

  remotesensing-16-04556




remotesensing-16-04556







Remote Sens. 2024, 16(23), 4556; doi:10.3390/rs16234556




Article



SSOD-QCTR: Semi-Supervised Query Consistent Transformer for Optical Remote Sensing Image Object Detection



Xinyu Ma 1, Pengyuan Lv 1,* and Xunqiang Gong 2





1



School of Information Engineering, Ningxia University, Yinchuan 750021, China






2



Key Laboratory of Mine Environmental Monitoring and Improving around Poyang Lake of Ministry of Natural Resources, East China University of Technology, Nanchang 330013, China









*



Correspondence: lpydtc@nxu.edu.cn







Citation: Ma, X.; Lv, P.; Gong, X. SSOD-QCTR: Semi-Supervised Query Consistent Transformer for Optical Remote Sensing Image Object Detection. Remote Sens. 2024, 16, 4556. https://doi.org/10.3390/rs16234556



Academic Editor: Pedro Melo-Pinto



Received: 7 October 2024 / Revised: 28 November 2024 / Accepted: 3 December 2024 / Published: 5 December 2024



Abstract

:

This paper proposes a semi-supervised query consistent transformer for optical remote sensing image object detection (SSOD-QCTR). A detection transformer (DETR)-like model is adopted as the basic network, and it follows the teacher–student training scheme. The proposed method makes three major contributions. Firstly, to consider the problem of inaccurate pseudo-labels generated in the initial training epochs, a dynamic geometry-aware-based intersection over union (DGAIoU) loss function is proposed to dynamically update the weight coefficients according to the quality of the pseudo-labels in the current epoch. Secondly, we propose an improved focal (IF) loss function, which deals with the category imbalance problem by decreasing the category probability coefficients of the major categories. Thirdly, to solve the problem of uncertain correspondence between the output of the teacher and student models caused by the random initialization of the object queries, a query consistency (QC)-based loss function is proposed to introduce a consistency constraint of the outputs of the two models by taking the same regions of interest extracted from the pseudo-labels as the input object query. Extensive exploratory experiments on two publicly available datasets, DIOR and HRRSD, demonstrated that SSOD-QCTR outperforms the related methods, achieving a mAP of 65.28% and 81.73% for the DIOR and HRRSD datasets, respectively.
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1. Introduction


Over the past decades, deep-learning methods have achieved robust and accurate object detection performances in various scenarios. Specifically, convolutional neural network (CNN)-based detectors [1,2,3,4,5,6] have acquired inspiring results in natural scenes due to their good representation capabilities. Many variants of CNN-based detectors have also been studied in remote sensing scenarios [7,8,9]. However, CNNs have the inherent limitation imposed by the convolution operations when exploring global interaction of the objects. To consider the above-mentioned problems, transformer models [10,11,12] have been gradually researched, which are based on a self-attention mechanism to capture the non-local, long-range dependencies of the objects.



With the development of Earth observation technology, more and more remote sensing data resources can be acquired. However, it is still a tough task to label sufficient samples for the training of a network manually. Therefore, semi-supervised object detection (SSOD) has attracted more attention. Unlike fully supervised object detection methods that require a large amount of labeled data to learn the distribution of the training set, SSOD combines the labeled data with unlabeled data in the training phase, in order to expand the training set and help the model better explore the data distribution. Most of the mainstream SSOD methods in remote sensing are based on CNN models [13,14,15,16,17], and it is still challenging to apply transformer-based SSOD for optical remote sensing images, because of the following problems: (1) in the initial training epochs, the pseudo-labels in the initial epochs are usually of low quality, which brings limitations in correctly updating the weight coefficients of the regression loss according to the confidence of the pseudo-labels in the current epoch; (2) remote sensing datasets typically suffer from a category imbalance problem, which is exacerbated when dividing datasets; and (3) the object queries used to represent the type and location information are randomly initialized during each training epoch, which means that there is an uncertain correspondence between the output of the teacher and student models, making it difficult to constrain the model with consistency regularization.



In this paper, in order to address the above-mentioned problems, semi-supervised query consistent transformer for optical remote sensing image object detection (SSOD-QCTR) for optical remote sensing images is proposed. The major contributions are as follows:




	(1)

	
A semi-supervised transformer-based remote sensing image object detection method is proposed, which addresses the inconsistency problem of the teacher and student branches for detection transformer (DETR)-like models in semi-supervised learning.




	(2)

	
An extra dynamic geometry-aware-based intersection over union (DGAIoU) loss in the regression loss is proposed to improve the quality of the generated pseudo-labels by introducing coefficients that are dynamically updated by an exponential moving average (EMA) according to the intersection over union (IoU) among the different epochs. This solves the problem of low quality pseudo-labels generated in the initial training steps.




	(3)

	
An improved focal (IF) loss in the classification loss is proposed to address the category imbalance problem by introducing the first-order polynomial of the focal loss Taylor expansion as a way of adjusting the coefficients of the focal loss, to adaptively reduce the weight of the majority class.




	(4)

	
Query consistency (QC)-based loss is proposed to constrain the query consistency of the outputs of the teacher and student models by calculating the two queries generated from the same input region in the image after strong and weak augmentation.










2. Related Work


2.1. Optical Remote Sensing Image Object Detection Methods


CNN-based object detection methods can acquire good results in optical remote sensing. There are two representative network architectures: the two-stage approach and the one-stage approach. The two-stage approach has been mainly explored and improved on the basis of Faster RCNN [13,14,15]. In [13], an additional multi-angle anchor box was introduced in the region proposal network (RPN) stage to deal with the problem of the variety of orientation of remote sensing objects. Ye et al. [14] proposed a filtering network, where the background is suppressed by a feature filtering module. In [15], decoupled multiple subtasks were introduced, and different detection heads were used to detect objects at different scales. Although the two-stage detectors can acquire a good performance, the speed is relatively slow due to the region proposal process. In order to construct a faster detector, more time-efficient, one-stage detectors [8,16,17] have been studied. Xia et al. [16] detected remote sensing image objects based on YOLOv2 and published the DOTA dataset. Liu et al. [17] improved the detection performance and considered the contextual information by designing a scene auxiliary detection head. Based on RetinaNet, a feature pyramid network was introduced to enhance the performance of the detector for multi-scale objects [8].



While the CNN-based methods have achieved remarkable results, the convolution operation constrains the receptive field, which limits the modeling of the long-range dependencies, especially in high-resolution optical data. As a result, researchers have begun to explore transformer-based object detection methods [18,19,20], which are end-to-end models based on the encoder–decoder transformer architecture. Ref. [18] considers the object detection task as a direct set prediction problem that does not require pre-defined region proposals, while maintaining a good detection accuracy. Ref. [19] introduces anchor box into DETR to provide positional prior information for queries and accelerate model convergence. In [20], the DINO-DETR is proposed, which utilized a mixed query selection strategy to optimize the quality of the initial queries and a look forward twice scheme to optimize the parameters in the early decoders using the subsequent layer information. Compared to CNNs, the transformer architecture has stronger global representation capabilities and can better handle complex backgrounds and long-distance dependencies. In [10], a fractional network between the encoder and the decoder was introduced for a deformable DETR framework to enhance the query information. Xue et al. [11] took into account both local and global contextual information by fusing the features extracted by a CNN and a transformer. In [21], a query-align module was designed to consider the objects’ local information by restricting the range of attention. The MashFormer detector [22] adds multi-scale information by introducing a multi-level feature aggregation module. Li et al. [23] introduced multi-scale split attention and multi-scale deformable prescreening attention mechanisms into the backbone network and decoder, respectively, to improve the detection results for small objects.




2.2. Semi-Supervised Object Detection


Currently, SSOD is mainly studied in the field of computer vision. In SSOD, pseudo-labeling-based and consistency-based regularization are the two commonly used semi-supervised learning approaches. The pseudo-labeling-based approach first trains the detection model with labeled data, then uses the trained model to predict labels on the unlabeled data, generating the pseudo-label. Then, the model is iteratively optimized based on the original labels and pseudo-labels under the purpose of expanding the training data. The consistency-based regularization approach improves the robustness of the model by introducing different levels of perturbation to the images to consider the consistency of the prediction results.



In pseudo-labeling-based SSOD work, Sohn et al. [24] proposed a framework for hard pseudo-labeling by using labeled data to train a teacher model that generates pseudo-labels for unlabeled data and filters them by a simple thresholding method. Interactive self-training with mean teachers (ISTM) [25] introduces a pseudo-label memory module, which uses non-maximum suppression (NMS) to fuse the detection results of different iterations to improve the quality of the pseudo-labels. It also uses two different structures of region of interest (RoI) headers to provide useful complementary information. Data-uncertainty-guided multi-phase learning [26] reduces the “fitting-to-noise” problem by learning simple samples first and then complex samples, and uses the average confidence of all the detected boxes for sorting the pseudo-labels to solve the degradation problem. Instant-teaching [27] introduces a co-rectify scheme that addresses the error accumulation effect of noisy pseudo-labels by using the two models to supervise each other. The unbiased teacher model [28] improves the quality of the initial pseudo-labels by introducing a burn-in phase with only supervised training in the early stage. The unbiased teacher v2 model [29] uses uncertainty predictions to screen the pseudo-labels for the regression branches. The soft teacher model [30] is based on an end-to-end SSOD method that uses the classification scores generated by the teacher model to adjust the contribution of the classification loss of unlabeled samples. The humble teacher model [31] combines region proposals and soft pseudo-labels in the training samples for the student branch. The active teacher model [32] enhances the pseudo-labels by selecting unlabeled samples to expand the labeled set during the training iteration process. Ambiguity-resistant semi-supervised learning (ARSL) [33] introduces joint-confidence estimation to reduce the ambiguity of the candidate by integrating the quality information of category and position. The calibrated teacher model [34] adaptively generates the appropriate pseudo-labels in training and introduces a focal IoU weight mechanism to reduce the negative impact of missing labeled objects. Dense learning (DSL) [35] improves the pseudo-labels by introducing the aggregation teacher model, and the fine-grained information is assigned to the pixels. The dense teacher model [36] replaces the instance-level labels with dense pixel-level labels to highlight the critical region information.



Among the consistency-based SSOD networks, the consistency-based semi-supervised learning method for object detection (CSD) [37] was proposed for both one-stage and two-stage cases. In the one-stage case, the consistency loss is computed based on the spatial location of the two objects. In the two-stage case, the same set of RoIs is generated for both images using the same RPN to calculate the consistency loss. The consistent teacher model [38] introduces a 3D feature alignment module to solve the inconsistency between the classification and localization tasks.





3. Methodology


3.1. Overall Framework


In the proposed approach, DINO-DETR [20] is used as the basic network, and the semi-supervised training strategy follows the teacher–student training paradigm. We abbreviate the process for such DETR-like models here as    M D   ( x )   :


   M D   ( x )  = Head  ( Decoder  Encoder ( Backbone ( x ) )  )   



(1)







The whole process of the proposed method is shown in Figure 1.



Firstly, the dataset is divided into labeled and unlabeled sets with different proportions. For a given set of labeled images,    I l  =   {  x j l  ,  y j l  }   j = 1   N l    , and unlabeled images,    I u  =    x  j  u    j = 1   N u    ,   N l   and   N u   represent the number of labeled and unlabeled samples, respectively. In the supervised part, the input to the student model is defined as   I l   for training, and the output  O  of this part of the student model is used with the ground truth (GT) for calculating the supervised loss,   L sup  :


   L sup  =  L  c l s    (  C O  ,  C GT  )  +  L  r e g    (  B O  ,  B GT  )   



(2)




where   L  c l s    represents the classification loss and   L  r e g    represents the regression loss, which consists of bounding box regression loss and center regression loss,   L  L 1   .   C O   and   C GT   represent the objects’ class information of the output and ground truth.   B O   and   B GT   represent the object’s position information for the output and ground truth.



For the unsupervised part, both a weak augmentation operation,    A w   ( · )   , and a strong augmentation operation,    A s   ( · )   , are performed on the unlabeled image,   I u  . The weakly augmented unlabeled image generates the pseudo-labels,   L p  , through the teacher model, and the strongly augmented unlabeled image generates the prediction result,  R , through the student model, where   L p   and  R  can be described as:


   L p  =  M  D  t   (  A w   (  I u  )  )   



(3)






  R =  M  D  s   (  A s   (  I u  )  )   



(4)







After this, the unsupervised loss,   L  u n s u p   , is computed by  R  with   L τ  , which is obtained by filtering   L p   with a confidence greater than the threshold,  τ , which is obtained by calculating the sum of the mean and variance of the total confidence.   L  u n s u p    can be computed by:


   L unsup  =  L  c l s    ( R ,  L τ  )  +  L  r e g    ( R ,  L τ  )   



(5)







See Section 3.3 for details of   L  c l s    and   L  r e g    for   L sup   and   L  u n s u p   .



For semi-supervised training of the proposed framework, the stage-wise hybrid matching strategy [39,40] is utilized, which divides the training into two phases. Firstly, the supervised and unsupervised losses are computed based on the one-to-many assignment strategy. In this phase, we introduce the DGAIoU loss as the regression part of the unsupervised and supervised loss functions to dynamically adjust the regression weights of the boxes according to the IoU between the ground-truth boxes and the detected anchor of the current period, to generate higher-quality pseudo-labels in the next period. Secondly, the supervised and unsupervised losses are computed based on the one-to-one assignment strategy. In this phase, in addition to applying the DGAIoU loss, an IF loss is proposed to adaptively reduce the weight of the majority class by introducing the first-order polynomial of the focal loss Taylor expansion as a way of adjusting the coefficients of the focal loss, which can moderate the class imbalance problem. Furthermore, in each phase, the QC loss is introduced as an extra consistency loss to constrain the consistency of the output queries of the teacher and student model by calculating the two queries generated from the same input region in the image after different augmentation. For parameter updating, the parameters of the student model are updated by backpropagation, and the parameters of the teacher model are updated by calculating the EMA of the student model.




3.2. Proposed Loss Functions of SSOD-QCTR


(1) DGAIoU Loss:



DGAIoU loss,   L  D G A I o U   , is proposed, which is actually a bounding box regression loss, based on two facts: (1) the original loss function using generalized IoU (GIoU) [41] for detection tasks cannot effectively take into account the geometrical factors, such as the center distance between the predicted box and the ground-truth boxes, which leads to inaccurate regression of the bounding box positions; and (2) the model produces pseudo-labels of various qualities in the different phases of the semi-supervised training, which causes error accumulation. To consider the above-mentioned problems, and inspired by [42], DGAIoU loss is proposed, which first takes into account the geometric information of the object by narrowing the gap between the position (represented as the center point, width, and height) of the predicted box and the ground-truth boxes. It then dynamically updates the coefficients of the loss according to the IoU value at each training epoch. Specifically, the proposed regression loss is as follows:


       L  D G A I o U   =        α   L  I o U   +     ρ 2   ( b ,  b gt  )    R 2    +     ρ 2   ( W ,  W  g t   )    R w 2    +     ρ 2   ( H ,  H  g t   )    R h 2         



(6)







The second term considers the distance of the center points of the predicted box and the true box. The third and the fourth terms consider the difference in the width and height of the predicted box and the true box. R,   R w  , and   R h   are the diagonal length, width, and height of the smallest outer rectangle of the union region of the prediction box and the ground-truth boxes.  b  and   b gt   represent the centroids of the prediction box and ground-truth boxes, respectively. W and   W t   represent the widths of the prediction box and ground-truth boxes. H and   H t   represent the heights of the prediction box and ground-truth boxes.    ρ 2   ( · )    means the Euclidean distance. The IoU loss,   L  I o U   , is computed in the same manner as that in [43].  α  is a parameter that is dynamically updated according to the IoU at the different epochs, so that the weights of the regression loss can be dynamically adapted in every training iteration:


  α =   β  δ  γ  β − δ      , β =    L  I o U    L ¯     



(7)




where  δ  and  γ  are hyperparameters and   L ¯   is dynamically updated by EMA.



(2) IF Loss:



For the training of the model, although the labeled set includes all categories as much as possible, the number of instances of each category in each image varies significantly. This unavoidably results in the problem of category imbalance in SSOD tasks. Therefore, the detection performance of the model is further improved by improving the classification loss of the supervised and unsupervised parts.



Inspired by [44], the IF loss,   L  I F   , is introduced, which introduces a negative perturbation to the first-order polynomial of the Taylor expansion of the traditional focal loss function to reduce the contribution of the majority class objects to the gradient. As the coefficient of this polynomial decreases, the contribution of the majority class objects to the loss gradient decreases, which makes the model pay more attention to the minor classes:


   L  I F   = −   ( 1 −  p t  )  λ  log  (  p t  )  − μ   ( 1 −  p t  )   λ + 1    



(8)




where   p t   is the predicted probability for the object’s category and  λ  and  μ  are hyperparameters.   L  I F    is only applied to the classification loss calculation after the one-to-one assignment of the model.



(3) QC Loss:



Considering the uncertain correspondence between the output of the teacher and student models, this makes it difficult to constrain the model with consistency regularization. In this paper, we propose the QC loss,   L  Q C   , which constrains the similarity of the output queries from the teacher and student models of the same image region:


   L  ϱ c   = MSE  ( log  (   Q ¯  t  + 1 )  , log  (   Q ¯  s  + 1 )  )   



(9)




where    Q ¯  t   and    Q ¯  s   represent the certain output query of the teacher and student models.   MSE ( · )   stands for mean square error function.



To acquire    Q ¯  t   and    Q ¯  s  , the specific process is shown in Figure 1. The unlabeled data are weakly augmented and fed into the teacher model to generate pseudo-labels, on the one hand, and strongly augmented and fed into the student model to generate predictions, R, on the other hand. The pseudo-labels,   L τ  , after initial selection are computed with  R  for the unsupervised loss.   L τ   and  R  are then used as inputs to an adaptive pseudo-label threshold filtering module (APTFM), which categorizes the pseudo-labels into reliable class, r, and unreliable class, u. The APTFM is used to optimize the pseudo-labels in the network training step. In fact, for each training iteration in the network training, the forward propagation generates the pseudo-labels, which are then optimized by the APTFM and used to supervise the next iteration of back propagation (BP). The parameters in the APTFM is estimated based on the expectation-maximization (EM) algorithm [45], which is independent from the BP process. A cost value, C, is designed to evaluate the reliability of the pseudo-labels:


  C =  λ 1   C  C l s    c ,  L τ c   +  λ 2   C  G l o U    b ,  L τ b   +  λ 3   C  L 1    b ,  L τ b    



(10)




where c and b represent the category and regression result of  R , respectively.   L τ c   and   L τ b   represent the category labels and anchor box labels of the pseudo-labels, respectively.



The distribution of the cost value, C, is then assumed to be a Gaussian mixture model (GMM);  θ  is the parameters of the GMM model, and the reliable and unreliable pseudo-labels can be categorized as follows:


  P  ( C ∣ θ )  =  W r   N r c   (  C r  ,  μ r  ,  σ r  )  +  W u   N u c   (  C u  ,  μ u  ,  σ u  )   



(11)







Equation (11) is optimized based on the EM algorithm, and the reliable pseudo-labels,   L  τ  ′  , can be acquired by:


   τ c  = arg m a x  P r   ( C ∣ c , θ )   



(12)






   L  τ  ′  =  L τ   ( C <  τ c  )   



(13)







After acquiring a certain number of reliable pseudo-labels,   L  τ  ′  , the cross-view query embeddings   CQ t   and   CQ s   are computed by RoIAlign [3]:


   CQ t  = MLP  RoIAlign (  BF t  ,  L τ ′  )   



(14)






   CQ s  = MLP  RoIAlign (  BF s  ,  L τ ′  )   



(15)




where    BF t  ,  L τ ′    and    BF s  ,  L τ ′    represent the backbone features of the teacher and student models.   MLP ( · )   is a multilayer perceptron operation.



Thereafter,   CQ t   and   CQ s   are used as input of the decoder to obtain two certain output queries,    Q ¯  t   and    Q ¯  s  , which are subsequently employed to compute   L  Q C   :


    Q ¯  t  = D e c o d e r  (  [  CQ s  ,  q t  ]  ,  EF t  | M )   



(16)






    Q ¯  s  = D e c o d e r  (  [  CQ t  ,  q s  ]  ,  EF t  | M )   



(17)




where   q ·   and   EF ·   represent the primary object query and encoded feature, respectively.    Q ¯  ·   represents the decoded features of the cross-view query. The subscripts t and s represent the teacher and the student, respectively.  M  is the mask of  EF .




3.3. Two-Stage Training Strategy


The entire training process of the proposed framework can be divided into two phases, and the losses in each phase include supervised loss, unsupervised loss, and consistency loss. In the first phase, the one-to-many assignment strategy is executed [4,46], and the total loss,   L  o 2 m   , in this stage is composed as follows:


   L  c l s   o 2 m   = ∣   v ^  pos  −  s pos   ∣ γ  B C E  (  s pos  ,   v ^  pos  )  +  s  neg  γ  B C E  (  s neg  , 0 )   



(18)






   L  r e g   o 2 m   =   v ^  pos   L  D G A I o U    (  b pos  ,   b ^  pos  )  +   v ^  pos   L  L 1    (  b pos  ,   b ^  pos  )   



(19)






   L  o 2 m   =  L  sup   o 2 m   +  ω u   L  u n sup   o 2 m   +  ω c   L  Q C    



(20)




where    v ^  pos   represents the positive sample, which is assigned to each pseudo-box with the maximum v value, and its calculation method refers to [4].   s  p o s    and   s  n e g    are the positive and negative category scores, respectively.   b  p o s    and    b ^  pos   represent the coordinates of the positive prediction boxes and the ground-truth boxes, respectively.   ω u   and   ω c   are the weights of the unsupervised loss and consistency loss, respectively. Both the supervised loss,   L  s u p   o 2 m   , and unsupervised loss,   L  u n s u p   o 2 m   , consist of classification loss,   L  c l s   o 2 m   , and regression loss,   L  r e g   o 2 m   .



In the second phase, the one-to-one assignment strategy is executed, and the total loss,   L  o 2 o   , of this phase can be derived as follows:


   L  c l s   o 2 o   =  L  I F    



(21)






   L  r e g   o 2 o   =  L  D G A I o U   +  L  L 1    



(22)






   L  o 2 o   =  L  sup   o 2 o   +  ω u   L  u n   sup   o 2 o   +  ω c   L  Q C    



(23)







Both the supervised loss,   L  s u p   o 2 m   , and unsupervised loss,   L  u n s u p   o 2 o   , consist of classification loss,   L  c l s   o 2 o   , and regression loss,   L  r e g   o 2 o   . Through this training approach, the potential high-quality positive suggestions also have the opportunity to be optimized, which not only enables the model to produce high-quality pseudo-labels after the first phase of training but also enables the application of an end-to-end NMS-free detector in the final phase.





4. Experiments


4.1. Datasets and Evaluation Metrics


The experiments were conducted on two large optical remote sensing datasets: DIOR [47] and HRRSD [48]. The DIOR dataset consists of a total of 23,463 images and 192,472 annotated instances. The training, validation, and test sets contain 5862, 5863, and 11,738 images, respectively. The size of each image is 800 × 800 and the resolution is 0.5–30 m. The HRRSD dataset contains 21,761 images and 55,740 annotated instances. The training, validation, and test sets contain 5401, 5417, and 10,913 images, respectively. The images vary in size, with a resolution of 0.15–1.2 m. As shown in Table 1 and Table 2, the two datasets exhibit varying degrees of category imbalance, and the instance number for some of the categories on the right is significantly less than on the left.



We combined the training and validation sets of the DIOR and HRRSD datasets as the new training set to acquire enough samples. We then randomly selected 1%, 2%, 5%, and 10% of the images as labeled data in the new training set, and the rest of the images were used as unlabeled data. We randomly selected the labeled data five times, where each dataset was divided into different scales. The evaluation metric used throughout the experiments was the mean and variance of the mean average precision (mAP) of the five different data folds at IoU = 0.5.




4.2. Implementation Details


We used a pre-trained ResNet-50 model [49] as the backbone network.  δ  and  γ  were set to 1.9 and 3, respectively.  λ  and  μ  were set to 2 and 1, respectively. We trained the SSOD-QCTR for 12 k iterations on four 24-GB memory NVIDIA GeForce RTX 3090 GPUs with four images per GPU. The experimental environment includes CUDA 11.2, Python 3.8, and Pytorch 1.10.1. The first phase, which had a one-to-many assignment, was set to 6 k iterations. In each training batch, the ratio of the labeled data and unlabeled data was 1:3. The weight for the unsupervised loss was set to 4.0. A confidence threshold of 0.2 was set for all the experiments. The AdamW optimizer [50] was used with a learning rate of 0.0001, without learning rate decay. A momentum of 0.9982 was used to update the teacher model with EMA. The data augmentation used for the student model and the teacher model followed [30], where the strong augmentations include scale jitter, brightness jitter, contrast jitter, sharpness jitter, and the weak augmentations include translation, rotate, and shift.




4.3. Experimental Results and Visualization on the DIOR Dataset


In this section, we describe how we compared SSOD-QCTR with some representative fully supervised detectors and semi-supervised frameworks on the DIOR dataset. For the fully supervised detectors, we chose the fully convolutional one-stage object detector (FCOS) [5], Faster R-CNN [6], and DINO [20] as representative methods. For the semi-supervised approaches, the unbiased teacher [28], soft teacher [30], active teacher [32], unbiased teacher v2 [29], and Semi-DETR [40] models were compared.



As shown in Table 3, compared to the supervised baseline, SSOD-QCTR far exceeds the supervised DINO method by 36.78%, 42.36%, 37.32%, and 30.56% in mAP with 1%, 2%, 5%, and 10% labeled samples, respectively. It can also be seen that the semi-supervised approach can significantly improve the detection performance, compared to the supervised methods, because the information in the unlabeled data is effectively used. Furthermore, compared to the other semi-supervised methods, SSOD-QCTR outperforms unbiased teacher v2, which is a one-stage semi-supervised method, by 12.53%, 16.79%, 13.64%, and 15.01% in mAP with 1%, 2%, 5%, and 10% labeled samples, respectively. The variance of SSOD-QCTR at 2%, 5%, and 10% samples is also lower than that of unbiased teacher v2, which indicates that the proposed method is more stable. For the DETR-like semi-supervised methods, SSOD-QCTR surpasses Semi-DETR by 2.22%, 1.40%, 1.60%, and 1.82% in mAP with 1%, 2%, 5%, and 10% labeled samples, respectively. For the variance of mAP, the performance of SSOD-QCTR reaches a lower value at the ratios of 2%, 5%, and 10%. For the two-stage semi-supervised methods, SSOD-QCTR outperforms unbiased teacher at 1%, 2%, 5%, and 10% ratios by 29.03%, 40.73%, 36.51%, and 30.27% in mAP, respectively, and lowers the variance at 2%, 5%, and 10% by 1.09%, 1.69%, and 0.15%, respectively. In addition, compared to the other two-stage semi-supervised methods—soft teacher and active teacher—SSOD-QCTR obtains a higher mAP at 1%, 2%, 5%, and 10% ratios, and lower variance, which further proves that SSOD-QCTR is more effective and more stable.



In addition, the detection accuracy of each model improves as the proportion of labeled samples increases under both supervised and semi-supervised conditions. For the supervised methods, the accuracy improves significantly when more labeled samples are involved. However, the accuracy did not exceed 50%, even under 10% labeled samples, which indicates the limitation of the supervised methods under small training samples. For the semi-supervised methods, such as the Semi-DETR and the proposed SSOD-QCTR, the performance under 1% samples is better than the supervised methods under 10% samples. The results show the potential of using unlabeled data. However the variance is not satisfying when labeled data are limited because the transformer-based models need more labeled data to acquire accurate initial pseudo-labels. And this problem is relieved when more labeled samples are involved.



The visual results on the DIOR dataset are shown in Figure 2. The detection boxes with mAP values indicate the predictions of each method, and those without mAP values are the ground-truth boxes. As shown in Figure 2, for the two-stage fully supervised method of Faster R-CNN, it is not able to detect the ships and expressway toll stations. For some of the detected vehicles, the gap between the detected box and the ground-truth boxes is large. For the airplanes, it can accomplish the detection task well, but there are a significant amount of false detections. For the one-stage fully supervised method of FCOS, it can detect the ship and vehicle objects but shows a large number of missed detections. It also has difficulty in performing the detection task when faced with expressway toll stations and airplane objects, where the background is complex. For the DETR-like fully supervised method of DINO, it is capable of detecting the ship and airplane objects but shows a large number of missed detections. It also performs poorly in detecting expressway toll stations and vehicle objects. The above problem for the supervised methods is mainly due to the insufficient training data. For the two-stage semi-supervised method of unbiased teacher, although it performs relatively well in detecting airplanes, it suffers from the problem of missed detection and overlaps when detecting ship and vehicle objects, and it fails to detect the expressway toll stations. Soft teacher is less effective in detecting ships and is also faced with the missed detection problem in detecting airplanes and vehicles. Active teacher is able to perform the task of detecting ships, airplanes, and vehicles well, but there are also some missed detections for these categories. For the one-stage semi-supervised method of unbiased teacher v2, compared with the previous methods, it is better able to accomplish the detection of ships, airplanes, and vehicles, but it is not able to improve the detection performance for expressway toll stations. For the DETR-like semi-supervised method of Semi-DETR, it shows a good performance in detecting ships, airplanes, and vehicles, but it also has the problem of missed detection in these categories, and also for expressway toll stations. Compared with the problems of the above methods, SSOD-QCTR can not only detect all the objects without false detections but the results also perfectly coincide with the ground-truth boxes. This proves that the DGAIoU loss can better learn the geometrical information of the ground-truth boxes, thereby improving the detection visualization of the model.



In addition, it improves the missed detection problem, especially in the expressway toll station category, which belongs to a minority category, according to Table 1. This shows that the IF loss can allow the model to better learn the information of minority categories. Overall, these results prove that the proposed method has significant advantages over the other methods and can better solve the problems existing in the semi-supervised framework of optical remote sensing images.



Figure 3 shows some visual results of the proposed method for different categories in the DIOR dataset. It can be seen from Figure 3 that the prediction box detected by SSOD-QCTR is highly consistent with the ground-truth boxes (where the red boxes are the prediction boxes and the blue boxes are the ground-truth boxes). The performance in each category is also of high quality. In particular, SSOD-QCTR is able to generate high-quality detection results for tennis court, basketball court, baseball field, ground track field, vehicle, airplane, overpass, train station, windmill, chimney, airport, storage tank, and ship, where the mAP is over 90%. Although the mAP scores for the bridge, dam, stadium, expressway service area, and expressway toll station categories are lower than 90%, the results show a superior visual effect.




4.4. Experimental Results and Visualization on the HRRSD Dataset


To verify the generalizability of SSOD-QCTR, we also performed experiments on the HRRSD dataset. As can be seen from Table 4, compared to the supervised baseline of DINO, SSOD-QCTR acquires higher mAP scores of 52.64%, 56.94%, 47.5%, and 34.45% with 1%, 2%, 5%, and 10% labeled samples, respectively. It can also be seen that SSOD-QCTR can significantly improve the detection performance when compared to the other supervised methods. Furthermore, compared to the other semi-supervised methods, SSOD-QCTR outperforms unbiased teacher v2 by 8.29%, 5.93%, 2.06%, and 2.96% in mAP with 1%, 2%, 5%, and 10% samples, respectively. The variance of SSOD-QCTR at 2%, 5%, and 10% is also lower than that of unbiased teacher v2, which indicates that the proposed method is more stable. For the DETR-like semi-supervised methods, SSOD-QCTR surpasses Semi-DETR by 2.26%, 2.46%, 1.80%, and 2.68% in mAP with 1%, 2%, 5%, and 10% labeled samples, respectively. For the variance of mAP, the performance of SSOD-QCTR reaches a lower value at 2%, 5%, and 10% ratio settings. For the two-stage semi-supervised methods, SSOD-QCTR is able to outperform unbiased teacher at 1%, 2%, 5%, and 10% ratios by 15.04%, 27.21%, 13.10%, and 5.40% in mAP, respectively, and shows a lower variance at 2%, 5%, and 10% by 0.57%, 0.78%, and 1.53%, respectively. In addition, compared to the other two-stage semi-supervised methods of soft teacher and active teacher, SSOD-QCTR obtains a higher mAP at 1%, 2%, 5%, and 10% ratios, and also lower variance.



The above results not only show the superiority of SSOD-QCTR over the semi-supervised methods but also prove that SSOD-QCTR can effectively improve the detection performance of the model by adding unlabeled data. Similar to the DIOR dataset, as shown in Figure 4, it can be seen that SSOD-QCTR obtains a better visual effect in the categories of airplane, storage tank, ship, ground track field, basketball court, and vehicle, which all have severe intra-class variance.



However, SSOD-QCTR still has some limitations in detecting the dense objects. As shown in Figure 5, for the dense objects such as the storage tanks, there appeared the problem of inaccurate detection boundaries because the objects are close to one another. More missed detections appear on vehicles such as the cars and ships because there are not clear boundaries between the targets and the background. When faced with the problem of shadows, as in the fourth image of the second row, the SSOD-QCTR also encounters some missed detections. In addition, in the condition of multiple categories, as shown in the first and second images of the second row, the missed detection problem also appeared. For example, the ports were not detected because the ports and ships are overlapped. The similarity of the objects and the background also brings some missed detections.




4.5. Ablation Study


In the ablation study, DINO was chosen as the baseline to validate the effectiveness of the proposed components. The ablation experiments were conducted on both datasets five times under 10% labeled samples, and the mean and variance of the mAP at an IoU of 0.5 were calculated.



As can be seen from Table 5, the detection performance of the model is improved to different degrees when the three losses are added separately. Specifically, when DGAIoU loss is added, the model shows an improvement of 0.66% and 0.75% in mAP on the DIOR and HRRSD datasets, respectively. Similarly, when IF loss is added, the model on the DIOR dataset shows an improvement of 0.86% in mAP while increasing the variance by 0.32%. On the HRRSD dataset, the model shows an improvement of 0.79% in mAP while decreasing the variance by 0.10%. We infer that this is due to the fact that the HRRSD dataset has a higher resolution than the DIOR dataset, thus providing more spatial information for the model to learn, and the model will therefore be more stable. When QC loss is added, although the model’s effectiveness on the two datasets shows only a slight improvement (0.40% and 0.45% in mAP on the DIOR and HRRSD datasets, respectively), it can enhance the stability of the model steadily (the variance is reduced by 0.07% and 0.26% on the DIOR and HRRSD datasets, respectively), which further demonstrates that the QC loss can improve the stability of the model. In addition, the model is also improved to varying degrees in various cases of the two-by-two combinations of the components, which fully demonstrates the effectiveness of the proposed methodology. The best detection performance, as well as stability, is achieved when all three losses are used.



In addition, the influence of APTFM is explored. As shown in Table 6, when the APTFM is not used in SSOD-QCTR, the accuracies reach 63.11% and 79.51% on the DIOR and HRRSD datasets, respectively. When the APTFM is added, the mAPs for the DIOR and HRRSD are 65.28% and 81.73%, which are 2.17% and 2.22% higher than the non-APTFM condition. This indicates that considering accurate object location is helpful for enhancing the consistency of the teacher and student models.



Finally, as shown in Table 7, the ablation study on the parameter  γ  in the DGAIoU loss is provided.  δ  is fixed as 1.9 according to [51]. For the DIOR dataset, the performance reaches the highest mAP value when  γ  is 3, which is 2.79% higher than the second place. For the HRRSD dataset, the mAP first increases and then decreases as  γ  is raised, and the best mAP is reached when  γ  is 3.





5. Conclusions


In this paper, an SSOD framework for optical remote sensing images has been proposed. On this basis, we proposed a dynamic geometry-aware-based intersection over union (DGAIoU) loss function, which dynamically updates the weight of the regression loss by the quality of the anchor box generated by the model in different periods, so as to generate pseudo-labels according to the anchor boxes with a higher quality to supervise the prediction results of the student model. In addition, to alleviate the inevitable category imbalance in the semi-supervised approach, IF loss was introduced. Finally, QC loss was proposed to use more effective information to learn semantic feature invariance and improve the robustness and stability of the framework. We conducted a large number of exploratory experiments and ablation experiments on two large optical remote sensing datasets—DIOR and HRRSD—to prove the potential of the proposed method. The proposed framework can be applied to scenarios where the data volume is large and the manual annotation cost is expensive, such as intelligent transportation and disaster events monitoring. There is still much room for exploration in the SSOD task of optical remote sensing images. Although the SSOD-QCTR improves the accuracy of SSOD-based methods, it still requires using the pseudo-labels in training, which will bring the problem of error accumulation. Therefore, it is helpful to study the SSOD without iterative training based on pseudo-labels. It is hoped that this work can provide a simple baseline and inspiration for future research.
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Figure 1. Pipeline of the proposed SSOD-QCTR. The weakly augmented unlabeled data are fed into the teacher model to acquire the pseudo-labels, and the strongly augmented data are sent into the student model to obtain predictions. The pseudo-labels after NMS are computed with predictions for unsupervised loss, which consists of DGAIoU loss and IF loss. Then, the adaptive pseudo-label threshold filtering module is used to further filter pseudo-labels for generating certain queries to compute QC loss. 
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Figure 2. The visualization result of various SOTA methods on the DIOR dataset, where boxes with no predicted scores after predicted category are ground truth. (a) Ground truth. (b) Faster R-CNN. (c) FCOS. (d) DINO. (e) Unbiased Teacher. (f) Soft Teacher. (g) Active Teacher. (h) Unbiased Teacher v2. (i) Semi-DETR. (j) SSOD-QCTR. 






Figure 2. The visualization result of various SOTA methods on the DIOR dataset, where boxes with no predicted scores after predicted category are ground truth. (a) Ground truth. (b) Faster R-CNN. (c) FCOS. (d) DINO. (e) Unbiased Teacher. (f) Soft Teacher. (g) Active Teacher. (h) Unbiased Teacher v2. (i) Semi-DETR. (j) SSOD-QCTR.



[image: Remotesensing 16 04556 g002a][image: Remotesensing 16 04556 g002b]







[image: Remotesensing 16 04556 g003] 





Figure 3. Visualization results of the proposed SSOD-QCTR on the DIOR dataset for various categories. The blue box in the figure is the GT and the red box is the model’s prediction box. 
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Figure 4. Visualization results of the proposed SSOD-QCTR on the HRRSD dataset for various categories. The blue box in the figure is the GT and the red box is the model’s prediction box. 
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Figure 5. Visualizations of some failure cases of the proposed SSOD-QCTR on the HRRSD dataset. 
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Table 1. Instance number of each category in the DIOR dataset.
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	Class
	Instance Number
	Class
	Instance Number





	Ship
	35,108
	Ground track field
	1880



	Vehicle
	26,655
	Overpass
	1778



	Storage tank
	23,361
	Expressway service area
	1085



	Airplane
	8212
	Chimney
	1032



	Tennis court
	7360
	Expressway toll station
	688



	Baseball field
	3433
	Stadium
	673



	Harbor
	3140
	Airport
	666



	Windmill
	2998
	Golf course
	575



	Bridge
	2604
	Dam
	537



	Basketball court
	2149
	Train station
	509










 





Table 2. Instance number of each category in the HRRSD dataset.
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	Class
	Instance Number
	Class
	Instance Number





	Crossroad
	2659
	Ground track field
	2281



	Parking lot
	2480
	Basketball court
	2249



	T juncti