussian noises.

Signal Process. 2021, 182, 107937. [CrossRef]
27. Li, S.; Zhang, X.; Liu, W.; Cui, N. Optimization-based iterative and robust strategy for spacecraft relative navigation in elliptical

orbit. Aerosp. Sci. Technol. 2023, 133, 108138. [CrossRef]
28. Wang, Y.; Zheng, W.; Sun, S.; Li, L. Robust information filter based on maximum correntropy criterion. J. Guid. Control. Dyn.

2016, 39, 1126–1131. [CrossRef]
29. Liu, X.; Chen, B.; Xu, B.; Wu, Z.; Honeine, P. Maximum correntropy unscented filter. Int. J. Syst. Sci. 2017, 48, 1607–1615.

[CrossRef]
30. De Menezes, D.; Prata, D.M.; Secchi, A.R.; Pinto, J.C. A review on robust M-estimators for regression analysis. Comput. Chem.

Eng. 2021, 147, 107254. [CrossRef]
31. Sibley, G.; Sukhatme, G.S.; Matthies, L.H. The iterated sigma point Kalman filter with applications to long range stereo. Robot. Sci.

Syst. 2006, 8, 235–244.
32. Crassidis, J.L.; Junkins, J.L., Optimal estimation of dynamic systems; CRC Press, Taylor and Francis Group: Boca Raton, FL,

USA, 2004; pp. 228–231.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.2514/1.27968
http://dx.doi.org/10.1049/iet-smt.2011.0169
http://dx.doi.org/10.1109/TAES.2017.2651684
http://dx.doi.org/10.1016/j.automatica.2016.10.004
http://dx.doi.org/10.1016/j.sigpro.2019.05.015
http://dx.doi.org/10.3390/rs15184513
http://dx.doi.org/10.3390/rs15092430
http://dx.doi.org/10.1016/j.patcog.2018.02.010
http://dx.doi.org/10.1016/j.isatra.2022.02.047
http://www.ncbi.nlm.nih.gov/pubmed/35292168
http://dx.doi.org/10.1109/TCSII.2021.3122283
http://dx.doi.org/10.3390/rs14153677
http://dx.doi.org/10.1109/LSP.2021.3081381
http://dx.doi.org/10.3390/s22041683
http://dx.doi.org/10.2514/1.G005881
http://dx.doi.org/10.1016/S0262-8856(96)01112-2
http://dx.doi.org/10.1049/iet-rsn.2009.0170
http://dx.doi.org/10.1109/TAES.2007.4383605
http://dx.doi.org/10.2514/1.G000799
http://dx.doi.org/10.1016/j.sigpro.2020.107937
http://dx.doi.org/10.1016/j.ast.2023.108138
http://dx.doi.org/10.2514/1.G001576
http://dx.doi.org/10.1080/00207721.2016.1277407
http://dx.doi.org/10.1016/j.compchemeng.2021.107254

	Introduction
	Problem Statement
	Cost Functions for M-Estimation
	Robustness of Different Cost Functions
	Stability of Different Cost Functions
	Determination of Tuning Parameters
	Sequential Mixed Cost Function

	Robust Iterated Sigma Point Information Filter
	ISPKF-Based Robust Iterative Update
	Information Filtering Form
	Property of Robust and Iterative Strategy

	Simulation and Results
	Process and Observation Models
	Simulation Condition Settings
	Comparison Under Gaussian Noise
	Comparison Under Different Levels of Non-Gaussian Noise
	Analysis on the Number of Iterations in Sequential Mixed Cost

	Discussion
	Conclusions
	References 

