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Abstract: Studies have extensively examined the cooling effects of forests. Various methods exist
for evaluating climate regulation at regional and global levels. Local-scale cooling effects and their
valuing methods, however, remain poorly understood. In this study, the temperature difference and
energy balance methods were compared to assess the value of cooling services of three forest types
at a local scale. Using the window searching strategy, land surface temperature and sensible heat
flux differences between forest and open land were compared. The average cooling temperature of
broad-leaved forests was found to be 0.229 ◦C, significantly higher than that of coniferous forests, at
0.205 ◦C, while mixed coniferous–broad-leaved forests were not significantly different to the other
two types. The average sensible heat flux differences in broad-leaved, coniferous, and coniferous–
broad-leaved forests were found to be 0.23, 0.079, and 0.11 MJ/m2/day, respectively. According to
the correlation analysis, the sensible heat flux was significantly correlated with the cooling degree
(R = 0.33, p = 0.05), suggesting consistency between the two approaches. However, the total cooling
value calculated with the energy balance method was CNY 0.51 billion, significantly higher than the
temperature difference method at CNY 0.11 billion. The main reason for the differences between the
two approaches is the uncertainty in cooling volume and cooling time for the temperature difference
method and energy balance method, respectively. The impact of vegetation on the microclimate
depends on the vegetation type, topography, local climate, and other factors. It is also important to
note that cooling services are not required at all times of the day, and energy differences can hardly
be calculated based on the hour. However, surface radiation and evapotranspiration generally occur
during the daytime, which is also when the surface temperature is high. Therefore, there is a certain
coincidence with the time when cooling is needed. The energy balance method presented herein
provides a novel alternative approach to assessing the cooling services of local-scale forests, offering
advantages over the commonly used temperature difference approach, which is associated with
large uncertainty.

Keywords: cooling effects; ecosystem services; forest; Inner Mongolia

1. Introduction

With the global mean air temperature expected to rise, increasing attention has been
paid to the climate regulation services of forests. Trees and forests affect the climate through
both biogeochemical and biophysical processes [1]. Biogeochemical processes indirectly
alter temperature by affecting the atmospheric carbon dioxide (CO2) concentration, which
is known as global climate regulation [2]. The biophysical process affects local air tem-
perature directly through evapotranspiration, surface albedo, and shading [3]. Forests’
climate regulation services vary depending on geography, climate, and other factors [4].
Observations of 32 cities in China indicate that the cooling effect of forests is insensitive to
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precipitation changes above a certain threshold [5]. Moreover, studies by Yu et al. (2018) [6]
suggested that local climate conditions can affect the cooling effect of landscape compo-
nents and configurations. Therefore, to address climate change, we should implement more
accurate assessments of climate regulation services according to local conditions.

As urban heat islands have become a typical climate phenomenon, cooling services
of urban forests and other vegetation have been widely studied [7]. For instance, studies
demonstrated that Europe’s urban vegetation is responsible for reducing the air temperature
by 1.1 ◦C [8]. Among these, landscape pattern [9], patch size [10], and patch shape [11] are
the main influencing factors of urban vegetation cooling services. However, the cooling
service of forests in rural areas has received fewer assessments, although rural agriculture
may be vulnerable to local climate change [2]. The forest can provide climate regulation
services for surrounding farmland. For example, hot summers can result in lower crop
production. If there are forests nearby, this may reduce food losses. There is evidence that
climate change could affect soil organic carbon (SOC), nitrate (NO3

−), and albedo, leading
to a decline in crop yields [12]. Thus, climate regulation services of forests in rural areas
must also be addressed.

Various methods have been used to evaluate the cooling effect of forests according
to different scales, including field measurements, weather monitoring, remote sensing,
and model simulations [7,13]. Field measurements are generally based on flux towers or
thermal infrared cameras [14], which can obtain more accurate air temperature data. Forest
cooling effects at small scales, such as urban parks [15] and urban green space [16], are
widely studied using this method. However, as field experiments are time-consuming and
labor-intensive, it is difficult to capture temperature data on a larger scale. Aside from
that, data from weather monitoring can be used to assess the cooling effect of forests. For
instance, Sun et al. (2017) [2] used meteorological data to assess forest cooling services
for the farming area and built-up area in Fanggan village. Compared to field experiment
data, meteorological data have time continuity, which could span a longer time period [17].
However, due to the limited number of meteorological stations, air temperature data often
lack spatial representation [18] and cannot provide sufficient detail for climate research [5].
With the development of remote sensing, land surface temperature (LST) data from remote
sensing satellite imagery are often used to quantify local and global climate change [19,20].
Through repeated and consistent observations from satellites, we can investigate the local
effects of forests from a regional or global perspective [1]. Moderate Resolution Imaging
Spectroradiometer (MODIS) satellites provide a range of data products with different spatial
and temporal resolutions, which are crucial for evaluating LSTs in different regions [21,22].
There is evidence that LST can simulate sensible heat flux but cannot capture latent heat
flux [7], which may lead to controversial results when analyzing the cooling effects of forests
or other vegetation [4]. Su et al. (2019) [23] proposed a three-layered (canopy, forest air
space, and soil [CAS]) land surface energy balance model to simulate air temperature within
forest spaces and evaluate its biophysical effects on forest cooling. In addition, the E3SM
Land Model is a state-of-the-art fully coupled model of the Earth’s climate that includes
important biogeochemical and cryospheric processes. The Community Land Model is the
land model for the Community Earth System Model (CESM), which represents several
aspects of the land surface, including surface heterogeneity, and consists of components or
submodels related to land biogeophysics, the hydrologic cycle, biogeochemistry, and so on.
Nevertheless, relatively few studies have combined LST with energy balance to analyze
the cooling service value of vegetation [24].

Several indicators and methods have been established to evaluate the value of forest
ecosystems for climate regulation, including the expert knowledge-based method [25,26]
and the alternative market approach [27,28]. Based on expert knowledge, Costanza et al.
(1997) assessed the climate regulation service value of different ecosystems but found
that it was not possible to separate cooling services from climate regulation services [25].
The alternative market approach is widely used to evaluate the value of forest cooling
services. According to Ouyang et al. (2013) [29], plant transpiration can absorb heat and
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be converted into energy-saving potential (ESP), which can reflect the monetary value
of ecosystem services. In addition, Zhang et al. (2014) [16] and Zhao et al. (2018) [30]
calculated heat absorption by urban vegetation by assessing temperature reductions in
the urban vegetation and the volume heat capacity of the air. However, the volume of
air cooled by forests varies depending on various factors [31]. Additionally, it is difficult
to analyze the actual cooling processes of forests, such as evapotranspiration, surface
reflection, photosynthetic activity, and so on [32]. In order to calculate forest cooling values,
energy balance models that have been developed and widely validated for heat mitigation
mechanisms can be useful.

In this study, we used the energy balance method to calculate the cooling service value
of forests in Inner Mongolia and compared it with empirical estimates developed by Yang
et al. (1994) [33] and Zhang et al. (2014) [16]. This study aims to address the following
questions: (1) In Inner Mongolia, which forest type provides better cooling? (2) How does
the empirical temperature difference differ from the energy balance method?

2. Materials and Methods
2.1. Study Site

The study area is Inner Mongolia, located in northern China (37◦24′–53◦23′E,
97◦12′–126◦04′N). The topography is long and narrow, stretching from the northeast to
the southwest. The region’s climate changes from semi-humid to semi-arid and dry, with
a temperate continental monsoon climate. There is a noticeable gradient difference in
precipitation between the northeast and southwest, with an average rainfall of 150 mm.
The main ecosystem types of this region are forests, grasslands, farmlands, and deserts
(Figure 1).
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2.2. Input Data

We processed remote sensing spatial data on land use, LST data, net surface radiation,
and monthly ET on the ArcGIS 10.6 platform (Esri, USA) for the analysis (Table 1).

Table 1. Sources of primary data.

Type of Data Description of Data Data Sources

Land use
This type includes cropland, forest, grassland,
waters, construction, and unutilized land,
with a spatial resolution of 30 m.

Resource and Environmental Sciences Data Center, Chinese
Academy of Sciences (https://www.resdc.cn/ (accessed on
20 April 2024).

LST A raster data set is retrieved from MOD11A1,
with a spatial resolution of 1 km.

Geospatial Data Cloud site, Computer Network Information
Center, Chinese Academy of Sciences
(http://www.gscloud.cn (accessed on 3 February 2024).

Net surface
radiation

A raster data set is derived from the National
Earth System Science Data Center, with a
spatial resolution of 1 km.

National Science and Technology Infrastructure of China
(http://www.geodata.cn (accessed on 20 February 2024).

Monthly ET Data for MODIS/006/MOD16A2, with a
spatial resolution of 1 km.

From the National Aeronautics and Space Administration
(NASA).

2.3. Research Methods

Figure 2 shows the flow chart of this study. In the first step, we extract data on land use
to determine whether any forests or open lands exist. To screen control and experimental
groups, the window searching strategy was employed. Using the temperature difference
method (method 1), we compared LST between close cells, calculated their heat absorption
difference, and converted it to electrical energy using Equation (1). The cooling service
value was calculated using Equation (3).
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In the energy balance method (method 2), sensible heat flux between forest and
nearby open land was compared. Using Equation (4), the sensible heat flux difference was
converted into air conditioner energy savings. The cooling service value was calculated
using Equation (3).

https://www.resdc.cn/
http://www.gscloud.cn
http://www.geodata.cn
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Window Searching Strategy

We compared land surface temperatures, surface net radiation, and other energy
components across Inner Mongolia between forests and nearby open land (grassland and
crops). As a proxy for non-forest land, open land represents the results of deforestation or
lands suitable for afforestation or reforestation in the future. To find all available samples
to compare forests with open land across the study area, we used a window searching
strategy (Figure 3). In this study, surface temperature and other spatial data were processed
with Python, including Rasterio, OS, Math, Pickle, Globe, and other native Python libraries.
In order to read all the raster data, we created a step size of 3 times in the x-direction and
2 times in the y-direction.
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Figure 3. Schematic diagram of moving window method.

The search window size is 5 × 3 pixels (longitude × latitude), approximately equal to
5 × 3 km. Two adjacent windows are partially overlapping along both the longitudinal
(3 pixels) and latitudinal (2 pixels) directions. Using this strategy, all nearby forests and
open land that share similar climate background data were compared. Whenever both the
forest and open land surfaces were greater than 0 in the same window, it was considered
a staggered zone. We calculated the mean differences in land surface temperature and
sensible heat flux in the staggered window. Data were excluded from sample plots with
an altitude difference of more than 100 m compared to the control when considering the
cooling effect of altitude.

2.4. Cooling Service Value Calculation

In this study, the temperature difference method (method 1) and energy balance
method (method 2) were compared to calculate the cooling service value of forests in Inner
Mongolia.
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2.4.1. Temperature Difference Method

To calculate the heat absorbed by vegetation from the surrounding air, the empirical
method proposed by Yang (1994) [33] is used to convert between temperature and heat.
Based on his hypothesis, the mean height of the microclimate is 100 m, and the horizontal
range is 10 m2. Therefore, a theoretical air column with a 10 m2 base and a height of 100 m
could be considered a computational unit. In addition, the heat absorbed by vegetation
(∆Q) could be determined by temperature reduction (∆T) and the volume heat capacity of
the air (ρc) in Equation (1). Many studies have been conducted to assess the cooling service
value of forests using the empirical model [16].

∆Q = ∆T × ρc × Vair (1)

where ∆Q is the heat absorbed by vegetation, ∆T is the temperature reduction caused by
vegetation, ρc is the volume heat capacity of the air, and Vair is the volume of air in the
surrounding microclimate.

The difference in surface temperature between the paired forest and open land was
calculated using the window searching strategy. The equation is as follows:

∆T = Tforest − Topenland (2)

where ∆T is the land surface temperature difference between the paired forest and open
land, Tforest is the land surface temperature of the forest, and Topenland is the land surface
temperature of open land.

An alternative method was used to calculate forest cooling service values. According
to our hypothesis, forests are replaced by heat-absorbing air conditioners, so the forest’s
cooling value is equivalent to the air conditioning’s electricity consumption:

Vforest = Nc × EC × P (3)

Nc = ∆Q ÷ Qc (4)

where Vforest is the cooling service value of the forest, Nc is the number of air conditioners
needed to cool the air, EC is the power consumption required for an air conditioner to
work continuously for an hour, P is the electrovalence of the local area, and Qc is the heat
absorbed by an air conditioner per hour.

2.4.2. Energy Balance Method

Land surface temperature changes are accompanied by variations in energy, particu-
larly a reduction in the sensible heat fluxes (SHFs) [34,35]. Studies have shown that surface
net radiation, storage heat flux, and latent heat flux are the main factors affecting surface
temperature [1].

Sensible heat flux can be calculated based on the energy balance equation as follows:

QH = QRn − QL − QS (5)

where QH is the sensible heat flux of the ecosystem, QRn is the net radiation of the ecosystem,
QL is the latent heat flux, and QS is the storage heat flux. Due to the extremely low storage
heat flux value, this indicator was not considered in the calculation.

The data on net radiation of the surface [36] are sourced from the National Earth
System Science Data Center, National Science and Technology Infrastructure of China
(http://www.geodata.cn (accessed on 20 February 2024).

QL = mr (6)

where QL is the latent heat flux of the ecosystem, m is the mass of water vapor (kg), and r is
the vaporization heat (kcal/kg).

http://www.geodata.cn
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The difference in sensible heat fluxes is accompanied by land surface temperature
changes [37]. Therefore, we calculate the sensible heat flux difference between the paired
forest and open land using the window searching strategy to assess the cooling service of
the forest. The equation is as follows:

∆QH = QHforest − QHbare (7)

where ∆QH is the sensible heat flux difference between the paired forest and open land,
QHforest is the sensible heat fluxes of the forest, and QHbare is the sensible heat fluxes of the
open land. Forest cooling service values were calculated using Equations (3) and (4).

3. Results
3.1. Mapping LST and Heat Fluxes in Inner Mongolia

Remotely sensed LST is widely used for estimating surface heat fluxes at the regional
scale in energy balance processes. The LST and heat fluxes have a strong spatial hetero-
geneity, which differed largely based on the land cover and geographical location. Figure 4
shows the distribution of mean LST and heat fluxes in Inner Mongolia from 2000 to 2015
in July. During the hottest period, the maximum LST ranged from 47.24 ◦C to 50.75 ◦C.
The average temperature of the forest surface is 17.68 ◦C lower than the temperature of
bare earth. The energy of surface net radiation (QRn) shows a pattern of highs in the west
and lows in the east. In the northwest, high values of QRn can be found in forests with an
average value of 21.6 MJ/m2/day, while the low values can be found in deserts and grass-
lands with an average value of 20.9 MJ/m2/day. Contrary to LST distributions, high-value
areas of the evapotranspiration energy (QL) are concentrated in northeast Inner Mongolia,
which mostly comprises forests and wetlands with average values of 7.1 MJ/m2/day and
6.9 MJ/m2/day, respectively, while open land only has an average value of 1.1 MJ/m2/day.
Sensible heat flux is higher in desert and open land, with average values of 21.8 and
21.5 MJ/m2/day, respectively, while the lowest concentrations can be found in forests and
wetlands, with 20.3 and 20.6 MJ/m2/day, respectively.
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3.2. Forest Cooling Effect and Heat Fluxes

Based on the heat flux difference between forest and open land, the sensible heat flux
difference is relatively small, whereas the latent heat flux difference is significant and is
spatially similar to the cooling effect of forests (Figure 5). The cooling effect of forests varies
depending on vegetation type. The average cooling temperature of broad-leaved forests is
0.229 ◦C, which is significantly higher than that of coniferous forests, 0.205 ◦C (Figure 6).
The cooling effect of mixed coniferous and broad-leaved forests is not significantly different
from that of other forest types. Similar spatial distributions can be observed for the cooling
effect and the sensible heat flux difference. As for the sensible heat flux differences between
forest types, the sensible heat flux difference in broad-leaved forests is 0.23 MJ/m2/day,
which is significantly higher than that of coniferous forests at 0.079 MJ/m2/day and mixed
coniferous–broad-leaved forests at 0.11 MJ/m2/day (Figure 6).
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Figure 5. The difference in forest and open land’s average long-term surface temperatures and heat
flux in Inner Mongolia. ∆T means the difference in the forest and surrounding open land’s average
long-term surface temperatures in July between 2000 and 2015; ∆QRn means the difference in the
forest and surrounding open land’s average long-term surface net radiation energy; ∆QL means the
difference in the forest and surrounding open land’s average long-term evapotranspiration energy;
∆QH means the difference in the forest and surrounding open land’s average long-term sensible
heat flux.
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difference (MJ/m2/day) means the difference in the forest and surrounding open land’s average long-
term sensible heat flux in July from 2000 to 2015. The numbers on the graph indicate p values such as
0.023 and 0.13. A p value less than 0.05 indicates a significant difference between the two groups, and
a p value less than 0.01 indicates an extremely significant difference.

The sensible heat flux (∆QH) and latent heat flux (∆QL) differences between the forest
and open land are significantly correlated with their cooling effects. Similar correlations
were found in broad-leaved, coniferous, and mixed forests. Therefore, the difference in
surface energy significantly affects the cooling effect of the three forest types. Aside from
sensible and latent heat flux differences, climate background, forest canopy structure, forest
coverage, topography, and many other factors influence forest cooling. As a result, the R
value is not very high, but it is statistically significant. Due to the small difference in net
surface radiation between forest and open land, the difference in sensible heat flux depends
primarily on the latent heat flux, indicating that the cooling effect is mainly determined
by the difference in evapotranspiration between forest and open land. For coniferous,
broad-leaved, and mixed forests, the correlation coefficient R for latent and sensible heat
fluxes was 0.97, 0.95, and 0.97, respectively (Figure 7).
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flux (MJ/m2/day) means the difference in the forest and surrounding open land’s average long-term
latent heat flux in July from 2000 to 2015. The difference in sensible heat flux (MJ/m2/day) means
the difference in the forest and surrounding open land’s average long-term sensible heat flux in July
from 2000 to 2015.

3.3. Cooling Service Value
3.3.1. Temperature Difference Method

Rising temperatures in the summer require people to consume more energy to main-
tain a comfortable environment. In this study, we assume that if the temperature exceeds
26 ◦C, humans require cooling, and the cooling effects of vegetation are therefore valuable.
If it is lower than 26 ◦C, humans may not require cooling services. As a reference, the
temperature of open land is used to measure the cooling effects of forests, while a reference
temperature of 26 ◦C is used to determine whether the surrounding population requires
cooling services.

Figure 8 shows the spatial interpolation results of the average daily cooling hours
based on hourly temperature monitoring data collected from 116 meteorological stations in
Inner Mongolia from July 2000 to July 2015. The cooling times vary, ranging from 1.82 to
7.76 h per day, unlike the constant value used in Zhang et al.’s study (2014) [16]. Since air
temperature varies significantly with elevation, we removed plots and control data with
altitudes greater than 100 m from the control set during plot screening.
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According to the empirical method proposed by Yang et al. (1994), the microclimate of
1 m2 of vegetation covers a base area of 10 m2 and reaches a height of 100 m [33]. Therefore,
1 m2 of vegetation will affect 1000 m3 of the microclimate. In Inner Mongolia, forest patches
are very large, and the forest microclimates overlap. It would be unreasonable to expand
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the range of horizontal microclimate based on Yang’s method. Therefore, we assume that
the forest area is the horizontal microclimate’s influence range.

Forest cooling effects vary greatly depending on factors such as forest type, local
climate, etc. We calculated the land surface temperature difference between paired forests
and open land and the energy-saving cost using formulas 3 and 4 in Section 2.4.1. The
total cooling value is CNY 0.11 billion in Inner Mongolia (Figure 8). If the cooling days
are calculated based on 90 summer days, the average energy savings of the study area
are 1768.7 kWh/(ha·a). This is based on the results of Jim and Chen’s (2009) study in
Beijing (1400 kWh/ha) [38], Nowak and colleagues’ (2006) [39] study in Minneapolis
(1111 kWh/ha), and Zhao et al.’s (2019) [30] study in Xiamen (949.30 kWh/ha). The
average cooling effect of forests in Inner Mongolia is higher than that of Beijing, Xiamen,
and Minneapolis because Inner Mongolia has an arid and semi-arid climate and lower
rainfall, which leads to a large difference in evapotranspiration between the forest and open
land. Furthermore, many studies have found that heat mitigation strategies by increasing
green coverage were more effective in arid areas.

3.3.2. Energy Balance Method

The sensible heat flux is mainly determined by surface net radiation, latent heat
flux, and soil heat flux. The difference in sensible heat flux between forest and open
land represents the energy difference in the cooling service of the forest. Because the
net radiation difference between forest and open land is small (Figure 5) and soil heat
fluxes are extremely low, the difference in sensible heat flux is mostly determined by
surface evapotranspiration. In addition, different forest types exhibit a similar pattern.
There was a significant correlation between the sensible and latent heat flux differences
between coniferous forest (CF), broad-leaved forest (BF), mixed coniferous and broad-
leaved forest (CBF), and open land, with R > 0.95, p < 0.001 (Figure 7). According to
the energy balance method, the average cooling service values of CF, BF, and CBF are
0.0055, 0.0143, and 0.0056 CNY/m2/day, respectively (Figures 9 and 10). The total cooling
value is CNY 0.51 billion. Compared with the temperature difference method, it has similar
distribution characteristics in space, but the unit area values of CF, BF, and CBF are 64.1%,
102.1%, and 15.4% higher than those for the temperature difference method, respectively.
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4. Discussion

The estimated cooling service values of forests vary when different methods are used.
Previous studies have used the heat absorbed by vegetation transpiration as the cooling
effect of vegetation and converted the heat into the power consumption of air conditioners
to calculate the cooling service value of vegetation [29]. However, key indicators that
may affect cooling services were not considered in these studies, such as albedo and net
surface radiation. In contrast to open land, forests have a lower surface albedo, which
could absorb more shortwave radiation during the day, resulting in a warming effect.
Meanwhile, the warming effect is offset by increased evapotranspiration, causing a cooling
effect [1]. It has been demonstrated that higher evaporation in tropical regions can offset
the impact of low forest surface albedo and has a significant cooling effect; an increased
vegetation cover in frigid regions will increase surface temperatures to a certain extent [40];
and due to large differences in vegetation evaporation in temperate regions, the role of
vegetation in regulating climate is still controversial [41]. Therefore, net surface radiation
and evapotranspiration should be considered during the cooling value assessment. The
limitation of the energy balance method is that the calculated energy difference between the
net radiative and latent heat fluxes at the surface is in terms of days and cannot be refined
to the hour. However, cooling services are not required at all times of the day, as shown
in Figure 7, where the average daily cooling time in Inner Mongolia ranges from 1.82 to
7.76 h/day. Calculating the cooling value based on the daily energy difference may lead
to overestimating the results. Nevertheless, the surface radiation and evapotranspiration
processes generally occur during the daytime, which is also when the surface temperature
is high, and there is a certain kind of coincidence with the time when cooling is needed.

Regarding the temperature difference method, Yang (1994) proposed an empirical
method to convert between temperature and heat [33]. He hypothesized that one square
meter of vegetation has a microclimate impact range of 10 square meters and that city
buildings have an average height of 100 m. In this case, a theoretical air column with a base
area of 10 m2 and a height of 100 m was used as a computational unit. This 1000 m3 air
column’s net reduction in heat flux from surface radiation and evapotranspiration might
reduce surrounding air temperature ∆T. However, the cooling effect of vegetation varies
based on its location, size, and spatial configuration [42]. According to Lee et al. (2009),
the cooling radius of a park in the CBD of Seoul is 240 m [43]. Lin et al. (2015) analyzed
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Landsat TM/ETM+ images of 24 parks in Beijing and revealed that cooling effects extend
from 35 m to 840 m [44]. The areas of the park are closely related to its cooling extent. The
threshold distance from urban forests in Seoul for the cooling effect was estimated to be
roughly up to 300 m [43]. Due to uncertainty in the extent of the cooling effect, using the
temperature difference method may result in deviations in the assessment of forest cooling
services. Thus, assessing the actual cooling effects of the forest is crucial in understanding
the forest’s role in mitigating local heat waves.

Based on the comparison of the two methods, it was found that the forest cooling ser-
vice value calculated by the energy balance method differs from the temperature difference
method, primarily because of the uncertainty in the cooling volume in the temperature
difference method. In this study, the expansion of forest microclimate on a horizontal plane
was not considered due to the continuous distribution of plots. According to Yang et al.
(1994), the microclimate height is 100 m, but the actual impact height depends on many
factors such as vegetation, topography, etc. [33].

A significant limitation of the window searching method used in this study is that it
can only calculate the cooling effects of forests with open land controls within a 5 km range,
and there is no suitable open land around a considerable part of the forest. It has been
shown that open land evapotranspiration is highly dependent on rainfall, temperature,
wind speed, etc. In the future, the open land evapotranspiration and sensible heat flux can
be predicted by meteorological factors such as rainfall, temperature, wind speed, etc. The
cooling effect of all forests can be estimated via the simulation of evapotranspiration and
sensible heat flux of open land.

5. Conclusions

A new method was used to assess the value of local-scale forest cooling services. The
window searching method was used to obtain the surface net radiation and evapotranspira-
tion of forest and open land in the window intersection area and calculate sensible heat flux
differences. The cooling service value of the forest was calculated by using the substitution
cost method of air conditioner cooling. In this method, the net surface radiation is added
to the vegetation transpiration cooling method [29] to make it more consistent with the
energy balance equation. The energy balance method avoids the microclimate volume
uncertainty problem of the cooling value method. In this study, broad-leaved forests
exhibited better cooling effects than coniferous forests, but the cooling effect of mixed
coniferous and broad-leaved forests is not significantly different from that of other forest
types. Further research should evaluate the cooling value of forests across a larger area by
simulating evapotranspiration and sensible heat flux on open land using topographic and
meteorological data without open land controls. The energy balance method is a useful
tool for assessing the cooling service of local-scale forests.
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