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Abstract: Cereal crops play a critical role in global food security, but their productivity is increasingly
threatened by climate change. This study evaluates the feasibility of using PlanetScope satellite imagery
and a UAV equipped with the MicaSense RedEdge multispectral imaging sensor in monitoring winter
wheat under various fertilizer treatments in a Mediterranean climate. Eleven fertilizer treatments,
including organic-mineral fertilizer (OMF) pellets, were tested. The results show that conventional
inorganic fertilization provided the highest yield (8618 kg ha−1), while yields from OMF showed a
comparable performance to traditional fertilizers, indicating their potential for sustainable agriculture.
PlanetScope data demonstrated moderate accuracy in predicting canopy cover (R2 = 0.68), crop yield
(R2 = 0.54), and grain quality parameters such as protein content (R2 = 0.49), starch (R2 = 0.56), and
hectoliter weight (R2 = 0.51). However, its coarser resolution limited its ability to capture finer treatment-
induced variability. MicaSense, despite its higher spatial resolution, performed poorly in predicting
crop components, with R2 values below 0.35 for yield and protein content. This study highlights
the complementary use of remote sensing technologies to optimize wheat management and support
climate-resilient agriculture through the integration of sustainable fertilization strategies.

Keywords: remote sensing; satellite; UAV; organo-mineral fertilization; extensive crops; vegetation
monitoring; phenology; yield prediction

1. Introduction

Wheat (Triticum spp. L.) is a fundamental component of the global diet, providing
essential nutrients and serving as a critical foundation for global food security [1,2]. As a
staple food, wheat contributes to the caloric intake of over 35% of the world’s population
and accounts for approximately 20% of global dietary protein [3]. However, its stability
and productivity are increasingly threatened by global warming and a range of extreme
climatic events that have led to yield reductions of up to 6% per degree (◦C) increase in
global temperature [4,5]. These events include frosts, reduced solar radiation, droughts,
and heat waves [6–9], which significantly affect crop yields and threaten food security.
Monitoring the condition and development of wheat during the growing season is critical
for assessing crop quality and making informed management decisions. Key indicators
such as phenological metrics, such as the start of the season (SOS), peak of the season (POS),
length of the season (LOS), and end of the season (EOS), or other biophysical parameters
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such as the fraction of green vegetation cover (fCover), yield prediction, or protein content
quantification can provide valuable insights into the wheat status and performance [10–13].
By evaluating these parameters, it is possible to understand how the wheat is progressing,
allowing for the selection of optimal treatment and fertilization strategies where necessary.
This proactive approach ensures timely and effective interventions, ultimately improving
yield and quality.

Fertilizers enable 50% of food production and contribute to food security in the EU.
The amount of mineral fertilizers, including nitrogen (N) and phosphorus (P), used in EU
agricultural production was 11.2 Mt in 2020 [14]. Agricultural activities generate a quantity
of non-productive biomass that can be used for bioenergy production and the fertilization
of agricultural soils. The recycling of solid organic waste is currently a priority issue in
the EU policy framework. A feasible technique to obtain secondary products from the
waste generated is composting, which allows obtaining a stabilized and mature material
with fertilizing power, improving the physical, chemical, and biological properties of the
soil [15], and providing the soil with a suppressive capacity against certain pathogens as it
stimulates the soil microbiota [16].

Regardless of the benefits of compost, it has some limitations for storage and transport
due to its low density and the emission of dust and possible inhalation of volatile organic
compounds during application [17]. The pelletization process consists of the mechanical
compression of the biomass, thus increasing the density of the compost and facilitating both
the storage and transport of this biofertilizer, making it a feasible solution to address the
problems described above [18]. Therefore, the development of advanced organic fertilizers
is necessary, as they contribute to both fertilization and carbon C sequestration in the
soil [19,20] and, indirectly, to the reduction of greenhouse gases (GHG) emissions by relying
less on energy processes and having a slower nutrient release. These proposed solutions
would be in line with the EU’s ‘Farm to Fork Strategy’ of promoting more sustainable
agriculture, reducing GHG emissions, and reducing the use of pesticides and chemical
fertilizers, with an integrated approach in the circular economy [14]. The generation of
organo-mineral pelletized products as alternatives to conventional fertilizers is essential,
both to ensure food production and to adapt to climate change.

Remote sensing is a key tool for monitoring wheat crops, providing essential parameters
such as fCover, yield prediction using optical signals, and biophysical models [21–24]. It allows
for continuous monitoring throughout the growing season, from early to late stages, providing
timely information critical for decision making [25–27]. By analyzing remote sensing data,
farmers and agricultural managers can make informed decisions about interventions such as
irrigation, fertilization, and pest control [28,29]. Several studies have demonstrated the utility
of freely and commercially available satellite data for field-scale monitoring. For example,
Sentinel-2, with its high-resolution imagery and frequent revisit time, is often used to assess
vegetation indices and estimate yield at the field level [30–32]. With a daily revisit and a spatial
resolution of 3.7 m, PlanetScope data from Planet SuperDove satellites provide even more
detailed insights, making them particularly useful for in-field studies and applications involv-
ing smallholder farmers [33,34]. Despite these advances, there remains a gap in the literature
regarding the use of PlanetScope data for experimental-scale analysis, even though its daily,
high-resolution imagery has significant potential to improve crop management strategies, the
monitoring of biophysical variables, and yield prediction. Unmanned aerial vehicles (UAVs)
complement these data sources by capturing high-resolution imagery for experimental-scale
analyses, allowing the detailed examination of specific plots or experimental setups [35,36].
Further exploration of this area could lead to optimized crop management and improved
agricultural outcomes.

Sustainable agriculture increasingly requires innovative tools to monitor crops and
optimize management practices. Remote sensing technologies, with their ability to cap-
ture detailed phenological and biophysical information, offer valuable insights into crop
performance, particularly under varied fertilization regimes. This study hypothesizes that
high spatial and temporal resolution remote sensing tools, such as PlanetScope satellite
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imagery and UAV-based multispectral data, can effectively monitor key parameters of
winter wheat at the parcel scale, while capturing the effects of sustainable fertilization
practices under Mediterranean conditions. The main objective is to evaluate the feasibil-
ity of using these tools for monitoring small plots of winter wheat under Mediterranean
conditions, specifically, determining how PlanetScope’s high-resolution imagery can re-
trieve land surface phenology and key biophysical parameters of the crop. Additionally,
the research investigates the prediction of crop yield and protein content using remote
sensing data and evaluates the performance of these predictions under different treat-
ments of organic-mineral fertilizer pellets. By leveraging the complementary strengths
of these technologies, this study aims to enhance precision and sustainability in crop
management practices.

2. Materials and Methods
2.1. Study Area and Experimental Design

The field experiment was carried out during the 2022/2023 winter crop season at a
research field of Aula Dei Experimental Station (EEAD-CSIC) in Zaragoza, northeastern
Spain (41◦44′21.7′′N, 0◦ the 46′40.5′′W, 255 m altitude), in a semiarid agroecosystem of the
Ebro river valley (northeastern Spain) characterized by erratic annual rainfall and high
evapotranspiration [37]. The average annual rainfall is 339.2 mm and the mean temperature
is 14.6 ◦C. The potential evapotranspiration rate exceeds 1200 mm year−1. The average
temperature during the 224-day experimental period was 12.5 ◦C, the total rainfall was
130 mm, and average relative humidity was 72% (18 November 2022–30 June 2023). The
meteorological data of this experiment (224 days) were obtained from a meteorological
station belonging to the network of the Ministry of Agriculture of the Spanish Government
SIAR, located near the experimental site (Table S1). The soil type is loam (fine-loamy, mixed,
thermic Xerollic Calciorthid) according to the USDA soil classification [38]. Regarding
the characterization of the topsoil layer (0–20 cm), the pH (1:25 w/v), electrical conduc-
tivity (EC) (1:2.5 soil-water ratio), and organic matter (OM) are 8.43, 236 µS m−1, and
1.67%, respectively.

The experimental design was a randomized complete block with three replicates
(plot size 8 m × 3 m) (Figure 1) in the frame assay of Sánchez-Méndez et al. [39]. Eleven
fertilizing treatments, including a treatment not fertilized (Control, 00), were tested (Table 1)
on wheat (Triticum turgidum L. Subsp. durum cv. Sculptur) at a seed rate of 250 kg ha−1

and a row spacing of 17.5 cm. P fertilization was applied at sowing on 18th November
(day 0), Z0.0) [40], normalized to 50 kg P ha−1; N fertilization, normalized to 150 kg N ha−1,
was applied at tillering on 16th February (day 90, Z2.3), according to the recommendation
for the study area [41]. All fertilizers were applied manually at surface broadcast.
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Table 1. Mineral fertilizer combinations and fertilization doses of wheat for the trial conducted at
Aula Dei Experimental Station (EEAD-CSIC).

Treatment ID P Source
(Z0.0)

N Source
(Z2.3)

Control 00 -- --
P(MAP) + N(UREA) 11 MAP Urea

P(MAP + C) + N(UREA) 21 Compost + MAP Urea
P(MAP + C) + N(UREA + C) 22 Compost + MAP Compost + Urea
P(MAP + C) + N(BlM + C) 23 Compost + MAP Compost + Blood meal

P(BM + C) + N(UREA) 31 Compost + Bone meal Urea
P(BM + C) + N(UREA + C) 32 Compost + Bone meal Compost + Urea
P(BM + C) + N(BlM + C) 33 Compost + Bone meal Compost + Blood meal

P(Str+C) + N(UREA) 41 Compost + Struvite Urea
P(Str + C) + N(UREA + C) 42 Compost + Struvite Compost + Urea
P(Str + C) + N(BlM + C) 43 Compost + Struvite Compost + Blood meal

Control: not fertilized. P and N indicate phosphorus and nitrogen, respectively. MAP: monoammonium phosphate
(11-61-0); UREA: urea (46-0-0). C: compost; BlM: blood meal; BM: bone meal; Str: struvite.

The source of inorganic P fertilizers was monoammonium phosphate (MAP, 11-61-0)
and the source of inorganic N was urea (46-0-0). The organic-mineral fertilizer (OMF)
and organic fertilizer (OF) pellets were prepared from compost (olive mill waste–poultry
manure–olive leaf waste; 60:20:20) produced by large-scale windrow composting [42],
air-dried and mixed with the P and N nutrient sources. For OMF pellets used as P sources,
the compost was mixed with MAP (MAP + C) and struvite (Str + C) and for OF pellets
used as P sources, the compost was mixed with bone meal (BM + C). For OMF and OF
pellets used as N source, the compost was combined with urea (Urea + C) and blood meal
(BlM + C), respectively (Table 1). Pellets were produced at CompoLab EPSO-UMH (Ori-
huela, Spain) by extrusion of the mixtures with a small-scale pelletizer machine (4 HP),
reaching a final size of 5 mm in length and 5 mm in diameter. Furrow irrigation was
performed on 24 March, 23 April, and 12 May, coinciding with the grain development
stage (Z8.7).

The trial was carried out in a conventional tillage system, with lucerne (Medicago
sativa L.) as the preceding crop and the soil prepared by moldboard plowing. Weeds were
chemically controlled (2,4-dichlorophenoxyacetic acid) at recommended rates (1 L ha−1),
with all treatments receiving the same level of pest control on 14 March.

2.2. Field Data Acquisition

During the crop season, fraction of vegetation (fCover) was measured with the
Canopeo app [43]. The app is based on red-to-green color relations (R/G), blue-to-green
colors (B/G), and an excess index of green (2G–R–B). Measurements were conducted at
a height of 1.5 m above the ground [44]. In each plot, a sample of 8 m length of each plot
(video composite of 20 photographs) was obtained as a percentage cover result.

At physiological maturity (Z9.0), wheat spikes from the 8 m2 central rows in each
plot were machine-harvested and weighed in the field, standardizing the values at 10%
grain moisture (kg ha−1). The mineral composition of the tissues was determined by
nitric perchloric acid digestion [45]. The total C and N content of the tissues samples was
determined in automatic elemental microanalyzer (EuroVector elemental analyzer, Milan,
Italy) and expressed as %N [46]. The total N of the grains was obtained and protein content
(PB %) of the grain was determined using a conversion factor of 5.75 [47] and the hectoliter
weight (HW %) was measured (kg hL−1).

Statistical analyses were performed using the Infostat v.2020 statistical software pack-
age linked to the R programme v3.6.3 [48]. Normality of the data was tested using the
Shapiro–Wilks test and the homogeneity of variance was assessed and confirmed using the
Levene test (p > 0.05).
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The analysis of variance (ANOVA test at p < 0.05) was performed for all the ex-
perimental variables using a generalized linear mixed model, with fertilizer treatments
and sampling dates as fixed factors and each plot as a random factor. Multiple compar-
isons between the means were made using the LSD (least significant fifference) Fisher test
(α = 0.05). This approach tests for significant differences in the means of the experimental
variables across fertilizer treatments and sampling dates, using the ANOVA technique as
the primary method for evaluating factor-level effects.

2.3. Remote Sensing Data
2.3.1. PlanetScope Imagery

PlanetScope is a commercial satellite constellation operated by Planet Labs, a company
headquartered in San Francisco, California, USA. The constellation consists of approxi-
mately 180 satellites. Each satellite is a CubeSat 3U form factor (10 × 10 × 30 cm), capable of
imaging the entire Earth’s surface at a daily time step. The latest generation of PlanetScope
sensors, known as Super Dove or PSB.SD, were used in this study. This generation produces
near-daily images from March 2020 at 3 m spatial resolution and over 8 spectral bands
(Supplementary Material: Figure S1 and Table S2) [49]. The band radiometry, the band
spectral response, and the image sharpness have been significantly improved compared to
the previous generations.

To develop this study, the Analytic Ortho Scene product was downloaded from
October 2022 to August 2023 considering a total of 100 cloud-free surface reflectance
images. The Ortho Scene product is an orthorectified surface reflectance product (level
3B), radiometrically, geometrically, and atmospherically corrected. Orthorectification was
performed to correct terrain-induced distortions using high-quality digital elevation models
(DEMs) with a post-spacing of 30–90 m. Ground control points (GCPs) were integrated
to enhance geolocation accuracy, with precision depending on the density and quality
of available GCPs in the region. For geometric corrections, computer vision algorithms,
including OpenCV’s STAR keypoint detector and FREAK keypoint extractor, were utilized
to detect feature points [50]. Radiometric calibration was applied to ensure the pixel
values accurately represented surface reflectance. The imagery was captured in 16-bit
depth, providing a high level of detail for spectral analysis. Atmospheric corrections were
performed using the 6SV2.1 radiative transfer code to account for effects such as aerosol
scattering and water vapor absorption [51]. Key atmospheric inputs, including aerosol
optical depth (AOD), water vapor, and ozone levels, were retrieved from MODIS near-
real-time datasets (MOD09CMA [52], MOD09CMG [53], and MOD08-D3 [54]) Analysis
using PlanetScope images was performed at the pixel level due to the small size of the
experimental plots (Figure 2). However, given the limited size of the experimental plots
and their rectangular geometry that was not aligned with the pixel orientation, none of the
PlanetScope pixels purely observed any of them, providing a mixed signal. Thus, only the
pixels observing >85% of a given experimental plot were selected, resulting in a total of
21 pixels, covering at least one pixel each treatment.
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2.3.2. UAV Data

Multi-temporal flights using an Inspire a UAV quadcopter type DJI® Inspire 1 (SZ
DJI Technology Co., Ltd., Shenzhen, China) were conducted over the experimental site
(1080 m2) where multispectral images were taken on three different dates (19 January,
22 March and 10 May) during the wheat growing season. Flights were conducted under
conditions of low wind speed, partly cloudy skies, and good visibility. Perpendicular flights
were made at 50 m height to create a grid covering each plot and its surroundings (90%
overlap between flight lines). A multispectral camera was acquired in five spectral bands
(Supplementary Material: Figure S1 and Table S2) by MicaSense (MS) RedEdge-M sensor
(1.2 Mpx and 5.4 mm focal length) was used to acquire the information attached to the rear
from Inspire 1 DJI UAV, using a custom mounting plate and independently powered by
an external battery. Images captured by the the RedEdge-M were sorted as 16-bit RAW
tiff files. MS images were processed using the Pix4D v4.6.4® software. An orthomosaic
was generated using Structure from Motion (SfM) techniques, which reconstruct 3D geom-
etry and spatial alignment from overlapping images [55]. This process included feature
matching, bundle adjustment, and dense point cloud generation to ensure high spatial
accuracy and seamless image stitching. The resulting orthomosaic was georeferenced using
real-time kinematic (RTK) GPS points for precise alignment with the experimental site. This
software was also utilized to process the MS images, transforming the raw digital data into
radiance and reflectance. Calibration of the MS imagery was performed using the camera’s
standard calibrated white reflectance panel. The radiometric calibration process follows
the equation provided by MicaSense [56], shown as (Equation (1)), which is based on their
official radiometric conversion model:

Lsenλ
= V(x,y) ×

(
a1

g

)
× p − pBL

te − a2y − a3tey
(1)

where Lsen is the spectral radiance at wavelength λ; V(x, y) is the vignette polynomial
function at pixel (x,y); a1, a2, and a3 are the radiometric calibration coefficients; g is the
sensor gain setting; p is the normalized DN value; pBL is the black level offset; and te is
the image exposure time. All parameters required for radiance calculation are provided
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in the image metadata. After determining the radiance, the reflectance is derived using
the calibrated white reflectance panel and the function supplied by MicaSense [57]. This
computation relies on a standard reflectance panel captured from an image taken at a height
of 1 m. The corresponding formula is presented in Equation (2):

Fiλ =
ρiλ

1
n ∑n

j=1 Li,jλ

(2)

where ρi,λ is the panel’s reflectance at wavelength λ, and Li,λ represents the radiance
measured for the j-th pixel of the reflectance panel.

Once this conversion factor (Fi,λ) is determined, the reflectance at wavelength λ (ρλ)
for the image can be calculated by multiplying the spectral radiance by the conversion
factor, as shown in Equation (3):

ρλ = Lsenλ
× Fiλ (3)

After radiometric calibration, MS images were orthorectified using geodetic coor-
dinates from Real Time Kinect GPS GNSS RTK (Emlid, Reach RS2) using the control
ground points obtained on the edge of plots, using the georeference tool from QGIS 3.36
software [58]. The pixel resolution of the processed images was 2.0 cm.

2.4. Crop Variables Estimation Using Remote Sensing Data

In this experiment, we conducted a comparative analysis of different measurements
across different treatments and explored their relationships with remote sensing spectral
bands or vegetation indexes. In the following sections, we examine phenological metrics,
vegetation cover fraction, and key components such as crop yield, starch content, and
protein content using MS and PS datasets.

2.4.1. Phenological Metrics Extraction

The phenological metrics extracted in this study included the start of the season (SOS),
length of the season (LOS), peak of the season (POS), and end of the season (EOS). These
metrics were derived from the Normalized Difference Vegetation Index (NDVI) [59,60]
time series of the study area. A Savitzky–Golay filter [61] was applied to minimize noise in
the time series. The phenological metrics were determined based on the temporal evolution
of the NDVI time series [25] and percentile extraction: The NDVI maximum was identified
as the POS, the SOS was defined as the 10th percentile of NDVI values preceding the
maximum, and the EOS was defined as the 10th percentile of NDVI values following the
maximum. LOS was calculated as the difference in days between the EOS and the SOS.
These derived phenological metrics were then compared with the phenological calendars
recorded during the experiment, and any discrepancies were noted.

In addition to these phenological metrics, the accumulated growing degree days
(GDDaccum, Equation (4)) were also considered to provide a more comprehensive under-
standing of crop development in the study area. GDDaccum is a measure of heat accumula-
tion, which directly influences the timing of key phenological stages such as germination,
flowering, and maturity [62]

GDDaccum =
EOS

∑
d=SOS

(
Tmax + Tmin

2

)
− Tbase0 (4)

where Tmax, Tmin, and Tbase are the maximum, minimum, and base temperatures, respec-
tively. In the case of winter wheat, the Tbase is 0 ◦C. By considering the cumulative tem-
perature exposure throughout the growing season, GDDaccum provides a more accurate
prediction of phenological events than calendar days alone [63]. Once the phenological
metrics were calculated, the accumulation of GDD began from SOS and continued until
EOS. This approach allowed temperature data to be integrated throughout the growing
season, providing a normalized evolution for crop development. The GDDaccum between
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SOS and EOS allowed us to quantify the heat accumulation required for the progression of
phenological stages, thereby providing insight into the relationship between temperature
and vegetation dynamics. This GDDaccum, in conjunction with the previously derived
phenological metrics, was compared with the Zadock (Z) crop development recorded in
the experiment.

2.4.2. Fraction of Green Vegetation Cover

The evolution of fCover was measured in situ on four specific dates (1 January,
12 February, 22 March, and 10 May) corresponding to key stages in the crop growth,
including sowing and grain development mentioned in Section 2.2. These dates were
chosen to capture the dynamic changes in vegetation cover during the growing season.
The in situ measurements were then compared with the remote sensing data, specifically,
the vegetation indices in Table 2, calculated for both PS and MS datasets. For vegetation
indexes, we established linear relationships between the in situ vegetation cover measure-
ments and the PS and MS indexes. In the case of PS, the evolution of the whole time series
over the growing season was analyzed to investigate how different treatments affected
the vegetation cover at different phenological stages. This analysis provided insights into
the temporal dynamics of vegetation cover and the impact of different treatments on crop
development, as observed from both ground measurements and remote sensing data.

Table 2. Calculated vegetation indices based on the blue, green, red, red edge (RE) and near infrared
(NIR) spectral bands of the PlanetScope instrument or MicaSense multispectral camera.

Index Formula Reference

RVI NIR
Red [64]

DVI NIR − Red [59,60]
NDVI NIR−Red

NIR+Red [59,60]
SAVI (NIR−Red)∗1.5

NIR+Red+0.5
[65]

WDVI NIR − 0.5 ∗ Red [66]
GNDVI NIR−Green

NIR+Green [67]
MCARI [(RE − Red)− 0.2(RE − Green)]

(
RE
Red

)
[68]

EVI 2.5 NIR−Red
(NIR+6∗Red−7.5∗Blue)+1 [69]

TRBI Green+Red
NIR [70]

NDI45 RE−Red
RE+Red [71]

SeLI NIR−RE
NIR+RE [72]

Validation of vegetation cover predictions was conducted using standardized metrics
to assess model performance. These included the coefficient of determination (R2), which
measures the strength of the relationship between observed and predicted values; the mean
of the residuals (bias), which evaluates systematic deviations; the standard deviation of the
residuals (σ), which quantifies data spread; and the root mean square error (RMSE), which
assesses overall accuracy. These metrics were applied to compare predicted and observed
fractional vegetation cover values across different treatments and phenological stages.

2.4.3. Harvest Components, Crop Yield, and Quality

Estimates of crop yield, protein content, starch, and hectoliter weight obtained at
harvest were analyzed by examining the relationships between these components and
combinations of two spectral bands from the drone and satellite datasets. A linear model
was applied to quantify these relationships at various phenological stages of the crop,
incorporating accumulated growing degree days (GDD) from the start of the season (SOS)
to the specific date corresponding to each stage. The model is expressed as

Harvest component = m1ρλ1GDD + m2ρλ2GDD + n (5)
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where ρλ1,GDD and ρλ2,GDD represent the reflectance values for bands λ1 and λ2 at a
given GDD, m1 and m2 are coefficients for each band, and n is the intercept. This ap-
proach allowed us to evaluate how well spectral data captured key crop traits at different
growth stages.

The study focused on identifying phenological stages, particularly those before the
peak of the growing season, that exhibited the strongest correlations with spectral data.
This approach aimed to evaluate the potential for predicting crop components, including
yield, protein content, starch, and hectoliter weight, using satellite- and drone-derived
data. Validation was performed by comparing remotely sensed data with ground-based
measurements, using metrics such as the coefficient of determination (R2), mean residuals
(bias), standard deviation of residuals (σ), and root mean square error (RMSE). These metrics
were applied consistently with the validation framework described for vegetation cover
predictions.

3. Results
3.1. Vegetation Dynamics Monitored by Remote Sensing

The development of winter wheat represented by the average NDVI as recorded by
PlanetScope (PS), is shown in Figure 3. The NDVI time series effectively tracks the key
phenological stages of the crop, with the SOS, POS, and EOS marked by their respective
indicators. The progression of GDD is shown on the x-axis, corresponding to the timeline of
the study. Based on actual observations, the start of the season (SOS) was on 18 November
2022, and the end of the season (EOS) was on 27 June 2023. PlanetScope satellite estimates
detected the SOS on 26 November 2022, underestimating the actual date by 8 days, and the
EOS on 15 June 2023, overestimating the actual date by 12 days compared to the sowing
and harvest, respectively.
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In the early stages, corresponding to the sowing stage (Z0), the crop starts to emerge
in early November 2022. At this stage, the accumulated GDD ranged from 0 to 440 GDD,
and the NDVI ranged from a minimum of 0.11 to a maximum of 0.54, with a mean value of
0.31 (Table 3). As the crop progresses into the tillering stage (Z2.3) between mid-December
2022 and late January 2023, the NDVI steadily increases, indicating additional wheat tillers.
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During this period, the cumulative GDD ranged from 464 to 884, and the NDVI increased
from a minimum of 0.36 to a maximum of 0.69, with a mean value of 0.52. The peak NDVI
values occur during the grain development stage (Z7.1), which extends from the end of
March to the end of May 2023. At this time, the crop reaches maximum vegetative growth,
with GDDaccum ranging from 1004 to 1911. The NDVI at this stage increases to an average
of 0.62, with a maximum of 0.77. Finally, the senescence stage (Z9.3) occurs from late May
to June 2023 and marks the decline in NDVI as the crop matures. During senescence, the
GDDaccum ranges from 1928 to 2505, while the NDVI values drop from a maximum of 0.46
to a minimum of 0.19, with a mean value of 0.30.

Table 3. NDVI and GDD summary for different phenological metrics.

Phenology Min
GDD

Mean
GDD

Max
GDD

Min
NDVI

Mean
NDVI

Max
NDVI

Sowing (Z0.0) 0 277 440 0.11 0.31 0.54
Tillering (Z2.3) 464 607 884 0.36 0.52 0.69

Grain
development

(Z8.7)
1004 1406 1911 0.38 0.62 0.77

Senescence
(Z9.0) 1928 2340 2505 0.19 0.30 0.46

In addition to the NDVI evolution, a comparative analysis between the MicaSense
and PlanetScope reflectance values was conducted based on coincident acquisition dates
(Supplementary Material: Figures S2 and S3). Figure S2 illustrates notable differences
in RGB and NDVI values, with MicaSense providing higher spatial detail but differing
NDVI ranges. Scatterplots in Figure S3 quantify these discrepancies, showing low R2

values for individual acquisition dates, particularly in the blue and green bands (R2 < 0.25).
However, the overall R2 improves when combining data across all dates, especially in the
NIR band (R2 = 0.70), capturing seasonal variability but not per-date agreement. In the
MicaSense images, reflectance values are consistently lower than those from PlanetScope,
with significant deviations in March and May. In fact, the scatter plots (Figure S3) further
illustrate the weak correlation between MicaSense and PlanetScope reflectance, particularly
in the blue and green bands, where Pearson’s R2 values are as low as 0.06 in January and
0.10 in May. Despite this, some bands, such as the red edge and NIR bands, show slightly
better correlations, although the overall R2 values remain below 0.30 across all acquisition
dates. These discrepancies can be attributed to several factors, including differences in
the relative spectral responses of the sensors and possible variations in the radiometric
calibration procedures. Nevertheless, the overall relationship between the two sensors
reflectance values is relatively weak.

The PlanetScope time series evolution of NDVI for the different treatments is shown
in Figure 4. As observed, the NDVI trends differ significantly between the control and
the different experimental treatments, especially after the fertilizer application. After
the phosphorus application, the NDVI values show a significant increase, especially in
treatments such as P(MAP) + N(Urea) and STr + C + N(Urea), which obtained the highest
yields and maximum NDVI values, with peaks close to 0.6. In contrast, the control treatment
shows a lower NDVI increase, peaking at around 0.5. After the nitrogen application, all
treatments show a continuous upward trend in NDVI and reach their maximum values.
After reaching their peak, the treatments can be divided into three groups: the high yield
treatments maintain NDVI values around 0.8, the medium yield treatments stabilize around
0.75, and the lower yield treatments, including the control and the P(BM + C) + N(Urea)
treatment, show NDVI values around 0.65. As the crop enters senescence, the NDVI values
decrease sharply, eventually stabilizing between 0.3 and 0.4 at the end of the season.
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A detailed comparison of NDVI values and rankings between MicaSense and Plan-
etScope across all treatments highlights both consistencies and discrepancies in sensor
performance (Table S3). High-yield treatments such as P(St) + N(i) and P(Bm) + N(om)
exhibit strong agreements, with MS NDVI values averaging 0.590 and 0.586 compared to
PS 0.676 and 0.664, respectively, and minimal ranking differences of 1 to 2 ranks. However,
mid-yield treatments like P(Bm) + N(o), with average yields ranging between 6500 to
7500 kg ha−1, reveal more notable differences, with PlanetScope ranking them higher on
average by two to three ranks compared to Micasense. Across all treatments, 13 plots differ
by only up to two ranks, but five show larger discrepancies, with differences exceeding
three ranks, particularly for mid-range yield treatments. This reflects consistent alignment
for extreme yields but suggests that mid-yield treatments exhibit greater variability in
rankings between the two sensors.

3.2. Fraction of Vegetation Cover

The performance of the top five fCover prediction models, using data derived from
both the PlanetScope and MicaSense sensors, and the scatter plot of the best model are
shown in Figure 5. The PlanetScope model, using the Enhanced Vegetation Index (EVI),
showed a correlation of R2 = 0.68 with the measured fCover values. The standard deviation
between the different treatments was relatively small, indicating limited variability in
the predictions. The MicaSense model, using the Normalized Difference Vegetation Index
(NDVI), showed a higher correlation with measured fCover values (R2 = 0.82, RMSE = 8.3%).
The standard deviation in PlanetScope between the different treatments indicates limited
sensitivity to the variations induced by different agronomic practices, such as fertilization
with phosphorus and nitrogen. This lack of variability in PlanetScope predictions is
probably due to its coarser spatial resolution, which may not capture the heterogeneity
present in the experimental plots. The MicaSense model also showed greater variability in
both measured and predicted values, as indicated by the larger standard deviations across
the treatments. This increased variability likely to reflect the higher spatial resolution of the
MicaSense sensor, which is better able to capture the finer scale variations in crop cover
caused by different treatments. The improved agreement and variability in MicaSense



Remote Sens. 2024, 16, 4474 12 of 23

predictions suggests that it may be more effective for monitoring fCover in heterogeneous
experimental conditions.
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Figure 5. Comparison of measured and predicted fCover using PlanetScope and Micasense.

Time series analysis of fCover, based on PlanetScope Enhanced Vegetation Index
(EVI), shows the seasonal dynamics of vegetation cover across the different experimental
treatments (Supplementary Material: Figure S4). The control treatment (plot 00, see Table 1),
which did not receive fertilization, consistently shows the lowest fCover values throughout
the growing season, indicating minimal vegetative growth. In contrast, the phosphorus
and nitrogen fertilized treatments show varying degrees of increased vegetation cover. For
example, treatments with P(MAP) + N(Urea) (plot 11) and P(Str + C) + N(Urea) (plot 42)
show higher fCover values, especially during the peak of the growing season.

3.3. Harvest Components: Crop Yield, Protein Content, Starch, and Hectoliter Weight

The crop yield and grain quality parameters showed significant differences (p < 0.0001)
between fertilizing treatments (Table 4). All the fertilized plots had higher yields than the
unfertilized control plots. We can observe that the highest performance was obtained in the
plots fertilized with conventional strategies P(MAP) + N(Urea) (8618 kg ha−1), followed by
P(Str + C) + N(Urea), which showed a similar yield compared to the inorganic treatment.
The fertilizers applied significantly increased the protein content (+31.6%) and HW (5%)
in grain compared to the unfertilized control. P fertilization combined with N treatments,
N(Urea) and N(Urea + C), showed a more positive effect on the protein content and HW
than N(BlM + C). On the contrary, starch was significantly higher in the unfertilized control,
followed by P(BM + C)+N(Urea + C).
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Table 4. Analysis of variance (ANOVA) of wheat yield components for fertilizer treatments in the
2022/2023 growing season.

Treatment Plot Grain Yield
(kg ha−1)

HW
(kg hL−1)

Grain Protein
(%)

Starch
(%)

Control 00 6429 a 75.4 a 7.6 a 77.95 c
P(MAP) + N(Urea) 11 8618 g 79.4 c 10.6 de 70.37 ab

P(MAP + C) + N(Urea) 21 7708 def 79.7 c 11.1 e 64.55 a
P(MAP + C) + N(Urea + C) 22 7524 cde 79.3 c 10.1 cd 71.42 abc
P(MAP + C) + N(BlM + C) 23 6993 bc 78.2 b 9.2 b 67.03 ab

P(BM + C) + N(Urea) 31 7965 ef 79.7 c 10.6 de 66.98 ab
P(BM + C) + N(Urea + C) 32 7219 bcd 79.3 c 10.5 de 72.51 bc
P(BM + C) + N(BlM + C) 33 6823 ab 79.0 bc 9.0 b 68.04 ab

P(Str + C) + N(Urea) 41 8183 fg 79.7 c 9.6 bc 67.9 ab
P(Str + C) + N(Urea + C) 42 7761 def 79.5 c 10.2 cd 66.79 ab
P(Str + C) + N(BlM + C) 43 7068 bc 79.1 c 9.2 b 66.19 ab

p-Value *** *** *** ***

HW: Hectoliter weight. ***: significant difference between treatments at p < 0.0001. Different letters within a
column indicate significant differences between treatments (p < 0.05). Values indicate mean (n = 3). For acronyms,
see Table 1.

Figures 6 and 7 show the analysis of key crop components—such as yield, protein con-
tent, starch, and hectoliter weight—which are modeled using PlanetScope and MicaSense
data based on specific spectral bands. The timing of fertilization with phosphorus (P) plays
a key role in influencing these results, as reflected in the phenological data at the beginning
of the season. The PlanetScope model showed moderate correlations between predicted
and actual values for the different crop components. For crop yield monitoring, the Plan-
etScope model showed an R2 of 0.54, with the best predictions occurring during phases of
rapid plant growth after fertilization. The model used spectral bands B04 (green)-B06(red)
with a GDD of 569 (Figure 6a). For starch content, the PlanetScope model achieved an
R2 of 0.56 using bands B04 (green)-B08 (NIR) with a GDD of 761 (Figure 6b), effectively
capturing starch accumulation, particularly after nitrogen application at tillering. HW, an
indicator of grain quality, showed an R2 = 0.51 with bands B02 (blue)-B07 (red edge) (GDD
of 414) (Figure 6d). The consistency in predicting HW suggests that early phosphorus
and nitrogen fertilization helped to maintain grain density. Protein content showed a
slightly lower correlation (R2 = 0.49) using bands B02 (blue)-B06 (red edge) and a GDD of
554 (Figure 6c).
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In contrast, the MicaSense sensor performed poorly for all crop components
(Figure 7). The correlation between the predicted and actual values was weak for crop yield
(R2 = 0.30), starch content (R2 = 0.34), hectoliter weight (R2 = 0.35), and protein content
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(R2 = 0.34). These low R2 values indicate that the MicaSense model struggled to capture
meaningful linear relationships between the spectral data and the measured outcomes in
this experiment.

4. Discussion
4.1. Phenology Metrics and Thermal Evolution

The use of PlanetScope imagery in this study has proved effective in monitoring
the phenological development of winter wheat. The alignment of NDVI values with key
phenological stages, as outlined by the Zadoks scale, suggests that satellite-derived data
can provide accurate insights into the temporal dynamics of crop growth. The detection
errors associated with SOS and EOS (8 days and 12 days, respectively) are acceptable
given the scale of remote sensing data and its inherent temporal resolution. Also, note
that the field-level SOS represents the sowing date, while the SOS derived from remote
sensing corresponds to the crop’s emergence. As expected, this remote sensing-based SOS
is detected later than the sowing date. Similarly, for EOS, the satellite detected the end of
the season sooner than the actual date observed in the field, likely due to differences in how
crop senescence is captured from satellite data compared to ground-based observations.
These results highlight the ability of PlanetScope’s high temporal resolution to effectively
track vegetation dynamics, allowing accurate detection of phenometrics such as SOS and
EOS. PlanetScope´s frequent revisits provide a significant advantage in capturing rapid
temporal changes in crop development, ensuring that key phenological stages are accu-
rately monitored throughout the growing season. Previous studies have emphasized the
importance of temporal resolution for accurately capturing land surface phenology metrics,
further supporting the effectiveness of PlanetScope in addressing these challenges [73].

Furthermore, the steady increase in NDVI during tillering and the sharp increase lead-
ing up to grain development demonstrate the sensitivity of NDVI to changes in biomass
and canopy cover. The correlation between NDVI and GDD further supports the use of
remote sensing data to predict key phenological events, which could help to optimize
agricultural management practices, such as fertilizer application and irrigation scheduling.
The results show a clear correlation between the satellite-derived NDVI values, the phe-
nological stages described by the Zadoks scale, and the accumulation of GDD. The NDVI
patterns and their relationship with GDD provide a robust framework for understanding
winter wheat development throughout the growing season.

The combination of thermal time models, such as GDD, and observations based on the
Zadoks scale is particularly valuable in capturing the full complexity of crop development.
While GDD provides a continuous, temperature-driven metric that can be applied to
different agroecosystem conditions [74], the Zadoks scale provides detailed insights into
specific phenological stages, which are critical for local field management. As highlighted
by Li et al. (2023) [75], GDD and other thermal indices are more easily scalable over larger
regions, making them ideal for remote sensing applications, while the Zadoks scale remains
critical for precise, site-specific observations. The integration of both approaches improves
the accuracy of phenological monitoring and ensures a comprehensive understanding of
crop growth dynamics under varying environmental conditions.

The observed changes in NDVI across the phenological stages provide valuable insight
into the relationship between biomass accumulation and thermal time. During the early
stages of development, the NDVI effectively captures the initial vegetative growth, reflect-
ing the sensitivity of remote sensing data to small increases in canopy cover. As the crop
transitions into the tillering and grain development stages, the strong correlation between
NDVI and GDD highlights the ability of thermal time models to predict key phenological
events and canopy dynamics. Similar GDD ranges have been reported in other studies
investigating winter wheat development, confirming the scalability of GDD as a reliable
metric for monitoring crop growth [76]. The sharp decline in NDVI during senescence
clearly marks the onset of crop maturity, with GDD continuing to accumulate even as
vegetative growth slows. This relationship between decreasing NDVI and increasing GDD
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underscores the importance of integrating both thermal and spectral data for accurate
phenological monitoring. These findings suggest that combining GDD and NDVI can
be a powerful approach for optimizing agricultural management practices, especially for
determining the ideal timing for interventions such as fertilizer application and harvest.

4.2. PlanetScope and MicaSense Intercomparability

The discrepancies in the correlation between PlanetScope and MicaSense reflectance
values, as highlighted by the low Pearson R2 values across the spectrum, are largely due to
the fundamental differences in their spectral responses. The two sensors are designed with
different band specifications and sensitivities. The PS SSD sensor captures a wider range of
wavelengths compared to the RedEdge-M sensor, which has narrower and more defined
spectral bands. This mismatch in wavelength coverage and bandwidth is likely to lead
to variations in the measured reflectance, particularly in regions of the spectrum where
the two sensors do not fully overlap. In addition, differences in radiometric calibration
procedures between the two sensors may further contribute to the observed discrepancies.
These findings align with previous reports of MicaSense camera limitations, particularly,
the underestimation of the reflectance values for reference panels and the challenges
associated with sensor saturation [77] and band [78] mismatch. Consequently, direct
comparisons between the two datasets should account for these inherent differences in
spectral characteristics and calibration methods.

When such variability cannot be resolved by addressing biases alone, incorporating
ground-based surface reflectance measurements becomes critical. These measurements
provide an objective reference to evaluate uncertainties and validate reflectance values from
both satellite and drone data. For MicaSense, improvements in acquisition protocols, such
as accounting for BRDF effects in the SfM workflow or correcting illumination-induced
variability during flights, could reduce discrepancies. In contrast, PlanetScope benefits from
being an Analysis Ready Data (ARD) product, with harmonized corrections for radiometry,
geometry, and atmosphere. These preprocessing advantages ensure consistency, although
validation using reference data remains essential.

Furthermore, although Leach et al. (2019) [79] reported radiometric uncertainties
for PlanetScope arising from variations in acquisition times, additional challenges are
presented by anisotropic variations related to the bidirectional reflectance distribution
function (BRDF), as demonstrated by Roy et al. (2021) [80]. Such directional effects
are exacerbated by differences in acquisition timing between sensors, potentially further
complicating the comparison between PlanetScope and MicaSense data. However, the
observed consistency in PlanetScope’s SuperDove data can be attributed to the atmospheric
correction applied to harmonize the constellation. This harmonization process has proven
reliable in comparison with other datasets, such as Sentinel-2 [81,82], suggesting that while
temporal and directional variations present challenges, the SuperDove’s corrected data
may mitigate some discrepancies when properly accounted for.

Additionally, a comparative analysis of NDVI rankings between MicaSense and Plan-
etScope revealed consistent alignment in high-yield treatments, such as P(St) + N(i) and
P(Bm) + N(om), where differences in NDVI ranks were minimal, typically within one
or two ranks. However, mid-yield treatments, such as P(Bm) + N(o), exhibited larger
discrepancies, with PlanetScope ranking these treatments higher by two to three ranks
on average. This suggests that while PlanetScope is effective in tracking broad trends in
crop development, particularly in high-yield scenarios, mid-yield treatments demonstrate
greater variability. This variability in MicaSense data could be attributed to challenges in
radiometric calibration, which may have affected its ability to accurately detect finer-scale
variability induced by different fertilization strategies.

4.3. fCover Retrieval Using Remote Sensing Dataset

The results show that while the PlanetScope-based models are useful for capturing
general trends in fractional vegetation cover (fCover), they are limited in their ability
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to discriminate finer-scale effects of different agronomic treatments. The relatively low
standard deviations and moderate correlations suggest that the coarser spatial resolution
of PlanetScope likely limits its ability to detect the subtle heterogeneity present within
experimental plots. This limitation is particularly evident in treatments with varying
levels of phosphorus and nitrogen fertilization, where spatial variability in plant cover is
expected to be higher due to differential nutrient uptake. Among the PlanetScope indices,
the Enhanced Vegetation Index (EVI) was the most effective predictor, yet it still exhibited
limited sensitivity and may have underestimated the influence of certain treatments on
crop cover.

Although the satellite-derived fCover models capture general seasonal trends, they
have limitations in distinguishing between specific fertilization products and combina-
tions. This is evident during the post-peak period, where fCover is often overestimated,
particularly in treatments involving compost and nitrogen-based fertilizers. For example,
treatments such as P(BM + C) + N(Urea) show higher modeled fCover than expected
toward the later stages of the season. Despite these discrepancies, the fCover models
effectively reflect overall temporal patterns of crop growth and provide useful insights into
the relative effects of different fertilization strategies on vegetation development at the plot
scale. However, the tendency to overestimate fCover in fertilized plots, especially those
receiving higher nutrient doses (e.g., compost combined with urea), underscores one of the
key limitations of the models.

In contrast, the superior performance of the RedEdge-M model, particularly in the
Normalized Difference Vegetation Index (NDVI) model (R2 = 0.82), can be attributed to the
higher spatial resolution of the sensor, which allows for more accurate detection of fCover
variability across experimental plots. This increased variability, reflected in the higher
standard deviations, suggests that RedEdge-M can better capture the effects of different
fertilizer treatments on crop cover, especially in the more heterogeneous parts of the field.
For example, treatments involving compost and organic nutrient applications, which typi-
cally cause localized variations in soil fertility, are better detected by the RedEdge-M sensor.
This increased sensitivity to within-field variability is critical for accurately monitoring
crop response to nutrient treatments and improving precision farming strategies.

It is particularly noteworthy that NDVI, an index traditionally recognized for its ability
to minimize directional effects, outperforms other indices from the RedEdge-M sensor. By
utilizing the red and near-infrared (NIR) bands, NDVI may be less influenced by calibration
problems, which could explain its superior performance in this study. This observation is
especially intriguing given the earlier challenges encountered with MicaSense’s calibration
inconsistencies, as discussed in prior sections. Despite the sensor’s known issues, NDVI’s
robustness appears to mitigate some of the calibration-related drawbacks, allowing for a
more reliable detection of fCover variability in experimental plots.

Given the variability observed between the datasets, data fusion presents a promising
avenue to enhance the synergistic analysis of vegetation dynamics. However, before
implementing such approaches, it is essential to address the quality of surface reflectance
measurements to improve intercomparability. Ensuring consistency in reflectance data
through ground-based validation and addressing differences in radiometric calibration or
acquisition protocols will provide a robust foundation for effective integration.

While the RedEdge-M sensor outperformed PlanetScope in terms of model accuracy
and variability detection, it is important to note that both sensors still have limitations in
their ability to perfectly predict fCover across all treatments. Factors such as environmental
variability, differences in nutrient uptake efficiency, and potential sensor-specific biases may
have contributed to the observed discrepancies. For example, the RedEdge-M model, while
effective in detecting general variability, may still face challenges in capturing extreme
treatment responses due to spectral limitations.
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4.4. Harvest Components Models from Remote Sensing

The significant differences in yield components and quality parameters between
fertilizing treatments reflect the expected effect of nutrient availability on crop growth
and development. The high yields observed in plots treated with P(MAP) + N(Urea) and
P(STR + C) + N(Urea) highlight the effectiveness of these fertilization strategies. The
increase in protein content and hectoliter weight in response to N fertilization is consistent
with known physiological responses in wheat, where late season N availability supports
protein synthesis and improves grain quality. Interestingly, the unfertilized control had
the highest starch content, suggesting that limited nitrogen availability may promote
starch accumulation in grain, a finding consistent with previous studies on carbohydrate
partitioning under nutrient-limited conditions [83,84].

The moderate performance of the PlanetScope model (R2 from 0.49 to 0.56) suggests
that while it can capture general trends in crop growth and yield, it may struggle to detect
the finer-scale variability induced by different fertilization strategies due to its coarser
spatial resolution. This limitation may affect its sensitivity to small-scale variations in crop
cover and biomass often present in field trials. However, the model’s ability to predict
starch content (R2 = 0.56) and hectoliter weight (R2 = 0.51) demonstrates its potential
for monitoring broad trends in crop quality, particularly over large-scale farms. These
results highlight PlanetScope’s value in leveraging high temporal resolution for identi-
fying critical phenological stages, especially during rapid growth phases after fertilizer
application, where predictions were strongest. For instance, starch content predictions
effectively captured accumulation patterns driven by nitrogen application, while hectoliter
weight predictions reflected the role of early-season phosphorus and nitrogen fertiliza-
tion in maintaining grain density. These findings underscore the utility of PlanetScope
in addressing the study’s hypothesis, particularly, in enhancing precision and sustain-
ability in crop management. In contrast, the poor performance of the MicaSense model
(R2 < 0.30) suggests that its spatial resolution and spectral sensitivity were insufficient to
detect meaningful relationships between the experimental treatments and crop outcomes.
The MicaSense sensor appeared to discriminate between the control and fertilized plots but
was unable to detect the more subtle differences between different fertilization strategies.
This limitation could be due to a combination of factors, including the sensor’s reduced abil-
ity to capture variability, the problems of calibration, and its sensitivity to environmental
conditions, that could interfere with accurate fCover retrievals.

Overall, while PlanetScope provided moderate predictions of yield components and
crop quality, the MicaSense model was not effective in this context. The higher spatial
resolution of MicaSense, which may be an advantage in other scenarios, did not translate
into better prediction accuracy for yield components in this experiment. Nevertheless,
in this experiment, the PlanetScope satellite constellation provides useful information
for assessing the phenological development of winter wheat and yield retrieval at the
plot scale.

5. Conclusions

This study demonstrates the critical role of integrating satellite and UAV remote
sensing with sustainable fertilization strategies in optimizing winter wheat management
under Mediterranean conditions. Fertilization had a significant impact on yield and quality,
with P(MAP) + N(Urea) yielding 8618 kg ha−1, outperforming other treatments. Organic-
mineral fertilizers (OMFs) like P(STR + C)+N(Urea) showed performances comparable
to those of inorganic options, reinforcing their potential as sustainable alternatives in
high-yield agriculture while reducing environmental impacts.

The PlanetScope and MicaSense models showed mixed results in monitoring both
fCover and yield components. PlanetScope performed reasonably well in predicting fCover
(R2 = 0.68), making it a valuable tool for capturing broad trends in crop cover across
large-scale farms. However, its coarser spatial resolution limited its ability to detect the
finer-scale variability induced by different fertilizer treatments. In contrast, the MicaSense
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sensor, with its higher spatial resolution, performed better in retrieving fCover (R2 = 0.82),
demonstrating its potential for capturing more detailed vegetation cover changes.

When it came to predicting yield components and grain quality, including protein
content, starch, and hectoliter weight, PlanetScope showed moderate correlations, with
R2 values ranging from 0.49 to 0.56, indicating its utility for the large-scale agricultural
monitoring of broad trends in crop growth and quality. Specifically, it captured starch con-
tent with an R2 of 0.56 and hectoliter weight with an R2 of 0.51. In contrast, the MicaSense
model struggled in this area, with R2 values below 0.35 for yield and other crop quality
metrics, suggesting its limitations for small plot analysis in this context. These findings
emphasize the strengths of PlanetScope for broader-scale agricultural monitoring while
highlighting the need for the further refinement of remote sensing tools like MicaSense to
better capture crop-specific outcomes.

These findings underscore the importance of selecting the appropriate remote sensing
tool based on the scale of analysis and precision requirements. While PlanetScope is proving
effective for monitoring broad patterns at the field scale, integration with higher resolution
sensors such as MicaSense or the use of advanced modelling techniques could improve
prediction accuracy. This integration could improve the precision of treatment evaluation,
leading to more informed agronomic decisions and promoting sustainable practices.

In the context of broader agronomy, the results highlight the potential of integrating
organic-mineral fertilizers into modern agricultural systems to balance productivity and
sustainability. These strategies align with global sustainability goals, such as those outlined
in the EU’s Farm to Fork initiative, which emphasizes reducing agriculture’s environmental
footprint while maintaining food security. Future research should focus on further refining
data fusion approaches and developing tools to address discrepancies in monitoring crop
components across varying spatial and temporal scales.
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