Moisture Content Vegetation Seasonal Variability Based on a Multiscale Remote Sensing Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. In-Situ LFMC Data
2.2.2. Unmanned Aerial Vehicle (UAV) Data
2.2.3. Satellite Data
2.2.4. Field Spectroradiometer Data
2.2.5. Meteorological Data
2.3. Methods
3. Results and Discussion
3.1. Weather Conditions
3.2. Spatial and Temporal Distribution
3.3. Random Forest Classification
3.4. Final Remarks
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bowman, D.M.J.S.; Kolden, C.A.; Abatzoglou, J.T.; Johnston, F.H.; van der Werf, G.R.; Flannigan, M. Vegetation Fires in the Anthropocene. Nat. Rev. Earth Environ. 2020, 1, 500–515. [Google Scholar] [CrossRef]
- Flannigan, M.D.; Krawchuk, M.A.; de Groot, W.J.; Wotton, B.M.; Gowman, L.M. Implications of Changing Climate for Global Wildland Fire. Int. J. Wildland Fire 2009, 18, 483. [Google Scholar] [CrossRef]
- Parente, J.; Pereira, M.G.; Amraoui, M.; Fischer, E.M. Heat Waves in Portugal: Current Regime, Changes in Future Climate and Impacts on Extreme Wildfires. Sci. Total Environ. 2018, 631–632, 534–549. [Google Scholar] [CrossRef] [PubMed]
- Silva, P.; Carmo, M.; Rio, J.; Novo, I. Changes in the Seasonality of Fire Activity and Fire Weather in Portugal: Is the Wildfire Season Really Longer? Meteorology 2023, 2, 74–86. [Google Scholar] [CrossRef]
- Couto, F.T.; Santos, F.L.M.; Campos, C.; Andrade, N.; Purificação, C.; Salgado, R. Is Portugal Starting to Burn All Year Long? The Transboundary Fire in January 2022. Atmosphere 2022, 13, 1677. [Google Scholar] [CrossRef]
- Nunes, L.J.R.; Meireles, C.I.R.; Pinto Gomes, C.J.; Almeida Ribeiro, N.M.C. The Evolution of Climate Changes in Portugal: Determination of Trend Series and Its Impact on Forest Development. Climate 2019, 7, 78. [Google Scholar] [CrossRef]
- Nunes, L.J.R.; Meireles, C.I.R.; Pinto Gomes, C.J.; Ribeiro, N.M.C.A. Socioeconomic Aspects of the Forests in Portugal: Recent Evolution and Perspectives of Sustainability of the Resource. Forests 2019, 10, 361. [Google Scholar] [CrossRef]
- Yebra, M.; Dennison, P.E.; Chuvieco, E.; Riaño, D.; Zylstra, P.; Hunt, E.R.; Danson, F.M.; Qi, Y.; Jurdao, S. A Global Review of Remote Sensing of Live Fuel Moisture Content for Fire Danger Assessment: Moving towards Operational Products. Remote Sens. Environ. 2013, 136, 455–468. [Google Scholar] [CrossRef]
- Couto, F.T.; Filippi, J.-B.; Baggio, R.; Campos, C.; Salgado, R. Triggering Pyro-Convection in a High-Resolution Coupled Fire–Atmosphere Simulation. Fire 2024, 7, 92. [Google Scholar] [CrossRef]
- Ceccato, P.; Leblon, B.; Chuvieco, E.; Flasse, S.; Carlson, J.D. Estimation of Live Fuel Moisture Content. In Wildland fire Danger Estimation and Mapping: The Role of Remote Sensing Data; World Scientific: Singapore, 2003; pp. 63–90. [Google Scholar]
- Yebra, M.; Scortechini, G.; Badi, A.; Beget, M.E.; Boer, M.M.; Bradstock, R.; Chuvieco, E.; Danson, F.M.; Dennison, P.; Resco de Dios, V.; et al. Globe-LFMC, a Global Plant Water Status Database for Vegetation Ecophysiology and Wildfire Applications. Sci. Data 2019, 6, 155. [Google Scholar] [CrossRef]
- Yebra, M.; Scortechini, G.; Adeline, K.; Aktepe, N.; Almoustafa, T.; Bar-Massada, A.; Beget, M.E.; Boer, M.; Bradstock, R.; Brown, T.; et al. Globe-LFMC 2.0, an Enhanced and Updated Dataset for Live Fuel Moisture Content Research. Sci. Data 2024, 11, 332. [Google Scholar] [CrossRef] [PubMed]
- Santos, F.L.M.; Couto, F.T.; Dias, S.S.; Ribeiro, N.d.A.; Salgado, R. Vegetation Fuel Characterization Using Machine Learning Approach over Southern Portugal. Remote Sens. Appl. 2023, 32, 101017. [Google Scholar] [CrossRef]
- Costa-Saura, J.M.; Balaguer-Beser, Á.; Ruiz, L.A.; Pardo-Pascual, J.E.; Soriano-Sancho, J.L. Empirical Models for Spatio-Temporal Live Fuel Moisture Content Estimation in Mixed Mediterranean Vegetation Areas Using Sentinel-2 Indices and Meteorological Data. Remote Sens. 2021, 13, 3726. [Google Scholar] [CrossRef]
- Fan, L.; Wigneron, J.-P.; Xiao, Q.; Al-Yaari, A.; Wen, J.; Martin-StPaul, N.; Dupuy, J.-L.; Pimont, F.; Al Bitar, A.; Fernandez-Moran, R.; et al. Evaluation of Microwave Remote Sensing for Monitoring Live Fuel Moisture Content in the Mediterranean Region. Remote Sens. Environ. 2018, 205, 210–223. [Google Scholar] [CrossRef]
- Tanase, M.A.; Nova, J.P.G.; Marino, E.; Aponte, C.; Tomé, J.L.; Yáñez, L.; Madrigal, J.; Guijarro, M.; Hernando, C. Characterizing Live Fuel Moisture Content from Active and Passive Sensors in a Mediterranean Environment. Forests 2022, 13, 1846. [Google Scholar] [CrossRef]
- Xing, J.; Wang, C.; Liu, Y.; Chao, Z.; Guo, J.; Wang, H.; Chang, X. UAV Multispectral Imagery Predicts Dead Fuel Moisture Content. Forests 2023, 14, 1724. [Google Scholar] [CrossRef]
- Barber, N.; Alvarado, E.; Kane, V.R.; Mell, W.E.; Moskal, L.M. Estimating Fuel Moisture in Grasslands Using UAV-Mounted Infrared and Visible Light Sensors. Sensors 2021, 21, 6350. [Google Scholar] [CrossRef]
- Madani, A.A.; Harbi, H.M.; El-Dougdoug, A.M.A.; Surour, A.A.; Ahmed, A.H. Spectral Characteristics of Listvenites and Serpentineites Along Ophiolite-Decorated Megashears (Suture Zones) in the Arabian Shield Using ASD Fieldspec and Satellite Data. In The Geology of the Arabian-Nubian Shield; Hamimi, Z., Fowler, A.-R., Liégeois, J.-P., Collins, A., Abdelsalam, M.G., Abd EI-Wahed, M., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 559–583. [Google Scholar]
- Thomson, E.R.; Spiegel, M.P.; Althuizen, I.H.J.; Bass, P.; Chen, S.; Chmurzynski, A.; Halbritter, A.H.; Henn, J.J.; Jónsdóttir, I.S.; Klanderud, K.; et al. Multiscale Mapping of Plant Functional Groups and Plant Traits in the High Arctic Using Field Spectroscopy, UAV Imagery and Sentinel-2A Data. Environ. Res. Lett. 2021, 16, 055006. [Google Scholar] [CrossRef]
- Lausch, A.; Pause, M.; Merbach, I.; Zacharias, S.; Doktor, D.; Volk, M.; Seppelt, R. A New Multiscale Approach for Monitoring Vegetation Using Remote Sensing-Based Indicators in Laboratory, Field, and Landscape. Environ. Monit. Assess 2013, 185, 1215–1235. [Google Scholar] [CrossRef]
- Chen, Y.N.; Fan, K.C.; Chang, Y.L.; Moriyama, T. Special Issue Review: Artificial Intelligence and Machine Learning Applications in Remote Sensing. Remote Sens. 2023, 15, 569. [Google Scholar] [CrossRef]
- Mutanga, O.; Masenyama, A.; Sibanda, M. Spectral Saturation in the Remote Sensing of High-Density Vegetation Traits: A Systematic Review of Progress, Challenges, and Prospects. ISPRS J. Photogramm. Remote Sens. 2023, 198, 297–309. [Google Scholar] [CrossRef]
- Hou, X.; Wu, Z.; Zhu, S.; Li, Z.; Li, S. Comparative Analysis of Machine Learning-Based Predictive Models for Fine Dead Fuel Moisture of Subtropical Forest in China. Forests 2024, 15, 736. [Google Scholar] [CrossRef]
- Schreck, J.S.; Petzke, W.; Jiménez, P.A.; Brummet, T.; Knievel, J.C.; James, E.; Kosović, B.; Gagne, D.J. Machine Learning and VIIRS Satellite Retrievals for Skillful Fuel Moisture Content Monitoring in Wildfire Management. Remote Sens. 2023, 15, 3372. [Google Scholar] [CrossRef]
- Reif, D.M.; Motsinger, A.A.; McKinney, B.A.; Crowe, J.E.; Moore, J.H. Feature Selection Using a Random Forests Classifier for the Integrated Analysis of Multiple Data Types. In Proceedings of the 2006 IEEE Symposium on Computational Intelligence and Bioinformatics and Computational Biology, Toronto, ON, Canada, 28–29 September 2006; IEEE: New Jersey, NJ, USA, 2006; pp. 1–8. [Google Scholar]
- Mancilla-Leytón, J.M.; Pino Mejías, R.; Martín Vicente, A. Do Goats Preserve the Forest? Evaluating the Effects of Grazing Goats on Combustible Mediterranean Scrub. Appl. Veg. Sci. 2013, 16, 63–73. [Google Scholar] [CrossRef]
- Mitra-Nature: Biodiversidade da Herdade da Mitra Instituto Mediterrâneo Para a Agricultura, Ambiente e Desenvolvimento—Grupo de Investigação Ecologia Aplicada e Conservação, Universidade de Évora. Available online: http://www.mitra-nature.uevora.pt/ (accessed on 10 February 2023).
- Pinto-Correia, T.; Ribeiro, N.; Sá-Sousa, P. Introducing the Montado, the Cork and Holm Oak Agroforestry System of Southern Portugal. Agrofor. Syst. 2011, 82, 99–104. [Google Scholar] [CrossRef]
- Haase, S.M.; Sánchez, J.; Weise, D.R. Evaluation of Standard Methods for Collecting and Processing Fuel Moisture Samples; US Department of Agriculture, Forest Service, Pacific Southwest Research Station: Albany, CA, USA, 2016; Volume 268. [Google Scholar]
- Santos, F.L.M.; Couto, F.T.; Dias, S.; Ribeiro, N.; Salgado, R. South Portugal Live Fuel Moisture Content (LFMC) Dataset. Available online: https://zenodo.org/doi/10.5281/zenodo.7254644 (accessed on 31 July 2024).
- Main-Knorn, M.; Pflug, B.; Louis, J.; Debaecker, V.; Müller-Wilm, U.; Gascon, F. Sen2Cor for Sentinel-2. In Proceedings of the Image and Signal Processing for Remote Sensing XXIII, Warsaw, Poland, 11–14 September 2017; Volume 10427, pp. 37–48. [Google Scholar] [CrossRef]
- Velastegui-Montoya, A.; Montalván-Burbano, N.; Carrión-Mero, P.; Rivera-Torres, H.; Sadeck, L.; Adami, M. Google Earth Engine: A Global Analysis and Future Trends. Remote Sens. 2023, 15, 3675. [Google Scholar] [CrossRef]
- Potes, M.; Costa, M.J.; Salgado, R.; Bortoli, D.; Serafim, A.; Le Moigne, P. Spectral Measurements of Underwater Downwelling Radiance of Inland Water Bodies. Tellus A Dyn. Meteorol. Oceanogr. 2013, 65, 20774. [Google Scholar] [CrossRef]
- Rodrigues, G.; Potes, M.; Penha, A.M.; Costa, M.J.; Morais, M.M. The Use of Sentinel-3/OLCI for Monitoring the Water Quality and Optical Water Types in the Largest Portuguese Reservoir. Remote Sens. 2022, 14, 2172. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees; Routledge: London, UK, 2017; ISBN 9781315139470. [Google Scholar]
- Pellizzaro, G.; Duce, P.; Ventura, A.; Zara, P. Seasonal Variations of Live Moisture Content and Ignitability in Shrubs of the Mediterranean Basin. Int. J. Wildland Fire 2007, 16, 633. [Google Scholar] [CrossRef]
- Pellizzaro, G.; Cesaraccio, C.; Duce, P.; Ventura, A.; Zara, P. Relationships between Seasonal Patterns of Live Fuel Moisture and Meteorological Drought Indices for Mediterranean Shrubland Species. Int. J. Wildland Fire 2007, 16, 232. [Google Scholar] [CrossRef]
- Ardilouze, C.; Materia, S.; Batté, L.; Benassi, M.; Prodhomme, C. Precipitation Response to Extreme Soil Moisture Conditions over the Mediterranean. Clim. Dyn. 2022, 58, 1927–1942. [Google Scholar] [CrossRef]
- Viegas, D.X.; Piñol, J.; Viegas, M.T.; Ogaya, R. Estimating Live Fine Fuels Moisture Content Using Meteorologically-Based Indices. Int. J. Wildland Fire 2001, 10, 223. [Google Scholar] [CrossRef]
- Benedetti, R.; Rossini, P. On the Use of NDVI Profiles as a Tool for Agricultural Statistics: The Case Study of Wheat Yield Estimate and Forecast in Emilia Romagna. Remote Sens. Environ. 1993, 45, 311–326. [Google Scholar] [CrossRef]
- Serrano, J.; Shahidian, S.; Paixão, L.; Marques da Silva, J.; Morais, T.; Teixeira, R.; Domingos, T. Spatiotemporal Patterns of Pasture Quality Based on NDVI Time-Series in Mediterranean Montado Ecosystem. Remote Sens. 2021, 13, 3820. [Google Scholar] [CrossRef]
- Meivel, S.; Maheswari, S. Remote Sensing Analysis of Agricultural Drone. J. Indian Soc. Remote Sens. 2021, 49, 689–701. [Google Scholar] [CrossRef]
- Wang, L.; Qu, J.J.; Hao, X.; Zhu, Q. Sensitivity Studies of the Moisture Effects on MODIS SWIR Reflectance and Vegetation Water Indices. Int. J. Remote Sens. 2008, 29, 7065–7075. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, F.L.M.; Rodrigues, G.; Potes, M.; Couto, F.T.; Costa, M.J.; Dias, S.; Monteiro, M.J.; Ribeiro, N.d.A.; Salgado, R. Moisture Content Vegetation Seasonal Variability Based on a Multiscale Remote Sensing Approach. Remote Sens. 2024, 16, 4434. https://doi.org/10.3390/rs16234434
Santos FLM, Rodrigues G, Potes M, Couto FT, Costa MJ, Dias S, Monteiro MJ, Ribeiro NdA, Salgado R. Moisture Content Vegetation Seasonal Variability Based on a Multiscale Remote Sensing Approach. Remote Sensing. 2024; 16(23):4434. https://doi.org/10.3390/rs16234434
Chicago/Turabian StyleSantos, Filippe L. M., Gonçalo Rodrigues, Miguel Potes, Flavio T. Couto, Maria João Costa, Susana Dias, Maria José Monteiro, Nuno de Almeida Ribeiro, and Rui Salgado. 2024. "Moisture Content Vegetation Seasonal Variability Based on a Multiscale Remote Sensing Approach" Remote Sensing 16, no. 23: 4434. https://doi.org/10.3390/rs16234434
APA StyleSantos, F. L. M., Rodrigues, G., Potes, M., Couto, F. T., Costa, M. J., Dias, S., Monteiro, M. J., Ribeiro, N. d. A., & Salgado, R. (2024). Moisture Content Vegetation Seasonal Variability Based on a Multiscale Remote Sensing Approach. Remote Sensing, 16(23), 4434. https://doi.org/10.3390/rs16234434