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Abstract: Rapid urbanization can change local climate by increasing land surface temperature
(LST), particularly in metropolitan regions. This study uses two decades of remote sensing data
to investigate how urbanization-induced changes in land use/land cover (LULC) affect LST in the
Beijing Region, China. By focusing on the key issue of LST and its contributing variables through
buffer zones, we determined how variables influence LST across buffer zones—core, transit, and
suburban areas. This approach is crucial for identifying and prioritizing key variables in each zone,
enabling targeted, zone-specific measures that can more effectively mitigate LST rise. The main
driving variables for the Beijing Region were determined, and the spatial-temporal relationship
between LST and driving variables was investigated using a geographically weighted regression
(GWR) model. The results demonstrate that the Beijing Region’s LST climbed from 2002 to 2022,
with increases of 0.904, 0.768, and 0.248 ◦C in core, transit, and suburban areas, respectively. The
study found that human-induced variables contributed significantly to the increase in LST across core
and transit areas. Meanwhile, natural variables in suburban areas predominated and contributed to
stabilizing local climates and cooling. Over two decades and in all buffer zones, GWR models slightly
outperformed ordinary least squares (OLS) models, suggesting that the LST is highly influenced by
its local geographical location, incorporating natural and human-induced variables. The results of
this study have substantial implications for designing methods to mitigate LST across the three buffer
zones in the Beijing Region.

Keywords: urbanization; land surface temperature; buffer zones; human-induced

1. Introduction

The combined impacts of global warming and urbanization considerably worsen
the rises in LST. Both of these interrelated processes have a considerable impact on the
natural world, particularly in metropolitan regions [1]. Increasing global warming and
growing urbanization are raising LST and changing local climates, potentially exacerbating
the effects and rendering metropolitan regions obsolete [2]. Gao et al. [3] utilized urban
functional zones to investigate the connection between urban morphology, landscape com-
position, and LST. They employed local climate zones (LCZ) to reorganize metropolitan
areas and offered planning solutions to reduce local warming. The global population
is quickly growing. More than 50% of the global population resides in urban areas [4].
Urbanization has a substantial impact on microclimatic oscillations in major European
cities, including Berlin, Poznań, Paris, and London, resulting in higher LST [5–8]. This
rise in LST caused by urbanization has been connected with alterations to metropolitan

Remote Sens. 2024, 16, 4502. https://doi.org/10.3390/rs16234502 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs16234502
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-5822-5072
https://orcid.org/0000-0003-1908-5940
https://orcid.org/0000-0001-6871-8199
https://doi.org/10.3390/rs16234502
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs16234502?type=check_update&version=1


Remote Sens. 2024, 16, 4502 2 of 23

morphology [9]. Metropolitan morphological features, especially land surface cover dis-
parities, have been connected with surface temperature, implying that they have a higher
influence on changing the climate [10]. Increased coverage by impermeable surfaces, such
as buildings and roads, leads to higher LST in urban areas by reducing evapotranspiration
and heat retention. According to the study, every 10% increase in impermeable surface
density can result in an LST rise to 0.14 ◦C [8].

Rapid urbanization in Asia and Africa provides substantial social, economic, and
environmental issues [11,12]. It causes major changes in land use and cover, influencing
the regional and local environment, specifically land surface temperature, with research
showing a clear correlation between expanding urban areas and increasing LST [13–15].
Numerous studies have used remote sensing techniques to investigate the impact of land
use and land cover changes on LST. Fu and Weng [16] investigated the effects of LULC
changes on LST in Pune City, India. Similarly, Imran and Mehmood [17] studied and
investigated the major factors of the metropolitan climate in Lahore, Pakistan, to model
and predict LST caused by changes in LULC. Remote sensing techniques have been used to
determine changes in LULC and seasonal LST fluctuations in quickly expanding cities such
as Bangladesh using artificial intelligence algorithms [18]. Abou [19] assessed the effects of
LULC variations on LST over the Toshka Depression, Egypt, resulting from human-caused
lake drying. Furthermore, Halder et al. [20] utilized remote sensing and geospatial method-
ologies to monitor urban growth’s impact on urban heat islands in Kolkata, India, and
assess the impact of climate change on UHI using LST data. Gupta et al. [21] used spatial
metrics and satellite data to show how urbanization affects LST in Shimla and Dehradun,
two cities in India’s Western Himalayas. Furthermore, Sresto et al. [22] used GIS and remote
sensing techniques to determine the LULC indicators and surface temperature variations
in Bangladesh’s Dhaka district. Guo et al. [23] analyzed MODIS LST data from dry periods
in Lagos, Nigeria, to see how global climate change and localized urbanization influence
long-term urban LST changes. Kalyan and Pathak [24] conducted research in Gandhinagar,
Gujarat, assessing the impact of changes in LULC on LST utilizing Landsat imagery. The
change in LULC has also been connected with a significant increase in average LST, owing
to population growth and urban development [25–27]. Seun et al. [28] investigated the
possible influence of rising urbanization on LST in South-West Nigeria, and Moazzam
et al. [29] carried out a case study on Jeju Island, Republic of Korea, to assess the implica-
tions of urbanization upon Surface Urban Heat Islands and LST. Srikanth and Swain [30]
studied the effects of urbanization on LST changes in a semi-arid megacity (Hyderabad)
in India. Du et al. [31] investigated the patterns and drivers of LST and urbanization in
Zhengzhou, China, and recommended that PLAND be prioritized in urban development.
Chao et al. [32] discovered that urbanization considerably increased LST in Hong Kong,
Macao, and Guangdong, but the rise in regional greenness mitigated urbanization-induced
warming impacts on air surface temperature. Wang et al. [33] investigated the effects of
urbanization on LST and air temperature in China, finding that urbanization contributed
more to LST than air temperatures, particularly during the daytime. The urban develop-
ment of China has brought about a mean LST rise of 0.68 ◦C, with greater increase rates
seen in rapidly growing urban regions such as the Yellow and Yangtze River basins [34].
Chengdu’s urbanization has considerably increased mean LST by about 10 degrees Celsius
throughout the summer [35]. Urban growth, which increases impervious land surface
area, has resulted in a substantial rise in LST, exacerbating the effects of global warming in
metropolitan regions [36–38].
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Numerous studies emphasize the significance of ecologically conscious urban devel-
opment, which strikes a balance between sustainability and growth concerns to reduce
adverse climate effects [39,40]. These studies consistently show that urbanization amplifies
LST through LULC change and provides measures to reduce its impacts. Beijing’s spatial
heterogeneity has a considerable impact on the LST distribution, as population density,
land use patterns, vegetation cover, and urbanization levels vary across places. While
some places promote urban growth, others emphasize tree planting and greening activities,
resulting in varied patterns in LST. To account for this spatial variability, we used buffer
zones to investigate the spatial distribution and heterogeneity of LST in the metropolis.
This technique contrasts with earlier research, which largely examined city-wide trends
in LST increases. In contrast, our research tries to delve into the spatial details, offering
a more concentrated view of the city’s LST dynamics. Furthermore, looking at Beijing’s
approach to regulating LST through urban planning will help us to better comprehend
sustainable urban development and guide megacities’ LST mitigation methods.

The goal of this study is to assess whether urban expansion in core (downtown)
areas, particularly in large cities like Beijing, is balanced by compensating measures such
as reforestation in suburban areas, aiming to mitigate LST changes at the local level in
response to global warming. Our findings indicate that compensating measures have
been undertaken within the research area. However, since global warming is a worldwide
challenge, a unified response from all cities and countries is essential. Effective climate
change mitigation requires collaborative and coordinated efforts to develop solutions that
protect the environment and promote sustainable futures.

Our study employs both global modeling (OLS) and local modeling (GWR) to ex-
plore whether the relationship between the dependent variable (LST) and independent
variables (natural and human variables) varies across geographic space, indicating spatial
homogeneity or heterogeneity. By focusing on the key issue of LST and its contributing
variables through buffer zones, we determined how variables influence LST across buffer
zones—core, transit, and suburban areas. This approach is crucial for identifying and
prioritizing key variables in each zone, enabling targeted, zone-specific measures that can
more effectively mitigate LST rise.

1.1. Beijing’s Metropolitan

Beijing is located in Northern China, at 39.43–41.05◦N and 115.42–117.50◦E (Figure 1).
It experiences a warm monsoon climate and four distinct seasons, including cold and
windy winters and hot and humid summers. Over the last 40 years, the average annual
temperature has been 11 ◦C [36]. A vast semicircular mountainous cove encircles the
so-called Beijing Plain, which has an average elevation of approximately 40 m and receives
an average yearly precipitation of 600–700 mm [41].

Beijing, with a city history of over 3000 years and a capital history of over 800 years,
is modern China’s capital and the country’s cultural and political hub. Beijing, China’s
political, cultural, and international communication center, has grown modestly since
1949. This expansion increased following the economic changes of 1978. It has since seen
substantial growth in population, economic expansion, and landscape change. The growing
scope of Beijing’s urban area has attracted significant attention [42–47]. Between 1949 and
2022, Beijing’s population grew significantly. In 2002, the population was 14.23 million,
and by 2022, it had grown to around 21.84 million. This rapid expansion has been fueled
by urbanization, economic development, and migration [48].
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1.2. Urbanization Levels

According to the Eleventh Five-Year Plan, Beijing is divided into four functional zones:
the Core Functional Zone (Core zone, 94 km2, 0.57%), the Urban Functional Extended Zone
(Extended Zone, 1289 km2, 7.77%), the New Urban Development Zone (NewDev-Zone,
6322 km2, 38.12%), and the Ecological Conservation Zone (Eco-Zone, 8880 km2, 53.54%).
The Core Zone is used to develop political and cultural distinctions, the Extended Zone and
the NewDev Zone focus on the development of commerce and manufacturing, respectively,
and the EcoZone serves as a green ecological barrier and provides protection for water
sources [49].

Zhang et al. [42] used ArcGIS 10.0 to create eight directional fans of land expansion
radiating from the city center of Beijing. Buffer zones were created and overlayed with
directional polygons. This analysis compares urban expansion in different directions and
buffer zones across time. Beijing’s urbanization hot zones were found to be within the
10 km to 20 km ranges.

Our buffer zone division, guided by Beijing’s Eleventh Five-Year Plan, Beijing town
boundaries, and Zhang’s study, resulted in three distinct zones. For simplicity, the down-
town boundary (core area) was approximated as a circular area with a 20 km radius. The
transit area was defined as approximately within a range of 21–40 km, while the suburban
area extended beyond 40 km, using proximity-based approximations. The buffer zone
method was used to investigate the variation in urban-rural gradient and its connection to
LST in more detail [50]. Using buffer zones allows for a more detailed investigation of LST
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variations in newly developed urban areas and older urbanized regions [34]. This buffer
zone technique helps policymakers target crucial places for mitigation and adaptation
strategies, improving urban development efforts to reduce heat stress [13].

2. Materials and Methods
2.1. Datasets

We built our datasets according to the various literature reviews, availability of data,
detecting multicollinearity, and categorizing determinants into theme groups to analyze
their impact on the LST (Table 1). The dominant determinants affecting LST changes can be
categorized into natural and human-induced variables [51].

Table 1. Datasets and sources.

Datasets Time Spatial Resolution Sources

LST (K)

2002–2022

1000 M NASA Earth Data (MOD11A1.006)Emissivity 1000 M
AOD 1000 M NASA Earth Data (MCD19A2 v061)

Sensible heat flux 0.25 deg NASA Earth Data (GLDAS_NOAH025)
NDVI 500 M NASA Earth Data (MOD13A1 V6)

NDBI, NDWI 500 M NASA Earth Data (MOD09GA)
Precipitation 0.1 deg NASA Earth Data (GPM_3IMERGDL v06)

Albedo 500 M NASA Earth Data (MCD43A1)
Nighttime light 30, 15 arcsec Earth Observation Group (DMSP-OLS and VIIRS)

Population 2002–2020 30 arcsec Worldpop.

Land cover indices are critical for understanding the LST of urban processes. Nu-
merous indices, including the Normalized Difference Built-up Index (NDBI), Normalized
Difference Water Index (NDWI), and Normalized Difference Vegetation Index (NDVI),
serve as indicators of built-up areas, water presence, and vegetation, respectively [52], and
population density and nighttime light both have a substantial impact on LST [53]. Further-
more, climate variables such as Surface Emissivity, Aerosol Optical Depth (AOD), Sensible
Heat Flux, surface albedo, and precipitation are critical in understanding how heat reten-
tion and atmospheric conditions affect LST distribution in metropolitan areas [37,54,55].
Natural variables include land use indices (NDVI and NDWI), which reflect natural deter-
minants and climate variables, whereas NDBI, population density, and nighttime light are
human-induced variables.

2.1.1. Land Surface Temperature

This study used data from NASA Earth Data, a global platform that contains satellite
observations from a variety of remote sensing missions and devices. The Terra and Aqua
satellites use MODIS data to measure land surface temperature, indices of vegetation,
and other environmental parameters. MOD11A1.061 Terra Land Surface Temperature
and Emissivity Daily Global 1 km mean are annual products that we chose to cover the
Beijing Region from 2002 to 2022 to investigate the effects of urban-induced land use
change on land surface temperature, as shown in Figure 2. NDBI and NDWI variables were
determined using Equations (2) and (3), respectively.

Several scientists used land surface temperature datasets from MODIS to assess the
surface energy balance and study land surface temperature spatiotemporally [56]. Ur-
banization and Land Surface Temperature Dynamics [34,36,51,57–63]. Preprocessing of
variables produced from MODIS datasets conducted using Equation (1):

Unit conversion of MOD11A1.061 data:

LST = DN × 0.02 − 273.15 (1)
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LST is the land surface temperature value (◦C) and DN is the pixel grayscale value (K)

NDBI = (SWIR − NIR)/(SWIR + NIR) (2)

NDWI = (NIR − SWIR)/(NIR + SWIR) (3)

where SWIR—Short-wave infrared (sur_refl_b06), NIR—Near-infrared (sur_refl_b02).
The aggregation method is important for addressing the mixed-pixel issue. Aggregat-

ing maps at set spatial resolutions improves data consistency and eliminates inconsistencies
resulting from mixed-pixel effects, hence increasing analytical reliability [64–67]. All
data were aggregated, and the newly developed grided data were standardized utilizing
Equation (4):

LST = (LSTi − µ)/σ (4)

where LSTi denotes total LST for the ith year, and σ and µ are the standard deviation
and mean of the LST dataset, respectively. All the additional independent variables were
standardized using the same methodologies.
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2.1.2. Land Cover Data

The European Space Agency (ESA) Climate Change Initiative (CCI) provided land
cover/use thematic map products from 1992 to 2022. Annual CCI-LC products with
a spatial resolution of 300 m have been widely used as compelling data in LC-related
investigations [68]. This dataset contains 22 global LC categories and uses the Food and
Agricultural Organization of the United Nations land cover classification system [69]. The
area proportion of forest loss and land cover transitions was calculated using the ESA CCI
Land Cover datasets [70]. The study uses ESA CCI-LC records to investigate land-use
intensity variations within and outside protected areas [71]. We then retrieved LULC from
ESA for the Beijing Region in 2002, 2012, and 2022, as shown in Figure 3.
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2.2. Methods

Among the global models, we have chosen the Ordinary Least Squares (OLS) model,
as well as the local model Geographically Weighted Regression (GWR), due to their in-
terpretability and ability to provide direct coefficients. A combination of OLS and GWR
models was used across three buffer zones (core, transit, and suburban areas). The study
conducted a multitemporal analysis encompassing 2002, 2012, and 2022, thereby providing
a better understanding of changes.

In OLS, important indicators consist of t-statistics and p-values for evaluating coeffi-
cient significance, Variance Inflation Factor (VIF) for determining multicollinearity (with
VIF > 7.5, shows high level), Akaike Information Criterion (AIC) to measure model quality,
and R-squared (R2) to demonstrate the proportion of variance that the model explains. Ad-
justed R-squared simplifies this by taking into account the total number of predictors, which
makes it useful for assessing models with several variables. The independent variables
connected to the dependent variable were calculated using Equation (4).

Yi = ao + akXk
i + e (5)

where “Y” is the dependent variable, LST; k—variables, i—sample, ao is the intercept; αk is
the coefficients; and e is the error/residuals.

GWR computes coefficients at each point, revealing how the direction and strength
of variable impacts vary with space. The mean coefficient in GWR, a summary measure,
represents the average impact of each independent variable across every location. The GWR
equation for calculating independent variables and the dependent variable is given (6):

Yi = aio(ui, vi) +
n

∑
k=1

aik(ui , vi

)
∗ Xk

i + ∈i (6)

where (ui, vi) symbolizes the coordinates, i—sample, k—variable, aik (ui, vi) is the regression
coefficient of each variable at point i, aio (ui, vi) is a constant term, and ∈i is the random
error term at point i. n is the number of independent variables.
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The R-squared and modified R-squared values of both models have been compared
to determine the relative importance of the variables that are independent in generating
LST changes.

3. Results
3.1. Overall Changes in Spatiotemporal LULC Across the Entire Period

For a better understanding of the LULC change, Table 2 and Figure 3 show the area
coverage and changes, respectively. The results enable us to determine the extent to which
area of change in LULC has occurred for each sort of LULC class during the last 20 years.

Table 2. Land use area coverage.

Land Use Classes LULC 2002 LULC 2012 LULC 2022

Area (km2) Area (%) Area (km2) Area (%) Area (km2) Area (%)
Agriculture 6529.23 39.77 5933.42 36.14 5400.72 32.90

Bare area 0.91 0.01 0.34 0.002 0.64 0.004
Forest 5663.06 34.49 5690.53 34.66 5993.02 36.50

Grassland 2095.99 12.77 1920.80 11.70 1717.67 10.46
Sparse veg. 0.33 0.002 0.33 0.002 0.36 0.002

Urban 2008.09 12.23 2757.88 16.80 3156.28 19.23
Water 117.60 0.72 111.81 0.68 146.57 0.89

Wetland 2.18 0.013 2.28 0.014 2.14 0.013
Total 16,417.40 100.00 16,417.40 100.00 16,417.40 100.00

Urban areas changed the most, rising by 1148.19 km2 (57.18%), thereby adding 19.225%
to its entire area in 2002, as indicated in Tables 3 and 4. This area was largely converted
from agricultural and grassland types of land use, and was rarely converted into other
land-use types. Over the past two decades, agricultural land decreased by 1128.51 km2

(17.284%), while grassland decreased by 378.33 km2, being mostly converted to urban areas.
The fast expansion of urban areas in the Beijing Region can be attributed to the region’s
quickly growing population, migration to urban areas, and the resulting infrastructure and
institutional development.

Over the last two decades, forest area has expanded by 329.95 km2 (5.826%). Expand-
ing forest coverage regulates surface areas through evapotranspiration, shade, and raising
albedo while decreasing urban heat-retaining, thereby moderating the rise in LST. In the
entire study period, sparse vegetation and waterbody had a modest area of modification,
as shown in Table 2 and Figure A2, compared to its 2002 area.

Table 3. Land use change.

Land Use Classes Change (2002–2012) Change (2012–2022) Change (2002–2022)

Area (km2) % Change Area (km2) % Change Area (km2) % Change
Agriculture −595.81 −9.13 −532.70 −8.98 −1128.51 −17.28

Bare area −0.58 −62.90 0.30 88.29 −0.28 −30.15
Forest 27.47 0.49 302.48 5.32 329.95 5.83

Grassland −175.19 −8.36 −203.13 −10.58 −378.33 −18.05
Sparse veg. 0.00 0.00 0.03 10.04 0.03 10.04

Urban 749.79 37.34 398.40 14.45 1148.19 57.18
Water −5.79 −4.92 34.76 31.09 28.97 24.64

Wetland 0.10 4.67 −0.14 −6.29 −0.04 −1.92

Table 4. Land use transformation (areas, in Km2).

LU
LC

20
02

Land Use Classes LULC 2022

Agriculture Bare area Forest Grassland Sparse veg. Urban Water Wetland
Agriculture 5286.82 0.149 151.90 88.93 0.04 988.12 29.50 0.08

Bare area 0.11 0.80
Forest 31.67 5555.59 72.49 1.50 2.33

Grassland 77.35 0.46 284.92 1553.88 175.81 3.42
Sparse veg. 0.01 0.32

Urban 0.85 0.02 0.05 1.87 1989.27 0.15
Water 4.00 0.53 0.47 0.98 111.09 0.58

Wetland 0.02 0.03 0.03 0.52 0.08 1.48
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3.2. Temporal Change in LST Across LULC Types

The study found significant variations in land surface temperatures in Beijing between
2002 and 2022 across various land use classes. Urbanization drove the greatest increase, with
bare areas along the time scale. Wetlands, forests, grassland, water, and agricultural land
saw a considerable increase, as shown in Table 5 and Figure A3. Urban areas have higher
temperatures due to impervious surfaces, industrial activities, and expansion of infrastructures,
whereas bare areas have high temperatures due to minimal vegetation cover.

Table 5. The LST of different land use categories.

Land Use Types Mean LST (◦C), 2002 Mean LST (◦C), 2012 Mean LST (◦C), 2022 Change (2002–2022)

Agriculture 19.929 19.439 20.580 0.652
Bare area 20.145 20.544 20.961 0.816

Forest 16.295 16.592 16.581 0.286
Grassland 17.635 17.196 17.947 0.312
Sparse veg 16.598 16.760 17.287 0.690

Urban 21.370 21.603 22.274 0.904
Water 14.276 13.711 14.575 0.299

Wetland 18.056 17.380 18.267 0.211

On a time scale, forests’ LST values show the lowest records throughout the study
period. This result is best explained by forests’ ability to decrease the amount of heat
retained by the surface of the earth via transpiration. Expanding urban forests can serve as
a natural climatic solution for mitigating the LST.

The LST values for the classifications of water bodies and wetlands increased over
time. The environment around densely urbanized areas can elevate LST in nearby water
bodies and wetland areas. Overall, the LST increased significantly across all LULC types.

3.3. Spatial-Temporal Variance in LST and LULC Changes Across Buffer Zones

The buffer area method was employed for separating the areas based on distance into
three zones. The primary goal of using the buffer area method is to discover the variables
that influence LST in the three zones.

The core area, due to its fast urbanization, which has a significant influence on impervi-
ous surfaces, suffered the biggest increase in LST (Table 6 and Figure A4). The proliferation
of impermeable surfaces, such as asphalt and concrete, caused by urban growth has re-
sulted in higher LST. This is demonstrated by a significant increase in LST in metropolitan
areas, which rose by 0.904 ◦C between 2002 and 2022.

The transit area, too, experienced a 0.768 ◦C increase in LST between 2002 and 2022,
owing to the substantial transition of agricultural and grassland areas to urban land. Forests,
which had a modest (16.097 km2) increase, have played a key role in buffering the impact
of urbanization on LST. Forest cover grew, showing the cooling influence of forest areas
relative to the core area. Table 6 and Figure A4 show that initiatives to restore and conserve
forests can help decrease the LST impact of urbanization.

The suburban areas saw a slight LST increase of 0.248 ◦C (Table 6 and Figure A4) owing
to a more balanced development pattern, with urban growth mitigated by increases in forest
cover. The suburban area, which had less urbanization, benefited from increased forest
cover, and this helped to mitigate the rise in LST. This demonstrates that protecting and
developing forest areas in suburban areas is a potential approach to reducing the warming
impacts caused by urbanization. Difference in LST across buffer zones proves the need for
spatially focused land use alternatives that account for each region’s unique characteristics.

Table 6. Land use and LST change in buffer zones (areas, in Km2).

Land Use Classes Year Core Area Transit Area Sub Urban Area

Urban

2002 1030.40 697.72 279.98
2012 1108.85 1161.36 487.57
2022 1135.37 1384.49 633.92

change
2002–2022 104.97 686.77 353.94
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Table 6. Cont.

Land Use Classes Year Core Area Transit Area Sub Urban Area

Agriculture

2002 153.30 2317.68 4058.26
2012 113.20 1931.92 3888.30
2022 93.62 1720.68 3586.42

change
2002–2022 −59.68 −597.00 −471.84

Grassland

2002 63.16 263.05 1769.79
2012 25.29 187.05 1708.46
2022 18.23 157.71 1541.73

change
2002–2022 −44.93 −105.34 −228.06

Forest

2002 7.04 290.22 5365.62
2012 6.80 289.41 5394.32
2022 7.22 306.32 5679.29

change
2002–2022 0.18 16.10 313.67

Bare area

2002 0.914
2012 0.339
2022 0.643

change
2002–2022 0 −0.271

Sparse Veg

2002 0.330
2012 0.330
2022 0.363

change
2002–2022 0.033

Water

2002 2.551 6.479 108.57
2012 2.488 6.451 102.87
2022 2.378 6.335 137.86

change
2002–2022 −0.173 −0.144 29.29

Wetland

2002 1.049 1.121
2012 0.579 1.702
2022 0.585 1.553

change
2002–2022 0 −0.464 0.432

Mean LST, (◦C)

2002 21.537 17.616 17.616
2007 21.962 17.646 17.646
2012 20.467 20.600 17.679
2017 20.557 20.956 17.835
2022 22.441 21.235 17.863

change
2002–2022 0.904 0.768 0.248

3.4. Performance Determines the Driving Variables for LST in the Buffer Zones

Complete statistics include OLS and GWR summaries as well as model diagnos-
tics for 2002, 2012, and 2022 over three buffer zones (core, transit, and suburban areas).
These provide a range of statistics, including coefficients, t-statistics, probabilities, VIFs
(Tables A1–A3), and R-squared values, which are essential for evaluating the interactions
between variables over time. The study employed OLS and GWR to investigate the connec-
tion between LST and variables in three buffer zones in 2002, 2012, and 2022.

The OLS regression findings across all buffer zones demonstrated comparable model
behavior; overall values for R-squared ranged from 0.708 to 0.821 (Table 7). The Koenker’s
(BP) statistic was found to be insignificant (p > 0.01) for the entire period and buffer zones,
indicating that the model is consistent. Similarly, the Jarque–Bera statistic was calculated
and shown to be statistically insignificant (p > 0.01) throughout all scenarios, implying that
residuals have a Gaussian distribution. The values of the VIF of the auxiliary variables have
been calculated employing a threshold smaller than 7.5 (Tables A1–A3), demonstrating
no multicollinearity among the auxiliary variables. The coefficients of NDBI, nighttime
light, population, precipitation, and sensible heat flux were all positively related, whereas
NDVI and NDWI were inversely related to LST. However, surface albedo and surface
emissivity were positively related in the core and transit areas but negatively correlated in
the suburban area. The computed coefficients in the OLS model show that increasing all
variables in the study area enables the increasing intensity of LST. Conversely, NDVI and
NDWI can reduce and mitigate LST.
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Table 7. OLS Diagnostics: Model Variables.

Performance Indicators 2002 2012 2022

Core Transit Suburban Core Transit Suburban Core Transit Suburban
AICc [d]: 5315.32 5251.867 9170.650 8984.047 7844.015 6951.490 4999.604 5557.587 4831.840

Multiple R-Squared [d]: 0.709 0.732 0.721 0.708 0.803 0.812 0.709 0.818 0.821
Adjusted R-Squared [d]: 0.708 0.731 0.720 0.707 0.802 0.811 0.708 0.817 0.820

Global Moran’s I: 0.707 0.659 0.565 0.751 0.645 0.486 0.709 0.626 0.392
Joint F-Statistic [e]: 929.616 669.572 257.381 1027.806 1151.875 885.656 652.537 1017.371 713.363

Joint Wald Statistic [e]: 8028.359 4135.984 1923.575 6609.348 8671.371 9514.314 5255.040 7171.393 6102.421
Koenker (BP) Statistic [f]: 369.102 236.751 493.996 426.881 250.110 67.783 126.081 131.173 147.663
Jarque–Bera Statistic [g]: 246.842 380.982 741.799 113.628 126.883 121.214 71.335 135.857 145.782

[d] Akaike’s Information Criterion (AICc) and R-squared measures model fit and performance. [e] If the
Koenker (BP) Statistic [f] is statistically significant, utilize the Wald Statistic to evaluate overall model sig-
nificance. [f] Koenker (BP): A statistically significant test (p < 0.01) indicates that the hypothesized relationships
are inconsistent. [g] Jarque–Bera A statistically significant test (p < 0.01) indicates that model predictions are
biased (residues are not regularly distributed).

GWR (Table 8) indicated variation in the spatial distribution in the LST relationships.
The GWR model’s lower AICc, higher R-squared, and adjusted R-squared, as well as the
Moran’s I of StdResid approaches zero compared to the OLS model results, show that it
can better describe the spatial connection among LST and its impacting variables than
the global OLS model. GWR’s ability to account for local variations, mainly those driven
by rapid urbanization or land use changes, improved between 2002 and 2022. The GWR
model’s lower AICc, higher R-squared, and adjusted R-squared values indicate a better fit
and improve comprehension of variable interactions across geographical areas [72–75].

Despite the OLS model, the geographical distributions of local R2 for the GWR models
demonstrated regional differentiation, with the highest indication representing the predic-
tive power for LST in the core and transit areas over two decades (Figure 4). Higher R2

values were seen in core and transit zones, where the correlation between rising LST and
impacting variables was well established. This shows that both increased and diminished
impacting variables are the principal drivers of LST changes. Between 2002 and 2022,
the Northeast part of Beijing’s suburban areas gradually developed, and these variables
had a significant impact on the LST, resulting in more power and consistency over the
two decades. This improved match shows that the variables driving LST change are now
easier to identify. The model performance in Beijing’s southeast is somewhat below average,
which could indicate that new causes or environmental factors have impacted this area.

Table 8. GWR Diagnostics: Model Variables.

Performance Indicators 2002 2012 2022

Core Transit Suburban Core Transit Suburban Core Transit Suburban
Bandwidth: 2957.0 2466.0 275.0 1974.0 2837.0 2060.0 2684.0 2254.0 1098.0

Residual squares: 1028.92 1193.58 3186.05 2017.82 2604.06 3450.65 996.35 1506.20 1919.85
ENP: 20.01 19.51 224.42 58.60 19.32 19.53 19.69 20.59 35.20
AICc: 5314.68 5251.28 7789.53 8981.70 7842.69 6950.90 4999.60 5556.75 4833.22

R-squared: 0.721 0.764 0.789 0.733 0.824 0.843 0.761 0.850 0.840
Adjusted R-squared: 0.709 0.731 0.767 0.719 0.812 0.831 0.759 0.838 0.826

Global Moran’s I: 0.359 0.341 0.254 0.225 0.323 0.241 0.273 0.269 0.231

ENP denotes the Effective Number of Parameters.
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3.5. Evaluation of Significant Variables Influencing LST

Table 9 and Figure A1 indicate the spatiotemporal distribution and relationship of
latent and observed variables’ mean coefficients and LST using GWR model results from
2002 to 2022.

Table 9. GWR summary—mean coefficient of independent variables.

2002 2012 2022

Core Transit Suburban Core Transit Suburban Core Transit Suburban

Factors Mean
Coef.

Mean
Coef.

Mean
Coef.

Mean
Coef.

Mean
Coef.

Mean
Coef.

Mean
Coef.

Mean
Coef.

Mean
Coef.

Intercept: 93.31 71.05 5.99 32.63 43.32 6.10 61.92 50.27 7.46
NDBI: 24.42 18.60 16.07 26.58 18.94 14.96 27.75 24.65 11.43
NDVI: −14.11 −11.03 −8.58 −14.53 −14.03 −7.17 −16.32 −13.05 −4.82
NDWI −13.57 −10.03 −8.40 −15.14 −11.62 −11.79 −16.94 −10.07 −7.65

Nighttime light: 0.39 0.31 0.06 0.81 0.48 0.04 0.95 0.46 0.08
Population: 0.09 0.06 0.001 0.09 0.01 0.01 0.11 0.08 0.02

Precipitation: 0.98 0.35 1.13 0.57 0.48 3.14 0.61 1.49 3.71
Sensible heat flux: 0.04 0.01 0.03 0.08 0.03 0.02 0.39 0.14 0.004

Surface albedo: 0.06 0.34 −0.58 0.03 0.23 −0.35 0.01 0.07 −0.67
AOD: 0.12 0.09 0.03 0.82 0.06 0.003 0.03 0.04 0.60

Surface emissivity: 4.61 2.94 −5.83 6.52 3.91 −9.287 6.87 3.12 −11.21

The mean coefficient of NDVI declined from −14.11 (2002) to −16.32 (2022) in the
core and −11.03 (2002) to −13.05 (2022) in transit areas (Table 9 and Figure A1), indicating
lesser vegetation density, whereas higher values in suburban areas imply more forest
cover. This distribution demonstrates that areas with low NDVI correspond to higher
LST because artificial impermeable surfaces absorb more heat. Conversely, places with
higher NDVI have lower LST due to the cooling effect of vegetation. The mean coefficient
values of surface emissivity were higher in core and transit areas, resulting in increased
heat retention and radiation, intensifying LST. The increased frequency of impermeable
surfaces, combined with high emissivity, is expected to contribute to heat accumulation in
core and transit zones, resulting in considerable LST variations.

The temporal and spatial distribution of AOD over the last two decades indicates a
lowering trend of mean coefficient, 0.12 (2002) to 0.03 (2022) and 0.09 (2002) to 0.04 (2022),
in Beijing’s core and transit zones, respectively, but a minor rise, 0.03 (2002) to 0.60 (2022),
in suburban areas, as shown in Table 9 and Figure A1. This decrease in AOD in the core
and transit areas is mostly due to the relocating of heavy and polluting companies to less
densely populated nearby regions, specifically Hebei Province and Tianjin, as part of the
Air Pollution Prevention and Control Action Plan (2013–2017). In contrast, suburban areas
have seen a minor increase in AOD, most likely due to pollution blowing in from adjacent
places such as Hebei and Tianjin, where pollutants from heavy and polluting companies
can be transported into Beijing by regional wind patterns, thereby affecting the LST.

The NDWI mean coefficient trend has been increasing in suburban areas over the last
two decades (Table 9 and Figure A1), indicating slight water and soil moisture conservation,
while Beijing’s core and transit areas have decreased, pointing out that urbanization’s
influence on vegetation and water retention has reduced surface moisture content and
contributed to an increase in LST. The mean coefficient of surface albedo has increased in
suburban areas, indicating a favorable shift toward more reflecting surfaces, potentially
due to a rise in forest cover or land-use modifications. In contrast, the minor decrease in
albedo in the southeast areas of Beijing’s core and transit areas could indicate ongoing
urbanization and contribute to LST rises. Precipitation shows positive coefficient values
throughout the last two decades. The mean positive coefficient values of precipitation
are associated with increased LST in core and transit areas due to impermeable surfaces,
limiting efficient cooling through soil moisture, evapotranspiration, and water absorption.

The mean coefficient of sensible heat flux increases dramatically in the core and transit
area, from 0.04 (2012) to 0.39 (2022) and 0.01 (2002) to 0.14 (2022), respectively, as shown in
Table 9 and Figure A1. Impervious surfaces in core and transit areas absorb and hold heat,
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slowly releasing it and increasing LST. In contrast, the low mean coefficient in a suburban
region shows that permeable surfaces and forest cover are more effective at LST dissipation.

Human-induced variables, as shown in Table 9 and Figure A1, such as population
density, NTL, and NDBI, have a positive connection with LST in the core and transit areas
but a lower positive coefficient correlation in suburban areas. The population’s mean
coefficient values increased from 0.09 (2002) to 0.11 (2022) and 0.06 (2002) to 0.08 (2022),
as indicated in Table 9 and Figure A1, over two decades in the core and transit areas,
demonstrating an increasing concentration of people. Still, a decreasing mean coefficient
was observed in the suburban areas, showing that there might be a migration of people from
the suburban to core areas. This increased population density increases energy demand in
the form of more air conditioners, vehicles, and buildings, which directly elevates LST. The
concentration of people and activity in core and transit regions aggravates these effects,
especially during peak energy demand days. From 2002 to 2022, the mean coefficient of
nighttime light and its spatial distribution in core and transit areas rose as a result of energy
consumption and artificial lighting, contributing to the LST trend. Suburban areas have
smaller facilities and fewer people, resulting in lower nighttime light. The increase in
nighttime light and population density over the last two decades coincides with the rapid
growth of the NDBI, indicating increasing urbanization.

4. Discussion

This analysis combines two decades of remote sensing data and a buffer zone tech-
nique to demonstrate how the potential driving variables in core-transit-suburban areas
influence LST patterns. The key driving variables were identified, and the spatial-temporal
relationship between LST and driving variables was investigated using a spatial regression
model, as shown in Table 9 and Figure A1.

The core area, which is characterized by dense urbanization, experienced the great-
est LST increase during the research period, with a 0.904 ◦C rise from 2002 to 2022
(Table 6). Human-induced variables like NDBI, population density, and nighttime light
mostly cause this large warming. The positive mean coefficient between NDBI and LST
(Table 9 and Figure A1) emphasizes the importance of built-up density in enhancing heat
absorption. The removal of vegetation with impervious surfaces inhibits natural cooling
mechanisms, exacerbating the LST impact. Increased nighttime light represents increased
human-induced activity, which contributes to LST through energy use. Furthermore, pop-
ulation development in the core area raises energy consumption, vehicle emissions, and
heat-generating activities, worsening LST. Hence, the human-induced variables intensified
heat accumulation in the core area. Natural variables also play a role; low NDVI, surface
albedo, surface emissivity, and NDWI imply a loss of vegetation and water bodies, re-
ducing evapotranspiration and heat mitigation capabilities. Furthermore, high sensible
heat flux values in urban surfaces increase the absorption of heat, which accelerates the
warming trend. These studies highlight the significant role of urbanization in driving LST
in the core area, which is consistent with current worries about the development of LST
due to the rapid development of urban areas. The findings demonstrate a large increase
in LST values in metropolitan areas as the natural landscape transitions to impermeable
surfaces [76,77]. According to Gupta and Aithal [78], by 2050, Asia and Africa will account
for approximately 90% of global urbanization, resulting in major temperature increases.

The transit area, which serves as the divide across the core and suburban areas,
experienced a moderate LST rise of 0.768 ◦C (Table 6) during the research period. Urban
development spillover plays a crucial role here, as the rise of urban communities boosts
built-up areas while demonstrating less density than in the core. Modest NDBI and
nighttime light values indicate this change (Table 9 and Figure A1), showing expanding
urban outskirts and localized warming impacts. Population density and sensible heat
flux in this area also add to higher heat outputs and lead to a rise in LST. In regard to
natural variable aspects, NDVI, surface albedo, and NDWI values indicate the existence of
fractured agricultural areas and areas that have vegetation cover, which give certain cooling
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benefits. Nevertheless, continuous development in the transit zone gradually eliminates
these ecological buffers. These variations illustrate the twin stresses of human-induced and
natural variable changes in the transit zone, which interact with rising manmade pressures.
Studies show that urbanization has led to a rise in the world’s average LST by 0.26–0.34 ◦C
every decade [79].

The suburban areas, with their smallest LST rise of 0.248 ◦C (Table 6), take advantage
of their natural surroundings but are nevertheless subject to growing problems. Natural
variables take prominence here, with greater NDVI, surface albedo, and NDWI values
contributing to lower LST via increased evapotranspiration and soil moisture, allowing
natural ecosystems to maintain thermal balance. However, continued urban expansion and
agricultural and grasslands being diminished (Table 6) are gradually lessening the natural
cooling impacts. Precipitation variability, together with rising aerosol optical depth (AOD),
affects regional cooling and warming patterns, as shown in Figure A1. Aerosols could
encourage the development of clouds, but they also retain heat in the atmosphere, adding
to regional warming. Rising LST in the core and transit areas, if not managed properly,
will continue to have an impact on suburban areas, leading to local climatic instability and
global warming. Forest area coverage shows increasing trends in Table 6 due to the Beijing
Plain Area Afforestation Programme (BPAP), which was launched in 2012 to help reduce
LST through increased forest cover, which cools the land via evapotranspiration, shade,
and reduced heat absorption by soil and building surfaces [80]. Several experts stated
that green spaces in urban development can help reduce heat absorption and promote
ecologically sustainable land use [17,81].

Through the findings of spatial regression analysis, we determined that the combined
influence of human-induced and natural variables had a considerable impact on the LST
throughout the core, transit, and suburban areas. A comparison of the OLS and GWR
models revealed that GWR performed better at representing the geographical variability
of these variables. Furthermore, Moran’s I statistics for residuals showed that the GWR
model had less spatial autocorrelation than the OLS model, indicating that it was better
suited to dealing with localized changes (Tables 7 and 8). Employing GWR, we created a
spatiotemporal distribution of the human-induced and natural variables, revealing the key
variables influencing LST across each buffer zone (Figure A1).

We found that Beijing has adopted an afforestation policy to mitigate and balance LST
caused by urbanization in urban areas by reforestation in mountainous areas (suburban
areas). From 2002 to 2022, LST climbed dramatically in the core (0.904 ◦C) and transit
areas (0.768 ◦C), whereas suburban areas experienced a more modest rise of 0.248 ◦C. The
transit area (686.77 km2) experienced the most urbanization, followed by the suburban
area (353.94 km2) and the core (104.97 km2). Forest coverage increased significantly in the
suburban area, reaching 313.76 km2, compared to 16.10 km2 in the transit area and 0.18 km2

in the core area (Table 6). This indicates how afforestation in mountainous suburban areas
has alleviated some of the urbanization-induced LST consequences observed in other ar-
eas. According to this conclusion, the local government has established an afforestation
policy, but it has not been adequate to entirely alleviate the rise in LST. Two key strategies
should be considered to mitigate the LST effects. The first is implementing widespread tree-
planting initiatives in suburban areas to enhance green cover and contribute to temperature
regulation. The second involves adopting cooling measures directly within the core (down-
town) areas. We have incorporated the following special recommendations based on our
suggestions to address these strategies comprehensively: First, cooling methods should be
employed to form buffer zones around the metropolitan core and transit areas. Furthermore,
to limit heat absorption and radiation, the use of low-emissivity materials in construction
and reflective pavements should be encouraged. Developing green belts in suburban areas
can assist in absorbing heat from urban cores. Finally, encouraging suburban-to-core water
redistribution can help with cooling efforts and improve climate comfort.
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5. Conclusions

Beijing Region was chosen as a key case study to investigate how urbanization-induced
changes in LULC affect LST. Focusing on the primary issue of LST and its contributing vari-
ables helps us to understand how variables influence LST throughout buffer zones—core,
transit, and suburban. This technique is crucial for identifying and prioritizing essential
variables in each zone, enabling more targeted efforts to reduce LST rise. The findings are
as follows:

The buffer zone approach results demonstrate that the Beijing Region’s LST climbed
from 2002 to 2022, with increases of 0.904, 0.768, and 0.248 ◦C in core, transit, and suburban
areas, respectively. The study shows that human-induced variables, such as NDBI, popula-
tion density, and nighttime light, have significantly increased energy demand, resulting
in more LST from air conditioners, vehicles, buildings, and artificial lighting in core and
transit areas. In contrast, suburban areas have experienced slower growth due to less
construction and forest cover preservation. Natural variables in suburban areas, such
as NDVI, NDWI, emissivity, precipitation, and surface albedo, dominated and helped to
reduce LST by regulating regional temperatures and increasing surface moisture content
and evapotranspiration, thereby mitigating the warming effects of urbanization. In con-
trast, suburban areas have observed a slight increase in AOD, probably due to pollution
blowing in from nearby regions, where pollutants from heavy and polluting industries can
be brought into Beijing by regional wind patterns.

The spatiotemporal distribution of the human-induced and natural variables and
their relationship with the LST, conducted based on the global (OLS) and local (GWR)
models, could effectively detect the potential driving effects of the variables. The study’s
findings propose numerous solutions for improving LST in the three buffer zones, such as
cooling methods, use of low-emissivity materials, developing green belts, and encouraging
suburban-to-core area water redistribution.

Overall, this study illustrates how human-induced and natural variables affect LST in
three buffer zones. Further research linking the findings of this study to the reasons for LST
changes will be extremely beneficial in understanding and foreseeing future sustainable
urban development and eco-friendly infrastructures in mitigating rising LST.
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Table A1. OLS summary—coefficient, t-statistics, probability, robust_SE, and VIF of 2002.

Variable Coefficient [a] t-Statistic Probability [b] Robust_SE VIF [c]

Core Transit Suburban Core Transit Suburban Core Transit Suburban Core Transit Suburban Core Transit Suburban

Intercept 93.536 49.854 21.760 30.619 11.399 5.421 0.000000 * 0.0695 0.000000 * 3.7690 5.5142 0.9856 ----- ----- ------
Surface Albedo 2.045 0.076 −0.020 8.371 2.816 −2.101 0.000000 * 0.000000 * 0.035765 * 0.067 0.045 0.011 3.182 3.495 3.237

AOD 1.879 0.942 0.143 9.201 14.033 8.428 0.000000 * 0.000000 * 0.000000 * 0.101 0.791 0.688 3.361 3.136 3.137
Emissivity 41.99 27.01 −0.089 36.258 6.927 −6.359 0.000000 * 0.000000 * 0.000000 * 14.280 23.475 0.063 2.331 2.777 3.207

NDBI 18.662 16.150 8.490 27.73 19.689 4.858 0.000000 * 0.000000 * 0.000002 * 0.806 0.905 2.568 1.871 1.910 1.963
NDVI −22.866 −10.863 −8.527 −21.240 −15.17 −1.196 0.000000 * 0.000000 * 0.000000 * 0.483 0.672 1.619 3.723 3.024 3.282
NDWI −16.106 −15.922 −11.693 −22.421 −13.45 −10.81 0.000000 * 0.000000 * 0.000000 * 0.801 1.021 2.360 3.001 4.557 3.161

Nighttime light 0.411 0.297 0.054 3.482 2.977 1.633 0.000000 * 0.000000 * 0.000000 * 0.293 0.152 0.075 2.507 3.344 2.130
Population 0.020 0.080 0.025 4.822 2.104 0.259 0.000000 * 0.000000 * 0.001149 * 0.102 0.070 0.008 1.742 1.394 1.566

Precipitation 1.136 0.318 0.051 4.958 1.612 3.716 0.00021 * 0.1071 0.0002 * 0.225 0.178 0.034 2.132 2.709 1.195
sensible heat flux 0.038 0.039 0.021 8.718 4.078 2.135 0.000000 * 0.000000 * 0.032883 * 0.008 0.005 0.011 3.939 3.851 2.534

* A sign next to a number represents a statistically significant p-value (p < 0.01). [a] The coefficient indicates the intensity and type of association between the dependent variable and
each explanatory variable. [b] Probability and Robust Probability (Robust_Pr): An asterisk (*) indicates a statistically significant coefficient (p < 0.01). [c] Variance Inflation Factor (VIF):
Values greater than 7.5 imply duplication in explanatory variables.

Table A2. OLS summary—coefficient, t-statistics, probability, robust_SE, and VIF of 2012.

Variable Coefficient [a] t-Statistic Probability [b] Robust_SE VIF [c]

Core Transit Suburban Core Transit Suburban Core Transit Suburban Core Transit Suburban Core Transit Suburban

Intercept 37.160 42.638 4.436 18.469 11.387 0.407 0.000000 * 0.000000 * 0.683916 2.185 3.980 12.960 ------ ------ --------
Surface Albedo 2.009 0.596 −0.342 41.152 12.477 −5.510 0.000000 * 0.000000 * 0.000000 * 0.055 0.054 0.071 3.560 3.356 2.926

AOD 0.011 0.011 0.026 19.356 12.949 35.651 0.000000 * 0.000000 * 0.000000 * 0.001 0.001 0.001 2.232 3.924 3.582
Emissivity 16.875 11.314 −9.809 27.216 7.540 −1.373 0.000000 * 0.000000 * 0.169987 7.522 16.808 52.948 2.322 1.764 1.394

NDBI 27.176 18.867 15.020 32.061 14.619 11.727 0.000000 * 0.000000 * 0.000000 * 0.626 1.115 1.458 2.667 2.164 1.744
NDVI −7.215 −14.529 −13.886 −21.317 −18.688 −12.033 0.000000 * 0.000000 * 0.000000 * 0.378 0.577 0.926 3.131 3.993 3.551
NDWI −17.003 −7.422 −11.858 −24.251 −7.685 −10.996 0.000000 * 0.000000 * 0.000000 * 0.777 1.039 1.905 3.667 3.567 2.682

Nighttime light 0.118 0.022 0.039 7.529 0.764 1.391 0.000000 * 0.000000 * 0.164358 0.168 0.037 0.025 1.907 1.548 2.040
Population 0.090 0.010 0.020 6.322 1.703 0.044 0.000000 * 0.088761 0.964687 0.101 0.104 0.003 1.814 1.309 1.730

Precipitation 2.988 0.459 0.552 18.531 3.583 3.476 0.000000 * 0.000360 * 0.000534 * 0.146 0.116 0.162 2.616 1.802 1.733
sensible heat flux 0.738 0.252 0.222 15.687 5.619 2.815 0.000000 * 0.000000 * 0.4928 * 0.520 0.491 0.915 3.480 3.260 1.604

* A sign next to a number represents a statistically significant p-value (p < 0.01). [a] The coefficient indicates the intensity and type of association between the dependent variable and
each explanatory variable. [b] Probability and Robust Probability (Robust_Pr): An asterisk (*) indicates a statistically significant coefficient (p < 0.01). [c] Variance Inflation Factor (VIF):
Values greater than 7.5 imply duplication in explanatory variables.

Table A3. OLS summary—coefficient, t-statistics, probability, robust_SE, and VIF of 2022.

Variable Coefficient [a] t-Statistic Probability [b] Robust_SE VIF [c]

Core Transit Suburban Core Transit Suburban Core Transit Suburban Core Transit Suburban Core Transit Suburban

Intercept 62.490 50.044 5.148 27.074 14.154 0.481 0.000000 * 0.000000 * 0.630452 2.252 3.714 12.407 ------ ------ ------
Surface Albedo 1.469 0.665 −0.426 18.998 12.963 −7.840 0.000000 * 0.000000 * 0.000000 * 0.079 0.056 0.062 2.543 3.007 2.568

AOD 0.601 0.287 0.043 5.150 22.727 41.182 0.000001 * 0.000000 * 0.000000 * 0.001 0.128 0.118 2.442 3.613 3.017
Emissivity 22.07 15.57 −6.890 33.306 11.315 −1.561 0.000000 * 0.000000 * 0.118689 8.093 15.492 50.077 2.279 1.676 1.396

NDBI 29.606 14.741 11.350 35.114 18.413 11.952 0.000000 * 0.000000 * 0.000001 * 0.675 1.065 1.657 2.537 2.617 1.436
NDVI −6.654 −11.483 −8.656 −19.779 −14.78 −13.893 0.000000 * 0.000000 * 0.000001 * 0.391 0.477 1.095 3.012 4.174 3.462
NDWI −8.361 −6.861 −6.358 −11.058 −9.691 −1.384 0.000000 * 0.000000 * 0.000001 * 0.659 0.966 1.250 2.571 4.941 2.386

Nighttime light 0.731 0.508 0.460 6.174 2.312 0.592 0.000000 * 0.020865 * 0.553736 0.001 0.003 0.013 1.893 1.980 1.679
Population 0.011 0.030 0.012 9.580 2.544 0.441 0.000000 * 0.068401 * 0.659558 0.000 0.040 0.030 1.716 1.360 1.446

Precipitation 0.708 1.495 −0.004 5.132 3.436 0.030 0.000001 * 0.000000 * 0.976285 0.140 0.100 0.138 3.510 3.187 1.925
sensible heat flux 0.038 0.005 −0.034 8.261 1.275 0.197 0.000000 * 0.000034 * 0.202559 0.005 0.004 0.009 3.743 3.608 1.670

* A sign next to a number represents a statistically significant p-value (p < 0.01). [a] The coefficient indicates the intensity and type of association between the dependent variable and
each explanatory variable. [b] Probability and Robust Probability (Robust_Pr): An asterisk (*) indicates a statistically significant coefficient (p < 0.01). [c] Variance Inflation Factor (VIF):
Values greater than 7.5 imply duplication in explanatory variables.
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