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Abstract: Accurate subsurface imaging is crucial for understanding complex geological structures.
Traditional approaches often involve separate inversion of different geophysical datasets, which
may not fully capture the structural similarities between the models. Joint inversion, integrating
multiple datasets, offers a more comprehensive view by enhancing the resolution and the accuracy
of subsurface models. In this study, we propose a joint inversion technique for DC resistivity and
vertical gravity gradient data, leveraging the cross-gradient constraint to enforce structural similarities
between the resulting models. This method is applied to both synthetic and real datasets, including
case studies involving qanats in Iran and a dolerite dyke in South Africa. The results demonstrate
that joint inversion significantly improves the accuracy of resistivity and density models compared
to independent inversion, particularly in resolving intricate geological features. This approach
has proven effective in enhancing subsurface mapping for multi-disciplinary purposes, including
resource exploration, heritage conservation, and risk mitigation for the built environment.

Keywords: cross-gradient joint inversion; DC resistivity; vertical gravity gradient; dolerite dyke;
qanats; resource exploration; heritage conservation; built environment

1. Introduction

The ambiguity and uncertainty associated with the separate inversion of different
geophysical datasets can be mitigated through appropriate integration, depending on the
specific conditions. To this purpose, several methods have been developed, each tailored to
specific applications and data types. For example, local, global, and combined optimisation
methods have been developed to link models from different datasets [1,2]. Petrophysi-
cal joint inversion links the models of different datasets through a shared petrophysical
relationship, such as linking density and seismic velocity [3]. Another approach is the
joint inversion based on fuzzy clustering, where the subsurface is divided into clusters
with similar physical properties across datasets [4]. A widely used method for integrating
geophysical data is the cross-gradient joint inversion, which relies on the assumption of
structural similarities between the inverse models derived from the different datasets. Ever
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since Gallardo et al. [5] successfully developed this approach for joint inversion of DC
resistivity and seismic data, the cross-gradient joint inversion has been extensively used for
the joint processing and interpretation of geophysical datasets.

The significance of this approach becomes apparent when conducting a search for
the terms “cross-gradient” and “joint inversion” in the Scopus search engine, using the
recommended method of searching within titles, abstracts, and keywords, as advised
by [6]. Following a comprehensive screening of the titles, abstracts, and whole texts of the
publications extracted from Scopus, a total of 129 journal papers and 53 conference articles
in the English language were identified. These publications appeared between 2003 and
2023 and underscore the significance of the cross-gradient-based joint inversion technique.
Despite fluctuations in the number of papers and articles appearing each year (Figure 1a),
the use of this technique to integrate diverse geophysical datasets has shown a consistent
upward trend, thus substantiating growing research attention towards this approach.

Furthermore, the VOSviewer software (1.6.20) was used to perform a bibliometric
analysis and determine which geophysical datasets are most incorporated in joint inver-
sion based on the cross-gradient approach. This analysis aimed to provide insights into
the current research in this field and to provide a framework for organising the various
geophysical techniques that have been used in studies on cross-gradient joint inversion.

Figure 1b is a cluster diagram showing the results of a bibliometric study that utilises
the co-occurrence of important phrases (keywords, titles, and abstracts) in publications
to establish connections between them. The VOSviewer software produced three discrete
clusters of important phrases, each representing a grouping of geophysical methods in the
cluster diagram, as summarised in Table 1. The observed clusters indicate the prevalence
of papers involving the joint inversion of the following geophysical datasets: magnetic
and gravity, electrical resistivity and seismic, seismic and electromagnetic, and Ground
Penetrating Radar (GPR) and refraction seismic.
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the co-occurrence of the keywords listed in Table 1 and terms relevant to cross-gradient joint inversion.

Table 1. Clusters of co-occurrences of different geophysical keywords and “cross-gradient joint
inversion” as shown in Figure 1b.

Cluster Colour Label

1 Red Gravity and Magnetic
2 Green Magneto Telluric, Seismic (Reflection), Gravity, and Magnetic
3 Blue EMFD, GPR, ERT, and Seismic (Refraction)
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In particular, Gallardo et al. [7] used the cross-gradient constraint for the joint inversion
of magnetotelluric (MT) and seismic data. They showed the effectiveness of the joint inver-
sion algorithm for identifying deep structures and near-surface anomalies using synthetic
and field datasets, respectively. Fregoso et al. [8] extended the cross-gradient function for
joint inversion of magnetometric and gravity data. In addition, unlike [5,9], solving the joint
inversion problem using Lagrangian multipliers, they utilised the generalised least-square
formulation introduced by [10]. Cross-gradient-based joint inversion of frequency domain
electromagnetic (FDEM) and seismic data was proposed by Hu et al. [11]. They applied the
joint algorithm on three different synthetic cases, of which one was based on the real case
of the gas reservoir in the Troll field in Norway. Furthermore, the regularisation parameter
was chosen by an automatic procedure called the multiplicative regularisation technique,
leading to the robustness of their algorithm without having any a priori information on the
noise level.

Doetsch et al. [12] employed the cross-gradient constraint for joint inversion of time-
lapse cross-hole electrical resistivity tomography (ERT) and GPR travel-time data. A
normalised cross-gradient constraint was presented by Bennington et al. [13] for the joint
inversion of seismic and magnetotelluric data. The normalised cross-gradient solved the
cross-gradient problem related to having larger weights for cross-gradient values in the
near surface relative to the deep parts. Joulidehsar et al. [14] introduced the compacting and
depth weighting functions in the joint inversion algorithm of Fregoso et al. [8] and utilised
the least squares QR factorisation (LSQR) technique to reduce the required computation
time. Varfinezhad et al. [15] applied the algorithm for the joint inversion of DC resistivity
and magnetic data by including a model weighting matrix derived from the multiplication
of compactness and depth weighting constraints. Recently, Bianco et al. [16] proposed
the multi-order sequential joint inversion of gravity data based on the cross-gradient
constraint and inhomogeneous depth weighting. Other publications that have utilised the
cross-gradient function for joint inversion include [17–21].

In this paper, our aim is to explore the joint inversion of DC resistivity and vertical
gravity gradient (gzz) data using cross-gradient, depth weighting, and compactness con-
straints, which, to our knowledge, have never been proposed before. The effectiveness of
the algorithm will be shown by applying it to both synthetic and real field datasets.

In addition to filling the methodological gap in geophysical data processing, the
proposed joint inversion technique offers significant practical applications. Qanats and
dykes, essential for resource exploitation, historical preservation, and built environment
risk mitigation, may significantly benefit from this methodology. Qanats, historical sub-
terranean water networks found in areas such as Iran, are essential for comprehending
subsurface water routes and alleviating the hazards of collapse that endanger contemporary
infrastructure. Likewise, dykes, especially in areas such as South Africa, are essential for
groundwater investigation and the comprehension of underlying formations. Individual
geophysical data inversion methods struggle to characterise these features; however, re-
sistivity and gravity gradient data inversion improve subsurface characterisation. This
geophysical inversion approach has far-reaching implications for safer urban planning,
resource management, and the preservation of culturally significant buildings.

2. Materials and Methods

We first derived equations describing the joint inversion of resistivity and vertical
gravity gradient data using the cross-gradient constraint. Next, we developed an algorithm
to apply these equations to synthetic and real datasets. Synthetic 2D apparent resistivity
data were generated using the Res2DMod software (K3-FAF3A051-058E), whereas the grav-
ity gradient forward response was calculated using the formula provided in Blakely [22].
Two synthetic models were considered. The first model domain has horizontal (x) and
vertical (z) dimensions of 150 m and 50 m, respectively, and was divided into square prisms
with side lengths of 2.5 m, resulting in 60 prisms in the x-direction and 20 in the z-direction
(Figure 2). This model consists of three bodies, each with a resistivity of 20 Ωm and a
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density contrast of 0.5 g/cm3 with the background. These bodies have different sizes in the
vertical and horizontal directions and are set at different depths (Figure 3). The resistivity
of the homogeneous background was set at 100 Ωm. The complexity of this model was
deemed sufficient for assessing the performance of the joint inversion technique [23,24].

The synthetic apparent resistivity data were calculated for the Wenner alpha configu-
ration with unit electrode spacings ranging from 5 m to 40 m, for a total of 220 data points.
For the vertical gravity gradient data (gzz), 60 data points were modelled along the length
of the profile at a spacing of 2.5 m.
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The second synthetic test consists of a model domain of 295 m horizontal length and
40 m thickness. Here, we consider a thin vertical dyke with the top at a 5 m depth and the
bottom at 10 m below the surface, located in the deeper layer of a two-layered medium
(Figure 4a). The resistivity values of the first and second layers were set at 300 Ωm and
1000 Ωm (Figure 4a), respectively, whereas the vertical dyke has a resistivity of 50 Ωm and a
density contrast of 0.5 g/cm3 with respect to the background density (Figure 4b). The model
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was divided into 59 cells in the horizontal direction and 16 cells in the vertical direction,
consisting of rectangular prisms of size 5 × 2.5 m2. The synthetic apparent resistivity data
were computed using the Wenner alpha configuration, with electrode spacings ranging
from 5 m to 40 m, producing 792 data points in total. For the vertical gravity gradient data
(gzz), 59 points were modelled along the profile, with measurements taken at 5 m intervals
between stations.
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3. Theoretical Background
3.1. Forward Problem of Resistivity

Integral equations (IE), finite differences (FD), and finite elements (FE) are the most
common techniques for DC resistivity modelling. For models composed of homogenous
and layered backgrounds, the IE technique is faster than the FD and FE methods and it may
produce a forward response as accurate as the FD and FE approaches [25]. In resistivity
explorations, we are usually confronted with models including layered backgrounds [26].
Maxwell’s equations exhibit nonlinearity in relation to the electrical resistivity (conductivity)
parameter, making DC resistivity modelling a nonlinear problem according to Varfinezhad
et al. [15]. In the current study, we use a linear IE approach developed by Pérez-Flores
et al. [27] to conduct the forward resistivity modelling.

The Born approximation can be used to relate the apparent resistivity ρa to the true
resistivity ρ in DC resistivity measurements as follows:

log ρa(xA, xB,xM, xN) =
[g]−1

π

∫ ∞

0

∫ ∞

−∞
K(xA, xB,xM, xN , x, z)log ρ(x, z)dxdz, (1)

where xA, xB, xM, and xN represent the coordinates of the electrodes A, B, M, and N,
respectively. The geometrical factor is denoted as g, and the kernel K consists of the
following four terms:

K(xA, xB,xM, xN , x, z)
= N(xA, xM, x, z)− N(xB, xM, x, z)
−N(xA, xN , x, z)− N(xB, xN , x, z)

(2)
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where each term can be computed as follows [28]:

N
(

xi, xj, x, z
)
=

∫ ∞
−∞

(x−xi)(xj−x)−y2−z2√
((x−xi)

2+y2+z2)
3(
(xj−x)

2
+y2+z2

)3
dy,{

i = A, B
j = M, N

(3)

To derive the 2D scenario, we assume P data points and split the source volume into
Q prisms with infinite length in the y-direction and constant resistivity (Figure 2). The
forward problem is thus expressed as follows:

dR = ARmR (4)

where the vector dR contains the logarithmically transformed data of ρa. The vector mR
consists of unknown elements of log(ρ), and AR is a forward operator that can be calculated
by discretising the following equation:

AR =
[g]−1

π

∫ ∞

0

∫ ∞

−∞
K(xA, xB, xM, xN , x, z)dxdz (5)

3.2. Forward Problem of the Gravity Gradient

Changes in the gravity field along the three axes result in the gravity gradient tensor.
The most widely used component is the vertical gravity gradient (gzz), which gives the rate
of change of the vertical component of gravity at a certain height z. gzz can be calculated
by subtracting the gravity values at two places that are a minor vertical distance h apart,
as follows:

gzz =
∂gz
∂z

≈ gz(z + h/2)− gz(z − h/2)
h

(6)

The forward gravity problem is expressed as a linear Fredholm integral equation of
the first type, specifically for the gzz component, represented in matrix form as follows [29]:

dG = AGmG (7)

where dG is the data vector containing observed gravity gradient values, with a sample
interval of dx as shown in Figure 2. AG is the forward operator and mG is the density model.

3.3. Cross-Gradient Joint Inversion Algorithm

Joint inversion of DC resistivity and gravity gradient data can be performed by using
the approach proposed by Gallardo et al. [9]. The gradient of the model parameters, such
as resistivity and density, is a beneficial function to use during the inversion because it
accounts for variations in the physical properties of the subsurface in terms of both position
and direction. In a 2D scenario, the cross-gradient function is defined as follows:

t = ∇mR(x, z)×∇mG(x, z) (8)

The terms mR(x, z) and mG(x, z) represent the resistivity and density models, respec-
tively. Expanding the variable t results in the following equation:

t(x, z) =
(

∂mR(x, z)
∂z

)(
∂mG(x, z)

∂x

)
−

(
∂mR(x, z)

∂x

)(
∂mG(x, z)

∂z

)
(9)
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If the cross-gradient function has a zero value, it indicates that the two models are
exactly similar from a structural perspective. In other words, both models display the same
spatial variations. Following [9], Equation (9) can be simplified to the following:

t ∼=
4

∆x∆z
[mRc(mGb − mGr) + mRr(mGc − mGb) + mRb(mGr − mGc)] (10)

In Equation (10), for a given cell (specified by subscript c), the next cells below and to
the right of the cell are indicated by the subscripts b and r, respectively (Figure 2).

The objective function to be minimized under the cross-gradient constraint is defined
as per [5], as follows:

min

{
φ(mR, mG) =

∥∥∥∥dR − ARmR
dG − AGmG

∥∥∥∥2

C−1
dd

+

∥∥∥∥αRWmRmR
αGWmGmG

∥∥∥∥2

+

∥∥∥∥mR − m0R
mG − m0G

∥∥∥∥2

C−1
RR

}

subject to t(mR, mG) = 0

(11)

where dR is the logarithm of measured apparent resistivities, dG represents the measured
gravity gradient data, AR and AG are resistivity and gravity gradient forward operators, re-
spectively, and CDD is the observed data covariance matrix. m = [mR, mG]

T represents the
model parameters, m0R and m0G stand for the beginning models of both techniques with
covariance matrix C−1

RR, and t(mR, mG) represents the cross-gradient values for all cells of
the model. αR and αG are regularisation coefficients linked to the regularisation of resistivity
and density matrices, WmR and WmG, known as model weighting matrices [30]. These ma-
trices are obtained by multiplying compactness [31] and depth weighting [32,33] functions.

Applying Lagrangian multipliers to Equation (11) results in the following system of
equations, as shown by Gallardo et al. [9]:

m = N−1
1 n2 − N−1

1 BT
(

BN−1
1 BT

)−1
(BN−1

1 n2 − Bm0 + t0) (12)

where

N1 =

[
AT

RAR +α2
RWmR 0

0 AT
GAG +α2

GWmG

]
(13)

and

n2 =

[
AT

R{dR − ARm0R}
AT

G{dG − AGm0G}

]
(14)

Matrix B is the Jacobian of t, whereas t0 is the cross-gradient function for the initial
resistivity and density models (m0R, m0G). The joint inversion solution (Equation (12))
has two terms. The first term represents the independent (separate) inversion of both
datasets, whereas the second term describes the impact of one inverse model influencing
the other via a cross-gradient constraint. The sum of these two factors leads to a combined
inversion solution.

The flow diagram in Figure 5 represents the joint inversion method. The process
of iterative separate and joint inversions begins concurrently, with the cross-gradient
constraint ensuring that the models obtained from the resistivity inversion during each
iteration constrain the models obtained from the gravity gradient inversion, and vice
versa. Therefore, it is crucial to use effective separate inversion approaches by applying
suitable restrictions.
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4. Results
4.1. Synthetic Models
4.1.1. Synthetic Model I

Adding noise to geophysical data is a common practice for simulating measurement
errors and testing the robustness and stability of the algorithms. This is because errors
in data collection, environmental factors, and equipment limitations often cause noise
to impact measurements taken in the real world. Here, to evaluate our algorithms, data
are subjected to Gaussian (normal) noise, which is usually used by researchers [34,35].
Therefore, in the following, we have added Gaussian noise with a range of 2% to the data
amplitude of the two methods for both artificial models.

All parameters used in this work for the synthetic models and case studies are outlined
in Table 2. In this table, αR and αGG denote the regularisation parameters for the resistivity
and the gravity gradient data, respectively, which have been estimated after several trials.
βR indicates the exponent of depth weighting for resistivity, βGG is the exponent of depth
weighting for the gravity gradient, and NITs refer to the number of iterations. In the case
of gravity fields, the depth weighting exponent is closely related to the source geometry,
and its optimal choice has been a topic of discussion in several studies (e.g., [29,36]). In
this study, we determine the appropriate β by analysing the behavior of the cross-gradient
function and selecting the value that achieves the greatest minimisation.



Remote Sens. 2024, 16, 4468 9 of 22

Table 2. Summary of inversion parameters for all models.

Model αR αGG βR βGG NITs

Synthetic Model I 0.5 0.01 0.7 1 5
Synthetic Model II 1.2 0.03 0.6 1 7

Case Study I 0.9 0.08 0.5 1 4
Case Study II 0.6 0.4 0.5 1 4

The joint inversion procedure for synthetic Model I started with an initial homoge-
neous resistivity model with a resistivity of 100 Ω-m and a background mass density of
0 g/cm3. Figure 6a,b show the separate and joint inversion results for the DC resistivity
data, respectively.

In the separate inversion result (Figure 6a), only the rightmost anomaly is recon-
structed, and the central and left bodies are not well resolved. The depth extent of the
leftmost body is significantly underestimated, and the boundaries of the anomalies are
not well defined. This indicates the limitations of using resistivity data alone in complex
subsurface scenarios.

In contrast, the joint inversion result (Figure 6b) shows a substantial improvement in
the accuracy of the resistivity model. The leftmost anomaly is now more clearly resolved,
especially in terms of its depth extent. The joint inversion procedure leverages the addi-
tional information provided by the gravity gradient data to enhance the overall model
accuracy. The central body, however, remains partially unresolved, with a small region of
low resistivity appearing beneath and to the right of it.
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Figure 6. Inverse resistivity models for synthetic Model I after (a) separate and (b) joint inversion
procedures.

The result of the gravity gradient separate inversion (Figure 7a) shows several distinct
high-density regions with sharp boundaries, especially noticeable between the depths of
approximately 10 to 20 m. One key feature is the fragmentation of high-density structures,
on the right side of the model. The high-density anomaly appears as discrete and frag-
mented blocks, which could be a limitation of the separate inversion of the gravity gradient
method that may not fully resolve complex structures. Also, there are potential artifacts in
the inversion result, which is the effect of noise on data, visible as scattered blue zones that
could be misinterpretations in regions where the signal was weak or inconsistent.
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In contrast to the separate inversion, the joint inversion result (Figure 7b) shows more
continuous high-density structures, especially the long anomaly on the right side of the
model. This reflects the ability of joint inversion techniques to better capture complex sub-
surface structures by integrating different datasets. The joint inversion provides smoother
and more coherent boundary definitions for the high-density anomalies. In addition, the
long anomaly on the right is better resolved, suggesting that the joint inversion reduces
ambiguity and provides a more reliable interpretation. Compared to the separate inversion,
the joint inversion result appears cleaner, with fewer noisy or scattered low-density regions,
suggesting that the joint approach has suppressed some of the artifacts present in the
separate inversion.
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inversion procedures.

Figure 8 displays the pseudo-sections of the observed and calculated data after separate
and joint inversions for DC resistivity. Although the resistivity model obtained from the
joint inversion provides a better representation of the three modelled bodies than the
model obtained from the separate inversion, the RMS misfit errors of the corresponding
pseudo-sections are greater for the joint inversion than for the separate inversion (2.85% vs.
3.76%). The increased error is due to the joint inversion involving an extra constraint, i.e.,
the cross-gradient function, which could introduce more bias and result in a greater misfit
between the modelled pseudo-sections.

Figure 9 shows observed and computed gravity gradient data (gzz) after the separate
and combined inversions. The RMS misfit errors of the calculated data after the separate
and the joint inversions for the gravity gradient approach are 4.1% and 4.8%, respectively.
This similarity between the RMS errors is to be expected since near identical inverse density
models were obtained from separate and joint inversions.
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Figure 9. Forward modelled gzz values for synthetic Model I. (a) Values computed from the input
model (observed data), along with the values corresponding to the model obtained from the separate
inversion, and (b) values computed from the input model (observed data), along with the values
corresponding to the model obtained from the joint inversion. The RMSE percentages are 4.1% and
4.8% for separate and joint inversions, respectively.

Figure 10 illustrates the cross-gradient function values of the separate and the com-
bined inverse models, showing lower values after the joint inversion. This agrees with
the enhanced outcome obtained for the inverse resistivity model after the joint inversion.
The increased structural similarities between the resistivity and density models after the
joint inversion result in reduced values for the cross-gradient function. Indeed, the cross-
gradient function is the cross-product of the gradients of the two models (Equation (8)) and
enhancement of structural similarities after joint inversion means that the gradients of the
resistivity and the density models are more parallel, thus leading to lower values for the
cross-product of the joint inversion models.
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4.1.2. Synthetic Model II

The calculated forward responses for synthetic Model II for both methods after adding
noise (2% to the data’s amplitude) are shown in Figure 11. The initial resistivity model
for synthetic Model II is assumed to be uniform with a value of 300 Ωm. A regularisation
parameter of 0.37 is obtained after several trials. The resistivity recovered model from the
separate inversion (Figure 12a) indicates a low-resistivity anomaly (blue) centred at 150 m,
extending from depths of 10 m until the bottom of the model. This denotes the simulated
conductive dyke. The joint inversion yields more defined limits for the anomaly than the
single inversion, especially at larger depths (Figure 12b). The low-resistivity body is clearly
delineated, exhibiting more gradual transitions between the resistive and the conductive
areas. The adjacent areas of elevated resistivity (red) resemble those in the individual
inversion but seem to be relatively more delineated, demonstrating the benefits of joint
inversion in generating a more cohesive model. The density model derived via separate
inversion (Figure 12c) reveals a vertical high-density anomaly at the dyke’s site.

Similar to Model I, the recovered model in this case shows, again, a sharp boundary
density anomaly that is, to some extent, fragmented. This suggests that the separate
inversion of the gravity gradient may have not captured the full extent of the high-density
structure.

The density anomaly obtained using joint inversion reveals a more coherent and well-
defined high-density structure (Figure 12d). The limits of the density anomaly are more
distinct and precisely delineated, indicating that the joint inversion method is superior in
defining the actual scope of the density anomaly.

In this case, the density recovered model from the joint inversion accurately resolves
the thin dyke (Figure 12d), whereas the resistivity recovered model from the joint inversion
(Figure 12b) gives an indication of the presence of the two layers forming the host rock and
displays a zone of low resistivities around the dyke.
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Figure 12. Inverse resistivity models after (a) separate and (b) joint inversions. Recovered density
models after (c) separate and (d) joint inversions.

Figure 13 shows the resistivity pseudo-sections calculated after the separate and
the joint inversions. Table 3 provides misfit errors resulting from single and combined
inversions using both resistivity and gravity gradient approaches. The comparison of
the misfit between the estimated forward responses and the observed data shows higher
discrepancies after the joint inversion for resistivity, which is caused by the cross-gradient
restriction. As discussed in the previous synthetic case, adding another restriction increases
the partiality in the opposite situation, leading to a greater discrepancy in the outcome after
the combined inversion. The discrepancy seen after performing separate and combined
inversions for the gravity gradient approach aligns with the lack of activity in the cross-
gradient function.
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Figure 13. Pseudo-sections of computed apparent resistivities for the inverse models obtained from
(a) separate and (b) joint inversions.

Table 3. Misfit errors after separate and joint inversions for resistivity and gravity gradient.

Method After Separate Inversion After Joint Inversion

DC Resistivity 1.86% 2.55%
Gravity Gradient 4.05% 4.18%

An effective method to evaluate the effectiveness of the cross-gradient function is by
comparing the values obtained from separate and joint inversions. Due to the increase
in structural similarities caused by the cross-gradient function, it is expected that the
cross-gradient values from the joint inversion would be lower than those obtained from
the separate inversion. The cross-gradient functions for synthetic Model II are shown in
Figure 14 and clearly demonstrate this occurrence.
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5. Case Studies
5.1. Case Study I
5.1.1. Background Information

Iran, particularly in its arid and semi-arid regions, is characterised by a scarcity
of surface water sources such as lakes and rivers. In response to this environmental
challenge, ancient populations developed ingenious underground water management
systems known as qanats. Qanats are extensive networks of underground tunnels that
were historically used to transport water from aquifers in the foothills to agricultural fields,
towns, and cities across Iran. These underground water channels have played a vital
role in sustaining the population and agriculture, particularly in regions where surface
water is limited. The qanat system was a remarkable feat of ancient engineering, with
sloping tunnels that used gravity to direct water over long distances without the need
for mechanical pumps. Eleven of the qanat structures have been recently included on the
UNESCO World Heritage List, emphasising their cultural, social, political, and physical
significance [37]. The main reasons for the registration of qanats include their historical
importance, complex system, and benefits for the ecosystem. However, as urbanisation
expanded and modern infrastructure replaced traditional methods, many qanats fell into
disrepair. Over time, these ancient channels have collapsed or disintegrated due to neglect,
natural erosion, and urban development. As well as harming the integrity of these historical
structures, this situation poses a significant risk to modern urban infrastructure and the built
environment management. As the qanats collapse, they create voids beneath the surface
that can lead to ground subsidence. This threatens buildings, roads, and other essential
infrastructure, particularly in densely populated urban areas. Therefore, identifying the
locations and conditions of these ancient water channels is crucial for the conservation of
historic infrastructure systems, as well as for safeguarding the integrity of the overlying
structures and preventing potentially catastrophic collapses [38]. The city of Kerman,
situated in southern Iran, serves as the focal point for this case study (Figure 15). Kerman
is one of the largest and most historically significant cities in the region, located in an
alluvial plain characterised by fine silt and clay lithology. This alluvial plain gently slopes
from the surrounding foothills towards the city, forming the foundation upon which
most of the city’s infrastructure has been constructed. The combination of Kerman’s arid
climate, historical reliance on qanats, and modern urban development makes it particularly
vulnerable to the risks associated with the collapse of these underground tunnels [39].
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The aim of this case study is to employ geophysical techniques, including electrical
resistivity and gravity gradient methods, to map the subsurface structures of a region
between the two residential complexes of Maskan-e-Mehr in Kerman city (Figure 15). The
Maskan-e-Mehr Project, established as a national initiative by the Iranian government,
aims to address the housing needs of low-income populations by providing affordable
housing solutions. Figure 16 shows some of the damage to roads and the surface resulting
from the collapse of qanat outlets in the investigated site. This evidence formed part of the
information considered for the estimation of the qanats’ position and depth. Understanding
the current state of these qanats and their impact on the surrounding infrastructure will
contribute valuable insights to urban planning, risk mitigation, and the preservation of this
historical engineering legacy.
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Figure 16. Evidence of qanat outlets collapse and related surface damage at the investigated site.

5.1.2. Geophysical Data

Three qanat outlets, called Mazhar, were clear on the surface; therefore, due to the
constant slope and direct excavation of the tunnels, or gallery, in the excavation of qanats,
we were able to estimate the approximate location and depth of the gallery. The tunnel,
or gallery, has a slope gradient of 0.4% to maintain a balance between excessive erosion
and sedimentation of the tunnel bed [40]. It should be mentioned that the purpose of the
geophysical survey in this study was to confirm these calculations.

The geophysical surveys performed on a profile perpendicular to the three known
qanats near Kerman consisted of a resistivity survey and a gravity gradient survey. The
qanats are known to be approximately horizontal and their subsurface positions and
dimensions are listed in Table 4.

Table 4. Estimated physical dimensions and subsurface positions of the investigated three qanat outlets.

Coordinates Left Outlet Central Outlet Right Outlet

X (m) 23–26 43–47 54–57
Depth (m) 3–6 6–9 4–8

Figure 17 displays a simplified 3D model that reconstructs the area under investi-
gation, showing the estimated dimensions and locations of the qanat outlets relative to
the geophysical profile. The resistivity survey was conducted using the dipole–dipole
configuration with a unit electrode spacing of 4 m, and values of n (AB/MN) ranging from
1 to 10. The gzz data were recorded on a station spacing of 2 m and a profile length of 72 m.
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Figure 17. A three-dimensional estimated model of the area under investigation, showing the position
and dimension of the qanat outlets as well as the position of the geophysical profile. The yellow line
indicates the position of the collected profile.

Figure 18a displays the pseudo-section of the recorded apparent resistivity data,
whereas Figure 18b shows a profile of the measured gzz data.
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5.1.3. Results of Separate and Joint Inversions

Figure 19 shows the inverse models obtained from both separate and joint inversion.
The inverse resistivity model obtained from separate inversion (Figure 19a) successfully
detects the leftmost outlet qanat in its true location but fails to resolve the boundaries of
the other two outlets. Furthermore, the depth extent of the deepest outlet at the centre of
the profile is not retrieved effectively. In contrast, the inverse density model accurately
images the three outlets, which appear as zones of low mass density in the inverse model
(Figure 19c).

During the joint inversion of the two datasets, the incorporation of the gzz data im-
proves the inverse resistivity model through the cross-gradient function. In other words,
the process of resistivity inversion is constrained by the density model derived from the
inversion of the gzz data. The inverse resistivity model obtained from the joint inversion
accurately retrieves all three qanats as localised zones of high resistivity that agree well with
the known positions and dimensions of the qanat outlets (Figure 19b). The inverse density
model obtained from the joint inversion (Figure 19d) also exhibits some improvements
over the model obtained from the separate inversion (Figure 19c). The localised zones of
low density associated with the rightmost two outlets are more compact with less smearing
after the joint inversion.
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5.2. Case Study II
5.2.1. Background Information

South Africa is a nation experiencing water shortage and water-quality difficulties due
to its location in a region with rising levels of water scarcity. These challenges are further
exacerbated by population expansion and social and economic development concerns [41].
Groundwater serves as an alternative freshwater source for home, industrial, agricultural,
and other sectors. Geophysical methods are frequently used in groundwater exploration
programs to acquire insight into the subsurface conditions and reduce the risk of drilling
unsuccessful supply boreholes.

Research by Woodford and Chevallier [42] in the Karoo Supergroup indicates that
groundwater exploration generally focuses on dolerite dykes and sill structures. The sedi-
mentary host rocks in contact with the intrusive formations are often significantly altered
due to the high pressures and temperatures that occur during intrusion. The high fracture
densities in the altered zones result in higher hydraulic conductivities relative to the host
rock. These zones are generally favoured targets for groundwater exploration due to their
role as suitable channels for groundwater migration [42,43]. In this context, the present
study aims to map the subsurface structure of a dyke in South Africa to retrieve key infor-
mation regarding the location of potential groundwater channels. Hence, understanding
the subsurface layout and location of dolerite dykes through advanced geophysical meth-
ods will have a clear impact on the detection of unknown natural resources, contributing to
more effective and sustainable management programs.

5.2.2. Geophysical Data

The University of the Free State recorded geophysical data across a thin dolerite
dyke in sedimentary host rocks on the farm, Morgenzon, approximately 40 km northeast
of the town of Bloemfontein. The geophysical methods used for this purpose were the
magnetic, electromagnetic, electrical resistivity tomography (ERT), and gravity methods.
More information on the geophysical surveys is provided by [43,44].

The ERT survey across the dolerite dyke was centred on the dyke and conducted with
the Wenner–Schlumberger array using 81 electrodes with a standard electrode spacing of
5 m. A total of 1200 apparent resistivity measurements were taken along the profile.
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The gravity survey was conducted on the same profile as the ERT survey, but gravity
measurements were taken at a station spacing of 10 m, yielding 41 measurements of
gravitational acceleration. Figure 20 shows the pseudo-section of the recorded apparent
resistivity data and a profile of the gravity gradient data.
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5.2.3. Results of Separate and Joint Inversions

The inverse resistivity model obtained from the separate inversion of the resistivity
data alone reveals a two-layered subsurface (Figure 21a) with an irregular boundary
between the two layers. Near the centre of the model where the dyke is known to occur, a
resistive feature is seen that extends to the near surface, but it seems to disappear below
a depth of 10 m where a zone of low resistivity is observed. At depths greater than 10 m,
resistive zones are noticed on either side of this low-resistivity zone. These zones appear to
fan out with increasing depth.

The separate inversion of the gravity gradient data yields the model presented in
Figure 21c. The inverse density model indicates the presence of a vertical high-density
structure with approximately uniform thickness near the centre of the profile, extending
from a depth of 5 m to around 20 m. This high-density feature in the inverse model can be
attributed to the dolerite dyke that occurs at this position.

Figure 21b and c show the results of the joint inversion conducted on the resistivity
and gravity gradient data using the cross-gradient constraint, which forces the inverse
models to exchange information with each other. The inverse models obtained from the
joint inversion exhibit considerable improvement in the recovery of the vertical structure
located in the centre of the profile. Below a depth of approximately 5 m in the inverse
resistivity model, the dolerite dyke embedded in a stratified medium is clearly visible as a
zone of high resistivity that extends to the bottom of the model (Figure 21b). However, this
zone is again observed to fan out with depth, creating the impression that the thickness of
the dykes increases with depth. The vertical structure of high density is imaged much more
clearly in the inverse density model obtained from the joint inversion than in the model
obtained from the separate inversion. This feature is now seen to extend to the bottom of
the model, retaining its nearly uniform width along its entire depth extent (Figure 21d).
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6. Conclusions

This research demonstrates that joint inversion enhances the accuracy of the resistivity
and the density model resolution by imposing structural similarities, as opposed to the
separate inversion approaches that can yield fragmented and incoherent information on
the structures. The cross-gradient constraint compels the models to interact based on
common structural features, resulting in more realistic and convergent models that fulfil
the requirements of both datasets. The methodology encompasses the use of synthetic
and real field datasets, with the latter collected to explore the location of subsurface
qanats and a dolerite dyke, in Iran and South Africa, respectively. The findings from
both the synthetic and the real field datasets demonstrate the capability of joint inversion
to delineate complex subsurface features. Joint inversion enhances the delineation of
boundaries and promotes continuity in anomaly structures within synthetic models, which
is essential for precise geological interpretation. Gravity gradient inversion is effective
for ascertaining the physical and geometrical parameters of compact sources; however,
it poses challenges in extracting information regarding deeper and elongated structures.
When resistivity data are incorporated into a joint inversion framework, the geometry
and deeper sections of the source can be more accurately constrained and reconstructed,
as highlighted by the thin dyke case. However, this integration resulted in an increase
in the misfit error values (Tables 2 and 3). Notably, the cross-gradient function values
decreased, indicating an improvement in the consistency and quality of the reconstructed
model. The cross-gradient-based joint inversion approach shows significant outcomes for
improving subsurface imaging and should be considered an essential tool in geophysical
research. In the practical applications investigated in this study, the use of joint inversions
has enhanced the resolution of the subsurface features, providing more dependable insights
for multi-disciplinary purposes. These include resource exploration, water management,
cultural heritage preservation, and infrastructure risk evaluation for the built environment.
Future research may further investigate this technique and assess its applicability in broader
geophysical contexts.
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