Nighttime Lights and Population Variations in Cities of South/Southeast Asia: Distance-Decay Effect and Implications
Abstract
:1. Introduction
2. Materials and Methods
2.1. World Cities
2.2. VIIRS Nightttime Lights
2.3. VIIRS Aerosol Optical Depth (AOD)
2.4. Gridded Population of the World (GPW)
2.5. MODIS Land Cover
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
City | Country | Corrected NTL—Average of 5 Years (Nanowatts/Steradian/cm2) |
Asadabad | Afghanistan | 0.501834863 |
Aybak | Afghanistan | 0.426534121 |
Baghlan | Afghanistan | 0.397758707 |
Bamian | Afghanistan | 0.361914916 |
Baraki Barak | Afghanistan | 0.462130676 |
Chaghcharan | Afghanistan | 0.350743321 |
Charikar | Afghanistan | 0.535865428 |
Farah | Afghanistan | 0.31904953 |
Feyzabad | Afghanistan | 0.397201593 |
Gardez | Afghanistan | 0.399662902 |
Ghazni | Afghanistan | 0.355678697 |
Herat | Afghanistan | 0.368470734 |
Jalabad | Afghanistan | 0.425522793 |
Kabul | Afghanistan | 0.533968339 |
Kandahar | Afghanistan | 0.378633147 |
Konduz | Afghanistan | 0.431714003 |
Lashkar Gah | Afghanistan | 0.343657309 |
Mahmud-E Eraqi | Afghanistan | 0.536301135 |
Mayda Shahr | Afghanistan | 0.530743884 |
Mazar-E Sharif | Afghanistan | 0.495839474 |
Mehtar Lam | Afghanistan | 0.537215143 |
Meymaneh | Afghanistan | 0.359015844 |
Qal eh-ye | Afghanistan | 0.359184324 |
Qalat | Afghanistan | 0.329947827 |
Sheberghan | Afghanistan | 0.393649087 |
Taloqan | Afghanistan | 0.405271221 |
Tarin Kowt | Afghanistan | 0.330927979 |
Zaranj | Afghanistan | 0.505832693 |
Zareh Sharan | Afghanistan | 0.337497598 |
Barisal | Bangladesh | 2.994081559 |
Chittagong | Bangladesh | 2.571990951 |
Dhaka | Bangladesh | 3.633371151 |
Khulna | Bangladesh | 3.110419123 |
Rajshahi | Bangladesh | 3.319693888 |
Paro | Bhutan | 0.416465136 |
Punakha | Bhutan | 0.360700381 |
Thimphu | Bhutan | 0.395505629 |
Wangdue Prodrang | Bhutan | 0.38189671 |
Batdambang | Cambodia | 0.34695648 |
Kampong Cham | Cambodia | 0.513905924 |
Kampong Chnang | Cambodia | 0.473379942 |
Kampong Spoe | Cambodia | 0.517357304 |
Kampong Thum | Cambodia | 0.265932348 |
Kampot | Cambodia | 0.506196023 |
Kracheh | Cambodia | 0.296868465 |
Krong Kaoh Kong | Cambodia | 0.321757985 |
Lumphat | Cambodia | 0.277420591 |
Phnom Penh | Cambodia | 0.527623932 |
Phnum Tbeng Meanchey | Cambodia | 0.270374375 |
Pouthisat | Cambodia | 0.288849628 |
Prey Veng | Cambodia | 0.616284759 |
Senmonorom | Cambodia | 0.409964171 |
Siemreab | Cambodia | 0.286193981 |
Stoeng Treng | Cambodia | 0.261870197 |
Svay Rieng | Cambodia | 2.555274761 |
Takev | Cambodia | 0.623874891 |
Agartala | India | 3.332949371 |
Ahmadabad | India | 3.526194786 |
Aizawl | India | 0.353174233 |
Amritsar | India | 4.371004931 |
Bangalore | India | 3.567667549 |
Bhopal | India | 2.700780431 |
Bhubaneshwar | India | 3.210367798 |
Chandigarh | India | 3.543067681 |
Chennai | India | 2.84864068 |
Cochin | India | 2.395581693 |
Daman | India | 2.849545801 |
Delhi | India | 6.684726443 |
Dispur | India | 2.521181796 |
Gandhinagar | India | 3.398419827 |
Gangtok | India | 0.555443125 |
Hyderabad | India | 3.68406559 |
Imphal | India | 0.423221228 |
Itanagar | India | 0.478727645 |
Jaipur | India | 2.889972411 |
Kanpur | India | 3.875339078 |
Kavaratti | India | 0.231517573 |
Kohima | India | 0.506387392 |
Kolkata | India | 4.47528418 |
Lucknow | India | 4.020021702 |
Madurai | India | 0.858952331 |
Mangalore | India | 2.186418994 |
Mumbai | India | 3.553312207 |
Nagpur | India | 2.733629968 |
New Delhi | India | 6.627792327 |
Panaji | India | 2.298713841 |
Patna | India | 4.570497286 |
Pondicherry | India | 0.886790759 |
Port Blair | India | 0.21553754 |
Pune | India | 3.323350205 |
Shillong | India | 0.609181188 |
Silvassa | India | 2.792435543 |
Simla | India | 1.233389943 |
Srinagar | India | 0.626480315 |
Trivandrum | India | 0.666754684 |
Varanasi | India | 3.716690848 |
Vishakhapatnam | India | 2.330531638 |
Ambon | Indonesia | 0.225208333 |
Balikpapan | Indonesia | 0.611580981 |
Banda Aceh | Indonesia | 0.27850532 |
Bandjermasin | Indonesia | 0.423258184 |
Bandung | Indonesia | 3.617200196 |
Bengkulu | Indonesia | 0.278085185 |
Denpasar | Indonesia | 0.492534159 |
Jakarta | Indonesia | 4.606163432 |
Jambi | Indonesia | 2.63107119 |
Jayapura | Indonesia | 0.22897585 |
Kendari | Indonesia | 0.302029248 |
Kupang | Indonesia | 0.266981015 |
Makassar | Indonesia | 0.565833817 |
Manado | Indonesia | 0.300815963 |
Mataram | Indonesia | 0.4886469 |
Medan | Indonesia | 2.520011727 |
Padang | Indonesia | 0.391949054 |
Palangkaraya | Indonesia | 1.99679264 |
Palembang | Indonesia | 2.580498976 |
Palu | Indonesia | 0.257447713 |
Pekanbaru | Indonesia | 2.813161692 |
Pontianak | Indonesia | 0.428487782 |
Samarinda | Indonesia | 0.710672472 |
Semarang | Indonesia | 2.975540109 |
Surabaja | Indonesia | 3.602080552 |
Tanjungkarang-Telukbetung | Indonesia | 2.418158958 |
Yogyakarta | Indonesia | 1.254816366 |
Attapu | Laos | 0.264930241 |
Champasak | Laos | 0.33278625 |
Louang Namtha | Laos | 0.317338021 |
Louangphrabang | Laos | 0.306698823 |
Muang Khammouan | Laos | 0.521855442 |
Muang Xaignabouri | Laos | 0.353102191 |
Phongsali | Laos | 0.308264924 |
Saravan | Laos | 0.268980707 |
Savannakhet | Laos | 0.627448988 |
Vientiane | Laos | 0.669892607 |
Xam Nua | Laos | 0.283144296 |
Xiangkhoang | Laos | 0.304311679 |
Alor Setar | Malaysia | 1.486407129 |
Ipoh | Malaysia | 2.779358307 |
Johor Baharu | Malaysia | 5.218487253 |
Kangar | Malaysia | 1.121721982 |
Kemaman Harbor | Malaysia | 2.161516783 |
Kota Baharu | Malaysia | 0.690158314 |
Kota Kinabalu | Malaysia | 0.568632301 |
Kuala Lipis | Malaysia | 0.672954462 |
Kuala Lumpur | Malaysia | 4.794306115 |
Kuala Terengganu | Malaysia | 0.809582811 |
Kuantan New Port | Malaysia | 0.916700056 |
Kuching | Malaysia | 0.490305881 |
Melaka | Malaysia | 3.551569873 |
Pinang | Malaysia | 2.633249759 |
Seremban | Malaysia | 5.118857682 |
Shah Alam | Malaysia | 4.672258961 |
Bassein | Myanmar | 0.28329036 |
Haka | Myanmar | 0.321703914 |
Loikaw | Myanmar | 0.351829397 |
Magway | Myanmar | 0.351325631 |
Mandalay | Myanmar | 0.598226044 |
Moulmein | Myanmar | 0.319032164 |
Myitkyina | Myanmar | 0.301426637 |
Nay Pyi Taw | Myanmar | 0.436893129 |
Pa-an | Myanmar | 0.335153579 |
Pegu | Myanmar | 0.682521197 |
Rangoon | Myanmar | 0.665905635 |
Sagaing | Myanmar | 0.613928892 |
Sittwe | Myanmar | 0.284812428 |
Taunggyi | Myanmar | 0.368853253 |
Tavoy | Myanmar | 0.423384454 |
Baglung | Nepal | 0.425344226 |
Bhairawa | Nepal | 2.744404472 |
Bhimphedi | Nepal | 2.419248779 |
Biratnagar | Nepal | 3.156090121 |
Dandeldhura | Nepal | 0.499294377 |
Dhangarhi | Nepal | 2.445147032 |
Ilam | Nepal | 2.657345921 |
Jumla | Nepal | 0.337201736 |
Kathmandu | Nepal | 0.550297464 |
Nepalganj | Nepal | 2.480609789 |
Pokhara | Nepal | 0.419181274 |
Rajbiraj | Nepal | 3.156456628 |
Ramechhap | Nepal | 0.598822036 |
Sallyan | Nepal | 0.46632913 |
Faisalabad | Pakistan | 3.189889238 |
Hyderabad | Pakistan | 2.488276614 |
Islamabad | Pakistan | 2.581693269 |
Karachi | Pakistan | 3.15232476 |
Lahore | Pakistan | 4.201932543 |
Peshawar | Pakistan | 0.728032235 |
Quetta | Pakistan | 0.508590763 |
Rawalpindi | Pakistan | 2.605245645 |
Davao | Philippines | 0.391645439 |
Manila | Philippines | 2.671170687 |
Quezon City | Philippines | 2.668340612 |
Singapore | Singapore | 5.034060023 |
Anuradhapura | Sri Lanka | 0.417243634 |
Badulla | Sri Lanka | 0.46678717 |
Colombo | Sri Lanka | 0.733881868 |
Galle | Sri Lanka | 0.48239586 |
Kandy | Sri Lanka | 0.779656057 |
Puttalan | Sri Lanka | 0.45913315 |
Ratnapura | Sri Lanka | 0.80853522 |
Trincomalee | Sri Lanka | 0.330142575 |
Ang Thong | Thailand | 5.108640828 |
Bangkok | Thailand | 6.509538307 |
Buriram | Thailand | 0.736347767 |
Chachoengsao | Thailand | 6.224405863 |
Chainat | Thailand | 1.204993253 |
Chaiyaphum | Thailand | 0.8827879 |
Chang Rai | Thailand | 0.581054933 |
Chanthaburi | Thailand | 0.913366488 |
Chiang Mai | Thailand | 0.798435964 |
Chon Buri | Thailand | 6.327393562 |
Chumphon | Thailand | 0.491405575 |
Kalasin | Thailand | 0.849344289 |
Kamphaeng Phet | Thailand | 0.852753094 |
Kanchanaburi | Thailand | 1.683249833 |
Khon Kaen | Thailand | 0.941055898 |
Krabi | Thailand | 0.781686388 |
Lampang | Thailand | 0.893104953 |
Lamphun | Thailand | 0.811953597 |
Loei | Thailand | 0.515143315 |
Mae Hong Son | Thailand | 0.364734766 |
Maha Sarakham | Thailand | 0.888395033 |
Nakhom Phanom | Thailand | 0.539613482 |
Nakhon Nayok | Thailand | 5.372188751 |
Nakhon Pathom | Thailand | 5.613717058 |
Nakhon Ratchasima | Thailand | 0.874364229 |
Nakhon Sawan | Thailand | 0.894664337 |
Nakhon Si Thammarat | Thailand | 0.598978154 |
Nan | Thailand | 0.440993651 |
Narathiwat | Thailand | 0.780793274 |
Nong Khai | Thailand | 0.688758589 |
Nonthaburi | Thailand | 6.441815104 |
Pathum Thani | Thailand | 6.278512679 |
Pattani | Thailand | 0.805695319 |
Phangnga | Thailand | 0.723600498 |
Phatthalung | Thailand | 0.902022812 |
Phayao | Thailand | 0.745676906 |
Phet Buri | Thailand | 2.369226142 |
Phetchabun | Thailand | 0.621947403 |
Phichit | Thailand | 0.957743083 |
Phitsanulok | Thailand | 0.900903738 |
Phra Nakhon Si Ayutthaya | Thailand | 5.867776541 |
Phrae | Thailand | 0.652760019 |
Phuket | Thailand | 0.653923373 |
Prachin Buri | Thailand | 4.981624097 |
Prachuap Khiri Khan | Thailand | 0.580768438 |
Ranong | Thailand | 0.476408913 |
Ratchaburi | Thailand | 4.91654018 |
Rayong | Thailand | 3.466403696 |
Roi Et | Thailand | 0.847052662 |
Sakon Nakhon | Thailand | 0.673018963 |
Samut Prakan | Thailand | 6.510148467 |
Samut Sakhon | Thailand | 6.099650526 |
Samut Songkhram | Thailand | 5.031557648 |
Saraburi | Thailand | 5.033594601 |
Satun | Thailand | 1.004712407 |
Sing Buri | Thailand | 3.502835519 |
Sisaket | Thailand | 0.679358014 |
Songkhla | Thailand | 0.972149394 |
Sukhothai | Thailand | 0.877478418 |
Supham Buri | Thailand | 5.235095204 |
Surat Thani | Thailand | 0.538593529 |
Surin | Thailand | 0.633148845 |
Tak | Thailand | 0.639247055 |
Thahanbok Lop Buri | Thailand | 3.81977191 |
Trang | Thailand | 0.797748199 |
Trat | Thailand | 0.474535035 |
Ubon Ratchathani | Thailand | 0.628145834 |
Udon Thani | Thailand | 0.79413847 |
Uthai Thani | Thailand | 0.988632353 |
Uttaradit | Thailand | 0.822499139 |
Yala | Thailand | 0.792157355 |
Yasothon | Thailand | 0.77820524 |
Dili | Timor-Leste | 0.250933478 |
Bac Lieu | Vietnam | 0.710913679 |
Bien Hoa | Vietnam | 5.856280907 |
Buon Me Thuot | Vietnam | 0.542828922 |
Can Tho | Vietnam | 4.657171402 |
Cao Bang | Vietnam | 2.397475384 |
Cao Lanh | Vietnam | 4.553742055 |
Da Lat | Vietnam | 1.195878767 |
Da Nang | Vietnam | 0.910441549 |
Dong Ha | Vietnam | 0.6387689 |
Dong Hoi | Vietnam | 0.708360631 |
Ha Giang | Vietnam | 2.232376748 |
Ha Tinh | Vietnam | 0.67015196 |
Hai Duong | Vietnam | 4.515468558 |
Haiphong | Vietnam | 4.159434809 |
Hanoi | Vietnam | 4.384535973 |
Ho Chi Minh City | Vietnam | 5.814788184 |
Hoa Binh | Vietnam | 3.792762887 |
Hon Gai | Vietnam | 3.268890847 |
Hue | Vietnam | 0.812801239 |
Kon Tum | Vietnam | 0.367764179 |
Lang Son | Vietnam | 3.004242536 |
Lao Cai | Vietnam | 2.098737945 |
Long Xuyen | Vietnam | 2.736512284 |
Luan Chau | Vietnam | 0.300359266 |
My Tho | Vietnam | 5.828252477 |
Nha Trang | Vietnam | 0.796089025 |
Ninh Binh | Vietnam | 3.847269756 |
Phan Thiet | Vietnam | 4.425096558 |
Phu Lang Thuong | Vietnam | 4.393866873 |
Play Cu | Vietnam | 0.378089612 |
Quang Ngai | Vietnam | 0.644954431 |
Qui Nhon | Vietnam | 0.535158018 |
Rach Gia | Vietnam | 0.78445472 |
Soc Trang | Vietnam | 1.207912232 |
Son La | Vietnam | 0.302425467 |
Tan An | Vietnam | 5.891021854 |
Tay Ninh | Vietnam | 4.298750485 |
Thai Binh | Vietnam | 4.193960734 |
Thai Nguyen | Vietnam | 3.949878921 |
Thanh Hoa | Vietnam | 2.922536321 |
Thu Dau Mot | Vietnam | 5.807484397 |
Tra Vinh | Vietnam | 4.755772995 |
Truc Giang | Vietnam | 5.679545273 |
Tuy Hoa | Vietnam | 0.631766508 |
Tuyen Quang | Vietnam | 3.069973241 |
Viet Tri | Vietnam | 3.836101696 |
Vinh | Vietnam | 2.314661487 |
Vinh Long | Vietnam | 5.167370007 |
Yen Bai | Vietnam | 2.726762594 |
References
- Kanbur, R.; Zhuang, J. Urbanization and inequality in Asia. Asian Dev. Rev. 2013, 30, 131–147. [Google Scholar] [CrossRef]
- Brennan, E.M.; Richardson, H.W. Asian megacity characteristics, problems, and policies. Int. Reg. Sci. Rev. 1989, 12, 117–129. [Google Scholar] [CrossRef]
- Singh, R.B. Urban Development Challenges, Risks and Resilience in Asian Mega Cities; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Goldblum, C.; Wong, T.-C. Growth, crisis and Spatial Change: A study of haphazard urbanisation in Jakarta, Indonesia. Land Use Policy 2000, 17, 29–37. [Google Scholar] [CrossRef]
- Linden, E. The Exploding Cities of the Developing World; Foreign Affairs: New York, NY, USA, 1996. [Google Scholar]
- Hu, R. Routledge Handbook of Asian Cities; Routledge: Abingdon, UK, 2023. [Google Scholar]
- Poudel, D.P.; Blackburn, S.; Manandhar, R.; Adhikari, B.; Ensor, J.; Shrestha, A.; Timsina, N.P. The urban political ecology of ‘haphazard urbanisation’ and disaster risk creation in the Kathmandu Valley, Nepal. Int. J. Disaster Risk Reduct. 2023, 96, 103924. [Google Scholar] [CrossRef]
- Ooi, G.L. Challenges of sustainability for Asian urbanisation. Curr. Opin. Environ. Sustain. 2009, 1, 187–191. [Google Scholar] [CrossRef]
- Lehmann, S. Implementing the urban nexus approach for improved resource-efficiency of developing cities in southeast-Asia. City Cult. Soc. 2018, 13, 46–56. [Google Scholar] [CrossRef]
- Thinh, N.K.; Kamalipour, H.; Gao, Y. Mapping the emerging forms of informality: A comparative morphogenesis of villages-in-the-city in Vietnam. Habitat Int. 2023, 138, 102864. [Google Scholar] [CrossRef]
- Regmi, M.B. Governance of urban mobility policies and plans in Asian cities. Transp. Policy 2024, 149, 108–121. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Li, X.; Zhou, Y.; Cao, C.; Warner, T.A. (Eds.) Remote Sensing of Night-Time Light; Routledge: Abingdon, UK, 2022. [Google Scholar]
- Zhou, Y.; Smith, S.J.; Zhao, K.; Imhoff, M.; Thomson, A.; Bond-Lamberty, B.; Asrar, G.R.; Zhang, X.; He, C.; Elvidge, C.D. A global map of urban extent from Nightlights. Environ. Res. Lett. 2015, 10, 054011. [Google Scholar] [CrossRef]
- Li, X.; Zhou, Y. Urban mapping using DMSP/OLS stable night-time light: A Review. Int. J. Remote Sens. 2017, 38, 6030–6046. [Google Scholar] [CrossRef]
- Cauwels, P.; Pestalozzi, N.; Sornette, D. Dynamics and spatial distribution of Global Nighttime Lights. EPJ Data Sci. 2014, 3, 1–26. [Google Scholar] [CrossRef]
- Tripathy, B.R.; Tiwari, V.; Pandey, V.; Elvidge, C.D.; Rawat, J.S.; Sharma, M.P.; Prawasi, R.; Kumar, P. Estimation of urban population dynamics using DMSP-ols night-time lights time series sensors data. IEEE Sens. J. 2017, 17, 1013–1020. [Google Scholar] [CrossRef]
- Yu, S.; Zhang, Z.; Liu, F. Monitoring population evolution in China using time-series DMSP/OLS nightlight imagery. Remote Sens. 2018, 10, 194. [Google Scholar] [CrossRef]
- Bagan, H.; Yamagata, Y. Analysis of urban growth and estimating population density using satellite images of nighttime lights and land-use and population data. GIScience Remote Sens. 2015, 52, 765–780. [Google Scholar] [CrossRef]
- Zhao, M.; Zhou, Y.; Li, X.; Cheng, W.; Zhou, C.; Ma, T.; Li, M.; Huang, K. Mapping Urban Dynamics (1992–2018) in Southeast Asia using consistent nighttime light data from DMSP and Viirs. Remote Sens. Environ. 2020, 248, 111980. [Google Scholar] [CrossRef]
- Lo, C.P. Modeling the population of China using DMSP operational linescan system nighttime data. Photogramm. Eng. Remote Sens. 2001, 67, 1037–1047. [Google Scholar]
- Zeng, C.; Zhou, Y.; Wang, S.; Yan, F.; Zhao, Q. Population spatialization in China based on night-time imagery and Land Use Data. Int. J. Remote Sens. 2011, 32, 9599–9620. [Google Scholar] [CrossRef]
- Amaral, S.; Monteiro, A.M.; Camara, G.; Quintanilha, J.A. DMSP/OLS night-time light imagery for urban population estimates in the Brazilian Amazon. Int. J. Remote Sens. 2007, 27, 855–870. [Google Scholar] [CrossRef]
- Sutton, P.; Roberts, D.; Elvidge, C.; Baugh, K. Census from heaven: An estimate of the global human population using night-time satellite imagery. Int. J. Remote Sens. 2001, 22, 3061–3076. [Google Scholar] [CrossRef]
- Levin, N.; Zhang, Q. A global analysis of factors controlling viirs nighttime light levels from densely populated areas. Remote Sens. Environ. 2017, 190, 366–382. [Google Scholar] [CrossRef]
- Weidmann, N.B.; Theunissen, G. Estimating local inequality from Nighttime Lights. Remote Sens. 2021, 13, 4624. [Google Scholar] [CrossRef]
- Ivan, K.; Holobâcă, I.-H.; Benedek, J.; Török, I. Potential of night-time lights to measure regional inequality. Remote Sens. 2019, 12, 33. [Google Scholar] [CrossRef]
- Cheon, S.; Kim, J.-A. Quantifying the influence of urban sources on night light emissions. Landsc. Urban Plan. 2020, 204, 103936. [Google Scholar] [CrossRef]
- Dingel, J.I.; Miscio, A.; Davis, D.R. Cities, lights, and skills in developing economies. J. Urban Econ. 2021, 125, 103174. [Google Scholar] [CrossRef]
- Ditmer, M.A.; Stoner, D.C.; Francis, C.D.; Barber, J.R.; Forester, J.D.; Choate, D.M.; Ironside, K.E.; Longshore, K.M.; Hersey, K.R.; Larsen, R.T.; et al. Artificial nightlight alters the predator–prey dynamics of an apex carnivore. Ecography 2020, 44, 149–161. [Google Scholar] [CrossRef]
- Townsend, A.C.; Bruce, D.A. The use of night-time lights satellite imagery as a measure of Australia’s regional electricity consumption and population distribution. Int. J. Remote Sens. 2010, 31, 4459–4480. [Google Scholar] [CrossRef]
- Chen, X. Nighttime Lights and population migration: Revisiting classic demographic perspectives with an analysis of recent European Data. Remote Sens. 2020, 12, 169. [Google Scholar] [CrossRef]
- Han, P.; Huang, J.; Li, R.; Wang, L.; Hu, Y.; Wang, J.; Huang, W. Monitoring trends in light pollution in China based on nighttime satellite imagery. Remote Sens. 2014, 6, 5541–5558. [Google Scholar] [CrossRef]
- Kocifaj, M.; Kómar, L.; Lamphar, H.; Wallner, S. Are population-based models advantageous in estimating the lumen outputs from light-pollution sources? Mon. Not. R. Astron. Soc. Lett. 2020, 496, L138–L141. [Google Scholar] [CrossRef]
- Korras-Carraca, M.B.; Gkikas, A.; Matsoukas, C.; Hatzianastassiou, N. Global clear-sky aerosol speciated direct radiative effects over 40 years (1980–2019). Atmosphere 2021, 12, 1254. [Google Scholar] [CrossRef]
- Wang, Y.; Yuan, Q.; Li, T.; Shen, H.; Zheng, L.; Zhang, L. Large-scale MODIS AOD products recovery: Spatial-temporal hybrid fusion considering 1aerosol variation mitigation. ISPRS J. Photogramm. Remote Sens. 2019, 157, 1–12. [Google Scholar] [CrossRef]
- Qin, W.; Fang, H.; Wang, L.; Wei, J.; Zhang, M.; Su, X.; Bilal, M.; Liang, X. MODIS high-resolution MAIAC aerosol product: Global validation and analysis. Atmos. Environ. 2021, 264, 118684. [Google Scholar] [CrossRef]
- Shikwambana, L.; Sivakumar, V. Global distribution of aerosol optical depth in 2015 using CALIPSO level 3 data. J. Atmos. Sol.-Terr. Phys. 2018, 173, 150–159. [Google Scholar] [CrossRef]
- Jasiński, T. Modeling electricity consumption using nighttime light images and Artificial Neural Networks. Energy 2019, 179, 831–842. [Google Scholar] [CrossRef]
- Center For International Earth Science Information Network-CIESIN-Columbia University. Gridded Population of the World, Version 4 (GPWv4): Population Density, Revision 11 [Dataset]; Socioeconomic Data and Applications Center (SEDAC): Palisades, NY, USA, 2017. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McAvoy, G.; Vadrevu, K.P. Nighttime Lights and Population Variations in Cities of South/Southeast Asia: Distance-Decay Effect and Implications. Remote Sens. 2024, 16, 4458. https://doi.org/10.3390/rs16234458
McAvoy G, Vadrevu KP. Nighttime Lights and Population Variations in Cities of South/Southeast Asia: Distance-Decay Effect and Implications. Remote Sensing. 2024; 16(23):4458. https://doi.org/10.3390/rs16234458
Chicago/Turabian StyleMcAvoy, Griffin, and Krishna P. Vadrevu. 2024. "Nighttime Lights and Population Variations in Cities of South/Southeast Asia: Distance-Decay Effect and Implications" Remote Sensing 16, no. 23: 4458. https://doi.org/10.3390/rs16234458
APA StyleMcAvoy, G., & Vadrevu, K. P. (2024). Nighttime Lights and Population Variations in Cities of South/Southeast Asia: Distance-Decay Effect and Implications. Remote Sensing, 16(23), 4458. https://doi.org/10.3390/rs16234458