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Abstract: Few-shot classification of polarimetric synthetic aperture radar (PolSAR) images is a
challenging task due to the scarcity of labeled data and the complex scattering properties of PolSAR
data. Traditional deep learning models often suffer from overfitting and catastrophic forgetting in
such settings. Recent advancements have explored innovative approaches, including data augmen-
tation, transfer learning, meta-learning, and multimodal fusion, to address these limitations. Data
augmentation methods enhance the diversity of training samples, with advanced techniques like
generative adversarial networks (GANs) generating realistic synthetic data that reflect PolSAR’s
polarimetric characteristics. Transfer learning leverages pre-trained models and domain adapta-
tion techniques to improve classification across diverse conditions with minimal labeled samples.
Meta-learning enhances model adaptability by learning generalizable representations from limited
data. Multimodal methods integrate complementary data sources, such as optical imagery, to enrich
feature representation. This survey provides a comprehensive review of these strategies, focusing on
their advantages, limitations, and potential applications in PolSAR classification. We also identify key
trends, such as the increasing role of hybrid models combining multiple paradigms and the growing
emphasis on explainability and domain-specific customization. By synthesizing SOTA approaches,
this survey offers insights into future directions for advancing few-shot PolSAR classification.

Keywords: polarimetric SAR; image classification; deep learning; few-shot learning; survey

1. Introduction

Deep learning and computer vision are used in various applications such as image
classification, object detection in industrial production, medical image analysis, action
recognition, and remote sensing [1–8]. PolSAR is an essential tool in remote sensing, offering
the ability to collect high-resolution images under all weather and lighting conditions.
PolSAR captures the backscattering characteristics of various objects through multiple
polarization channels, enabling applications across a range of sectors, including land cover
classification, vegetation monitoring, urban planning, and disaster management [9–13].
PolSAR image classification is a multilevel process that begins with extracting features
from images and progresses to classifying them into categories [14]. As shown in Figure 1,
in preprocessing, steps like radiometric calibration, geometric correction, and speckle noise
reduction are applied to ensure data consistency and clarity. Preprocessing steps such
as radiometric calibration, geometric correction, and speckle noise reduction ensure the
consistency and clarity of PolSAR data. Speckle noise, modeled as multiplicative noise, can
be expressed as follows:

I = I0 · N, (1)

where I denotes the observed intensity, I0 denotes the true intensity, and N is speckle noise.
Adaptive filters such as the refined Lee filter [15] minimize noise while preserving edge
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details. Geometric corrections are critical for aligning PolSAR data with geographic coordi-
nates, accounting for distortions caused by topography and sensor geometry. Radiometric
corrections ensure that the pixel intensity values accurately represent backscattering coeffi-
cients by compensating for variations due to sensor characteristics or environmental factors.
The methods discussed in the book by Cumming and Wong [16] provide a comprehensive
framework for implementing these corrections. For example, geometric corrections utilize
sensor models and ground control points to correct distortions:

x′ = T(x), (2)

where x represents the original pixel coordinates, T(·) denotes the transformation function,
and x′ denotes the corrected coordinates. Radiometric calibration involves normalizing
intensities based on system gains and atmospheric losses:

σ0 =
P
R2 , (3)

where σ0 denotes the normalized backscatter coefficient, P denotes the measured power,
and R denotes the slant range. This ensures the data are comparable across acquisitions
and sensors.

Figure 1. PolSAR image classification process.

The next step involves feature extraction, where polarimetric decompositions, such
as Freeman–Durden or Cloude–Pottier, transform the complex-valued data into inter-
pretable features that reflect surface properties like roughness and orientation. Polarimetric
decomposition transforms complex-valued PolSAR data into interpretable features:

• Freeman–Durden decomposition [17]: Separates scattering contributions into volume
scattering (PV), double-bounce scattering (PD), and surface scattering (PS), as follows:

S = PV + PD + PS, (4)

where each component is derived from the covariance matrix C.
• Cloude–Pottier decomposition [18]: Computes polarimetric entropy (H) and anisotropy

(A) using eigenvalues (λ1, λ2, λ3) of the coherency matrix T, as follows:

H = −
3

∑
i=1

λi
Λ

log
(

λi
Λ

)
, A =

λ1 − λ2

λ1 + λ2
, (5)

where Λ = λ1 + λ2 + λ3.

These methods reveal physical properties such as surface roughness, orientation, and
randomness of scattering mechanisms.

Since PolSAR data are often high-dimensional, techniques like principal component
analysis or CNNs are applied to reduce dimensionality, thus lowering computational
demands while preserving essential information. PolSAR data’s high dimensionality
necessitates efficient dimensionality reduction techniques:
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• Principal component analysis (PCA) [19]: Projects data X onto a lower-dimensional
subspace:

Z = XW, (6)

where W contains eigenvectors of the covariance matrix of X.
• Deep learning-based feature extraction [20]: CNNs reduce dimensionality by ex-

tracting hierarchical features. For example, ResNet [21] uses residual connections,
as follows:

y = f (x) + x, (7)

where f (x) represents the learned transformation within a residual block [21].

After feature extraction, a classification model, such as an SVM, random forest, or a
DL network like a CNN, is trained on labeled samples. PolSAR classification has evolved
from traditional machine learning models to deep learning approaches:

• Support vector machine (SVM): Optimizes a hyperplane that separates classes with
maximum margin [22]:

min
w,b

1
2
∥w∥2 s.t. yi(w · xi + b) ≥ 1, ∀i. (8)

• Deep neural networks: CNNs and architectures such as ResNet and Vision Transform-
ers extract spatial and spectral features to classify PolSAR data [23].

DL models may employ transfer learning from pre-trained networks to improve clas-
sification accuracy on limited training data. Once trained, the classifier assigns labels to
each pixel or region of the PolSAR image based on learned features, resulting in a classified
map where each area corresponds to specific terrain types such as urban areas, forests, or
water bodies. The versatility of PolSAR data makes it especially valuable for areas with
frequent cloud cover, such as tropical regions, or for applications requiring continuous
monitoring, such as in agriculture or defense operations. PolSAR image classification bene-
fits significantly from combining physical modeling and data-driven approaches. Physical
modeling provides domain-specific priors, such as scattering mechanisms and polarimetric
decompositions, which enhance the interpretability and robustness of classification models.
Meanwhile, data-driven approaches such as deep learning enable scalable feature extrac-
tion and generalization. By integrating these two paradigms, classification frameworks
can leverage the interpretability of physical models while capitalizing on the flexibility
of data-driven techniques, addressing challenges such as domain shifts, noise robustness,
and limited labeled data. However, PolSAR data introduce unique challenges that must be
addressed to achieve effective classification.

One major challenge is speckle noise, an inherent issue with coherent radar imaging
systems, which manifests as granular interference across the imagery [24]. This noise
complicates the task of pixel-level classification by reducing spatial consistency and overall
classification accuracy. Techniques such as Pauli and Freeman–Durden decompositions
attempt to mitigate speckle but often sacrifice spatial detail. Additionally, the complexity
of PolSAR’s multi-polarization data creates a high-dimensional feature space. Each pixel
contains information from several channels, necessitating models that can accurately cap-
ture both local and global relationships within the data. Conventional CNNs, designed
primarily for RGB images, struggle with such intricacies. As a result, architectures such as
3D-CNNs and networks integrating coherent and non-coherent decomposition features
have been proposed to handle these challenges better [25]. PolSAR classification is fur-
ther complicated by significant intra-class variability and inter-class similarity. Variability
within classes arises due to environmental factors such as differences in observation angles,
polarization modes, and weather conditions, which alter the backscattering characteristics
of the same terrain type [26]. At the same time, certain land cover types, such as urban
areas and bare soil, may exhibit similar scattering responses, leading to inter-class similarity.
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These issues complicate classification tasks by increasing the overlap in feature space and
reducing model separability.

DL has shown great promise in overcoming some of these limitations through its
ability to automatically extract features. However, its reliance on large labeled datasets
presents a critical bottleneck. Annotating PolSAR data is labor-intensive and requires
expertise, which makes large-scale dataset creation expensive and time-consuming. The
issue is further compounded by domain shifts, as PolSAR images collected from different
satellites or environments exhibit significant variations that reduce model performance on
new datasets [27]. Effective domain adaptation and TL techniques are essential but remain
underexplored in PolSAR classification. Moreover, deep networks, such as CNNs and
Transformer-based architectures, often contain millions of parameters. Without sufficient
labeled data, these models tend to memorize the training set rather than generalize to
new samples, resulting in poor performance on unseen datasets. This issue is particularly
severe in PolSAR, where intra-class variability and inter-class similarity further hinder
generalization. Additionally, PolSAR data’s high dimensionality, with multiple polarization
channels per pixel, leads to sparse feature spaces. This makes it challenging to extract
relevant information without overfitting.

To address these challenges, FSL has emerged as a promising strategy. FSL enables
models to generalize from limited labeled samples by simulating real-world conditions
during training through episodic learning. Techniques such as prototypical networks [28]
and relation networks [29], which learn from small support sets, align closely with the
needs of PolSAR classification, where annotated datasets are typically small. Prototypical
networks define the prototype of class ck as follows:

ck =
1

|Sk| ∑
zi∈Sk

zi, (9)

where Sk denotes the support set for class k. Relation networks learn similarity scores
between query samples q and support samples s using the following formula: r(q, s) =
sim( f (q), f (s)), where f (·) represents a feature extractor. FSL also leverages meta-learning [30]
and contrastive learning [31] approaches to acquire transferable features that can be gen-
eralized across different domains, reducing the impact of domain shifts. Unsupervised
pre-training on unlabeled PolSAR datasets has further improved the effectiveness of FSL
by enabling models to learn robust representations, which can be fine-tuned on minimal
labeled data. FSL is particularly valuable for detecting rare or underrepresented classes
in PolSAR datasets, such as specific terrain types or vegetation covers. Techniques like
graph-based FSL models and attention-weighted networks have shown promise by lever-
aging neighborhood information and spatial correlations between pixels for enhanced
classification performance.

The integration of FSL into PolSAR classification offers robust performance across
diverse environmental conditions and sensor systems, making it an essential technique
for both research and operational applications. As FSL models learn to handle rare or
underrepresented terrain types, they open up new possibilities for applications such as
vegetation monitoring and land cover analysis, especially in challenging environments
where traditional DL models struggle. With advancements in domain adaptation, feature
fusion, and meta-learning, FSL is expected to play an increasingly important role in making
PolSAR-based solutions more practical and scalable across various remote sensing tasks. A
list of key acronyms used in this article is summarized in Table 1. The key contributions of
this work are summarized as follows:

• Comprehensive analysis of few-shot learning methods for PolSAR classification: We
provide a detailed survey of existing FSL techniques, including data augmentation,
transfer learning, meta-learning, and multimodal learning, highlighting their strengths
and limitations for PolSAR classification.
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• Insightful discussion of challenges and future trends: We analyze the unique chal-
lenges of few-shot PolSAR classification, including data scarcity, speckle noise, and
cross-domain variability, and propose future research directions, such as physics-
informed deep learning.

• Quantitative and qualitative benchmarking: Extensive experiments on standard Pol-
SAR datasets such as Flevoland, San Francisco, and Oberpfaffenhofen evaluate the
effectiveness of various methods discussed in this survey. Metrics such as OA, Kappa
coefficient, and F1 score are employed to compare and analyze the performance of
SOTA approaches.

In this paper, we systematically guide readers through the problem domain, method-
ologies, and experimental results, beginning with an introduction to PolSAR’s role in remote
sensing, its advantages, challenges, and the relevance of few-shot learning. We provide
formal definitions of few-shot learning, descriptions of widely used PolSAR datasets, and
evaluation metrics. We then review existing methodologies, including data augmentation,
transfer learning, meta-learning, and multimodal learning, discussing their applicability
and limitations. Quantitative comparisons on benchmark datasets and qualitative analyses
of the strengths and weaknesses of these methods are presented. Finally, we highlight
current challenges, such as data imbalance and speckle noise, discuss emerging trends
like self-supervised and physics-informed learning, and conclude with a summary of our
findings and recommendations for future research.

Table 1. A list of key acronyms.

Full Form Abbreviation Full Form Abbreviation

Average accuracy AA Contrastive learning CL
Convolutional neural network CNN Data augmentation DA
Deep learning DL Few-shot cross-domain FSCD
Few-shot learning FSL Graph neural network GNN
K-nearest neighbors KNN Meta-learning ML
One-shot learning OSL Overall accuracy OA
Polarimetric synthetic
aperture radar PolSAR Relation network RN

Self-supervised learning SSL Support vector machine SVM
Transfer learning TL Zero-shot learning ZSL

2. Definition, Datasets, and Evaluation Metrics
2.1. Few-Shot Image Classification Definition

Few-shot image classification refers to the task of enabling a model to accurately
classify new categories with only a few labeled examples per class. FSL is typically framed
in an N-way K-shot setting, where the model must classify among N different classes with
only K labeled samples per class. For example, in a 5-way 1-shot task, the model needs to
distinguish between five classes given just one labeled example per class. Depending on
the value of K, few-shot classification can include specific cases like OSL, where K equals 1,
and the model learns to classify with a single labeled sample per class. Another extension
is zero-shot learning [32], where the model must classify samples from classes it has never
seen before, relying on auxiliary information like semantic descriptions or relationships
between classes to perform the task.

FSL aims to develop models that generalize well to unseen classes by focusing on
learning transferable features. This ability is crucial for applications like PolSAR, where do-
main shifts—such as changes in environmental conditions or data collected from different
satellites—can significantly affect model performance. By enabling accurate classification
with minimal labeled data, FSL helps overcome the practical challenges of PolSAR classifi-
cation, offering a scalable solution for identifying rare terrain types, monitoring vegetation,
and supporting other remote sensing tasks with limited annotations.
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Figure 2 illustrates a knowledge graph that represents key concepts related to FSL,
PolSAR image classification, and deep learning. Each node in the graph corresponds
to a specific concept, technique, or approach relevant to PolSAR classification, such as
“GANs” and “feature diversity” under data augmentation, or “prototypical networks”
and “cosine similarity” linked to meta-learning approaches. The edges between nodes
represent relationships or interactions, with connections such as the one between “Transfer
Learning” and “Pre-trained Models” highlighting the reliance on pre-trained models as
a foundational component of transfer learning techniques. To enhance clarity, the nodes
are color-coded according to their methodological categories. The central node, represent-
ing PolSAR classification, connects to critical techniques including domain adaptation,
meta-learning, and transfer learning, emphasizing the interdisciplinary nature of Few-Shot
PolSAR classification. The graph further highlights advanced methods, such as GNNs,
cross-modal learning, and attention mechanisms, which are pivotal for addressing chal-
lenges like high-dimensional data and inter-class similarity in PolSAR classification. This
comprehensive representation effectively captures the relationships and dependencies
among various techniques and approaches in the field.

Figure 2. Knowledge graph of key concepts in Few-Shot PolSAR image classification. Nodes represent
key concepts, methods, or techniques, while edges indicate the relationships or dependencies between
them. Node colors correspond to methodological categories: orange for data augmentation-based
methods, green for transfer learning-based methods, blue for meta-learning-based methods, and pink
for multimodal-based methods. The graph was constructed based on literature analysis and keyword
extraction, with relationships derived from established dependencies in the field.

2.2. PolSAR Datasets

PolSAR datasets are essential resources for few-shot classification tasks. PolSAR
datasets can be broadly classified into two categories based on their defining characteristics:
location-based and sensor-based. Location-based datasets (e.g., Flevoland, San Francisco)
are named after the geographic regions they represent, often serving region-specific studies.
In contrast, sensor-based datasets (e.g., RADARSAT-2, Sentinel-1) derive their names from
the sensors that acquired them, offering diverse spatial and temporal coverage. These
datasets capture diverse terrain types, urban structures, and environmental conditions,
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making them useful for a wide range of applications, including land cover classification,
vegetation monitoring, and disaster management [33]. This section provides an overview of
several commonly used PolSAR datasets, along with their key characteristics, summarized
in Table 2.

Table 2. Common PolSAR datasets and their characteristics.

Dataset Category Size (Pixels) Resolution (m) Bands
(Polarizations) Classes

Flevoland Location-Based 750 × 1024 6 to 12 HH, HV, VV 15

San Francisco Location-Based 1300 × 1300 5 HH, HV, VH, VV 5

Oberpfaffenhofen Location-Based 1300 × 1024 1.5 HH, HV, VV 3

RADARSAT-2 Sensor-Based Variable 3 to 50 HH, HV, VH, VV 10+

AIRSAR Sensor-Based 750 × 1024 12.5 HH, HV, VH, VV 9

UAVSAR Sensor-Based Variable 1 HH, HV, VH, VV 10+

Sentinel-1 Sensor-Based Variable 10 HH, HV (Dual) 5+

The Flevoland dataset is widely used for agricultural studies, providing detailed
information on 15 crop and land cover types, including wheat, potatoes, beans, and water
bodies. The San Francisco dataset, collected over the urban Bay Area with RADARSAT-2,
features five key classes such as water, vegetation, and both low- and high-density urban
regions. These urban settings offer a challenging testbed for models due to their structural
diversity and variability.

The Oberpfaffenhofen dataset, acquired using the ESAR L-band sensor, covers three
well-defined terrain categories: built-up areas, woodland, and open areas. Its high-
resolution imagery makes it a valuable benchmark for multi-class classification in remote
sensing. The AIRSAR and UAVSAR datasets from NASA provide high-resolution, fully
polarimetric data for diverse environments, including wetlands, forests, and urban areas,
making them ideal for multi-domain classification tasks.

RADARSAT-2 data are used extensively for real-world monitoring applications such
as environmental assessment and disaster response, with its flexible acquisition modes
supporting multiple resolutions and polarizations. Finally, Sentinel-1 data, though limited
to dual-polarization, provide frequent revisits and global coverage, making these data
essential for dynamic monitoring tasks.

These datasets highlight the importance of models capable of generalizing across
varied environments and sensors. FSL presents a promising solution by enabling effective
performance with limited labeled data, offering scalability and robustness across a range of
PolSAR classification scenarios.

2.3. Evaluation Metrics for Few-Shot PolSAR Image Classification

Evaluating the performance of DL models for few-shot PolSAR image classification
requires metrics that reflect both classification accuracy and the model’s ability to generalize
to new classes and environments. The following section outlines key metrics commonly
used in the literature to assess the effectiveness of few-shot PolSAR classification models.

Overall accuracy (OA) [34] measures the proportion of correctly classified samples
over the total number of samples across all classes. This metric provides a high-level view
of model performance but can be biased toward majority classes, making it less informative
when dealing with imbalanced datasets or rare classes [35].

OA =
1
n

n

∑
i=1

1(ŷi = yi), (10)

where n is the total number of samples, yi is the true label, and ŷi is the predicted label.
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Average accuracy (AA) [36] addresses the class imbalance issue by computing the
mean accuracy for each class independently and then averaging the results. It ensures that
smaller or rare classes are given equal weight in the final evaluation, which is crucial for
applications like PolSAR terrain classification, where some classes (e.g., rare vegetation
types) have few samples.

AA =
1
N

N

∑
j=1

TPj

TPj + FNj
, (11)

where N is the total number of classes, TPj is the number of true positives for class j, and
FNj is the number of false negatives. The formula for AA is equivalent to calculating the
mean of the per-class OA, which is given by the following:

Mean(OA) =
1
N

N

∑
j=1

OAj =
1
N

N

∑
j=1

TPj

TPj + FNj
. (12)

This confirms that AA and the mean of per-class OA values are identical. The key difference
lies in the interpretation: AA ensures that each class contributes equally to the final metric,
addressing class imbalance issues.

The Kappa coefficient [37] evaluates the agreement between the predicted and true
classifications, adjusting for the agreement occurring by chance. It is particularly useful for
PolSAR applications where the number of classes and data imbalance can skew simpler
accuracy metrics [38].

κ =
OA − pe

1 − pe
, (13)

where OA is the overall accuracy, and pe is the expected agreement by chance, given by
the following:

pe =
N

∑
i=1

(
npred

i × ntrue
i

n2

)
. (14)

Here, N is the total number of classes, npred
i is the number of samples predicted as class

i, ntrue
i is the number of samples truly belonging to class i, and n is the total number

of samples.
The F1 score [39] balances precision and recall, providing a harmonic mean between the

two. In the few-shot setting, both Macro-F1 [40] (which computes the metric for each class
and takes their unweighted average) and Micro-F1 [41] (which aggregates contributions of
all classes) are relevant, especially in scenarios with rare or underrepresented classes [42].

F1 = 2 × Precision × Recall
Precision + Recall

. (15)

Precision =
TP

TP + FP
. (16)

Recall =
TP

TP + FN
. (17)

The Micro-F1 score is calculated by aggregating the TP, FP, and FN across all classes,
and then computing the overall precision and recall, as follows:

Micro-F1 = 2 × Precisionmicro × Recallmicro
Precisionmicro + Recallmicro

Precisionmicro =
∑i TPi

∑i TPi + ∑i FPi
, Recallmicro =

∑i TPi

∑i TPi + ∑i FNi
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Here, the sums are computed across all classes. Micro-F1 is more sensitive to the
overall distribution of correct and incorrect predictions, making it ideal for evaluating
models on the entire dataset, especially when there is a class imbalance.

In contrast, the Macro-F1 score computes the F1 score for each class independently
and then averages the results. This approach treats each class equally, regardless of the
number of samples, and is especially useful when assessing how well a model performs
across all classes. The Macro-F1 score is defined as follows:

Macro-F1 =
1
N

N

∑
j=1

(
2 ×

Precisionj × Recallj

Precisionj + Recallj

)
where Precisionj and Recallj are computed for each class j, and N is the total number of classes.
Unlike Micro-F1, the Macro-F1 score provides an average performance across all classes and
is particularly useful when the importance of smaller or rare classes is significant.

A confusion matrix [43] provides detailed insights into classification errors by showing
the distribution of true and predicted labels for each class. For PolSAR data, confusion ma-
trices help identify specific pairs of classes that are often confused due to similar scattering
characteristics (e.g., forest and shrubland). This information is critical for refining feature
extraction techniques.

In FSL, models are evaluated on episodic tasks, where each episode mimics the target
scenario by randomly sampling support and query sets. Episodic accuracy [44] measures
the proportion of correct predictions across multiple episodes and reflects the model’s
ability to generalize from a few samples [45]:

Episodic Accuracy =
1
M

M

∑
m=1

1(ŷm,i = ym,i), (18)

where M is the total number of episodes, ym,i is the true label in episode m, and ŷm,i is the
predicted label.

The area under the receiver operating characteristic curve (AUC-ROC) [46] measures
the ability of the model to distinguish between positive and negative classes across varying
thresholds. In PolSAR classification, this metric can be particularly informative for rare
terrain types or binary classification tasks, such as distinguishing between urban and
non-urban areas [47].

These metrics collectively provide a comprehensive framework for evaluating the
performance of DL models in few-shot PolSAR image classification. They not only capture
classification accuracy but also address key aspects like class imbalance, generalization
across domains, real-time applicability, and task-specific performance. The selection of
appropriate metrics depends on the specific requirements of the task, such as the importance
of rare class detection, cross-domain generalization, or inference speed.

3. Few-Shot Learning for PolSAR Image Classification
3.1. Data Augmentation-Based Methods

Data augmentation plays a crucial role in overcoming the limitations posed by small
datasets in FSL. In PolSAR image classification, the scarcity of labeled data is particularly
problematic due to the complex nature of polarimetric data and the high cost of obtaining
annotations. DA addresses this by generating synthetic samples through various transfor-
mations, which enhance the diversity of the training set and improve model robustness.
This section explores the recent advancements in DA techniques applied to PolSAR FSL.

3.1.1. Traditional Data Augmentation Techniques

Traditional DA methods, such as flipping, rotating, and scaling, are frequently used
to create variations of the existing data. For PolSAR images, these transformations are
applied to manipulate spatial features and polarimetric channels. For example, Ashwin
and Ansal [39] applied simple transformations like rotations and translations to PolSAR
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datasets to improve model generalization across different terrain types. Zhang et al. [48]
proposed a multi-task DL framework designed to efficiently utilize complex-valued PolSAR
image data for classification. The core innovation of this approach lies in the extraction
and separate processing of amplitude and phase information from PolSAR data, which
creates a richer set of data representations. These diverse representations act as an implicit
data augmentation strategy by improving the model’s ability to handle the variability and
complexity of PolSAR data. Additionally, a depthwise separable convolution is introduced
to enhance phase-related feature extraction, which further increases the model’s robustness
and generalization to unseen classes. Wang et al.’s [49] proposed DA method enhances
model performance by redistributing labeled data across different image regions. This
approach mitigates the model’s over-reliance on specific areas, thereby reducing issues
such as label skew and class imbalance. By applying transformations to shuffle and merge
labeled data, the model gains a more comprehensive understanding of various spatial re-
gions, improving its generalization capability and resilience to noise and occlusions. While
these basic techniques increase the number of training samples, they may not fully capture
the complexity of PolSAR data, such as speckle noise. Therefore, specialized augmentation
methods that consider the unique characteristics of PolSAR data are necessary [50].

3.1.2. Advanced Augmentation Techniques with GANs

Generative adversarial networks (GANs) have become a powerful tool for generating
realistic synthetic samples in FSL. Recent work has adapted GANs for PolSAR DA by train-
ing the generator to create polarimetric images that mimic the properties of real PolSAR
data. Physical modeling plays a role in ensuring that GAN-generated samples remain
realistic and domain-relevant. This ensures that synthetic data captures the statistical and
physical consistency of real-world PolSAR images. Similarly, feature augmentation meth-
ods, such as polarimetric jittering, introduce controlled variations in features like phase and
amplitude while preserving underlying scattering mechanisms. These physically grounded
augmentations expand the diversity of training data while maintaining interpretability
and robustness. As shown in Figure 3, the process begins with inputting PolSAR data
represented by a tensor containing a pixel and its surrounding neighborhoods. A noise
vector and a label vector are then generated and combined to form a connected vector,
which the generator (G) transforms into synthetic data. Both real and synthetic (fake)
data are then fed into the discriminator (D) for feature extraction and normalization. The
discriminator’s outputs undergo a normalization step before being used to calculate the
loss functions Dloss and Gloss. Finally, the combined loss is backpropagated to optimize
both the generator and discriminator networks, enhancing the model’s ability to generate
realistic PolSAR samples tailored to specific classification or clustering tasks. Liu et al. [51]
introduced task-oriented GAN (TOGAN), a GAN framework specifically designed for
PolSAR image classification and clustering. TOGAN goes beyond traditional GANs by
incorporating a task-specific network (TaskNet), which ensures that the generated PolSAR
samples are tailored to improve the performance of specific tasks, such as classification
or clustering. This task-oriented approach enhances the variability and relevance of the
generated data, helping classifiers and clustering algorithms generalize better, even with
limited labeled data.

Yang et al. [52] employed a GAN to generate hard negative samples near deci-
sion boundaries, enhancing the model’s ability to distinguish between challenging ex-
amples. The proposed approach demonstrates significant performance improvements on
PolSAR datasets, particularly in complex boundary regions with inconsistent terrain types.
Xie et al. [53] propose a method that leverages auxiliary classifier generative adversarial
network (ACGAN) to generate realistic PolSAR samples that enhance FSL. By incorporating
an auxiliary classifier, the generator produces class-specific synthetic samples, significantly
improving classification performance. Dong et al. [54] introduced the polarimetric scatter-
ing characteristics-guided adversarial network (PSCAN) for unsupervised PolSAR image
classification, incorporating several key innovations in adversarial learning. A major in-
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novation is the integration of polarimetric scattering characteristics into the adversarial
learning process, improving feature discriminability by constructing pseudo-labels based
on scattering mechanisms rather than automatic labeling. This approach enhances feature
transferability while ensuring the semantic alignment between source and target domains.
Additionally, PSCAN incorporates an auxiliary task that utilizes these pseudo-labels to
further refine the learned features. Song and Xu [55] introduced a ZSL framework using
deep generative networks to construct a continuous SAR target feature space. This enables
the generation of synthetic data for unseen classes, improving classification in cases where
labeled samples are unavailable. By learning orientation-invariant features, their model
enhances generalization, making it a valuable addition to GAN-based augmentation.

Figure 3. Overview of the GAN-based PolSAR data augmentation pipeline, illustrating the flow from
raw PolSAR input to the final loss optimization stage for both the generator and discriminator.

3.2. Transfer Learning-Based Methods

TL has emerged as a critical tool for addressing the challenges posed by limited labeled
data in PolSAR FSL. By transferring knowledge from models trained on large datasets, this
approach enables effective PolSAR classification with only a few labeled samples. This
section explores different strategies for applying TL in PolSAR FSL, highlighting recent
research and methodologies.

3.2.1. Pre-Trained Models for Feature Extraction

A widely used approach in PolSAR FSL involves leveraging pre-trained models for
feature extraction, which reduces the reliance on large labeled datasets. These models,
often initialized with features from external datasets, are fine-tuned to adapt to PolSAR
data. Incorporating physically derived features, such as those from polarimetric decompo-
sitions (e.g., Cloude–Pottier, Freeman–Durden), ensures the inclusion of domain-specific
knowledge like scattering mechanisms and surface characteristics. During fine-tuning,
physical modeling further aids in aligning features across domains, enhancing adaptability
to target tasks.

Wang et al. [56] proposed a ViT-based model for PolSAR land cover classification.
Pre-trained using a masked autoencoder on unlabeled PolSAR data, the model effectively
captures long-range dependencies, improving classification accuracy on the Flevoland
and Hainan datasets, even with limited labeled data. Cattoia et al. [57] proposed a
transcoding-based pre-training approach, where a network is pre-trained to translate
PolSAR data into optical images using a regression network, conditional GAN, or cycle-
GAN. The learned features are then fine-tuned for semantic segmentation. The pre-trained
models, particularly the conditional GAN, demonstrated significant improvements in
accuracy, especially in scenarios with limited labeled data. Han et al. [58] presented a
DL-based approach for PolSAR image classification by utilizing deep features extracted
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through CNNs. The authors proposed a framework that integrates pre-trained CNNs
to extract discriminative features from PolSAR images, followed by a classifier for land
cover classification. Xie et al. [59] proposed a channel adaptive complex-valued fully
convolutional network (TF-CVFCN) with a novel TL method to address the challenges of
limited labeled data in PolSAR terrain classification. The key innovation lies in a new TL
strategy that allows the flexible design of the network structure and independent layer
freezing, enabling faster convergence and better performance. Additionally, the TF-CVFCN
framework fully utilizes complex-valued PolSAR data to enhance feature extraction and
incorporates lightweight deep separable convolutions optimized through a multi-objective
particle swarm optimizer.

3.2.2. Domain Adaptation for PolSAR Classification

Domain adaptation addresses the domain shift problem, where discrepancies between
source and target datasets degrade the model’s performance. For PolSAR data, domain
shifts can arise from different geographic regions, sensor types, or imaging conditions.
Domain adaptation techniques help align feature distributions across domains to ensure
the model generalizes well in the target domain. This subsection explores various domain
adaptation strategies applied to PolSAR few-shot learning.

Gui et al. [60] introduced the unsupervised generalized zero-shot domain adaptation
(uGZSDA) framework for PolSAR classification. The method addresses class distribution
shifts between domains by using scattering component semantics (SCS) and a stacked
autoencoder (SAE). This approach enhances classification accuracy in target domains
without requiring labeled data. Gui et al. [61] proposed a general feature paradigm (GFP)
for unsupervised cross-domain PolSAR image classification, addressing challenges posed
by domain shifts due to differences in sensors, imaging angles, and land cover distributions.
The innovation lies in a four-step feature transformation process that optimizes interclass
aggregation and reduces domain shifts. GFP is compatible with typical domain adaptation
methods, facilitating its application across various cross-domain PolSAR tasks.

Li et al. [62] proposed an online active extreme learning machine (OA-ELM) with
a novel discrepancy sampling strategy for PolSAR image classification. This method
combines online sequential learning and active learning, significantly improving clas-
sification accuracy and efficiency. The discrepancy sampling strategy directly uses the
non-probabilistic outputs of ELM to select informative samples. Dong et al. [63] introduced
a causal inference-guided feature enhancement framework for PolSAR image classification.
The key innovation lies in using a structural causal model (SCM) to identify and intervene
in variables affecting feature discriminability and generalizability. By applying backdoor
adjustment, the framework eliminates confounding factors in the feature extraction process,
preventing overfitting and enhancing feature discriminability. Qin et al. [64] proposed a
relational-based transductive transfer learning method for PolSAR image classification. The
innovation lies in a three-phase time-series clustering algorithm that leverages spatiotem-
poral relational knowledge, enabling accurate label transfer without relying on labeled data
from the target domain. Gui et al. [65] proposed an eigenvalue statistical component-based
PU-Learning (ESC-PUL) framework for the extraction of built-up areas in PolSAR images,
particularly addressing challenges related to domain shifts and orientation angles. The
key innovation is the integration of ESC with PU-Learning, enabling robust extraction of
built-up areas using only positive samples while avoiding the need for negative samples.
Additionally, a subspace alignment technique is incorporated to address domain shifts
between different PolSAR datasets, facilitating cross-domain analysis.

Hua et al. [66] proposed an unsupervised domain adaptation framework utilizing
a coordinate attention mechanism to enhance spatial feature extraction and introducing
a weighted clustering algorithm to generate reliable pseudo-labels for the target domain.
An adversarial network with a bi-classifier is used to align data distribution between
domains. Cao et al. [67] proposed a complex-valued cross-domain few-shot learning
network (CVCDFSL) to address the challenge of few labeled samples and domain shifts in
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PolSAR image classification. The method leverages complex-valued data representations
and cross-domain learning techniques, employing a novel feature alignment strategy in
the complex domain to achieve superior classification performance in cross-domain few-
shot settings. Sun et al. [68] introduced a method for domain adaptation in PolSAR land
classification utilizing linear discriminative Laplacian Eigenmaps (LDLEs). This approach
projects source and target domain data into a shared subspace where their distributions are
aligned, preserving both discriminative and geometric structures. Sun et al. [69] proposed
a scatter matrix-based domain adaptation framework for classifying bi-temporal PolSAR
images. This method optimizes a scatter matrix to align feature distributions between
source and target domains, improving the adaptability of classifiers trained on historical
data to classify new, unlabeled temporal data.

3.2.3. Self-Supervised Learning for Transfer Learning

Recent advancements in SSL have significantly enhanced the potential of TL in PolSAR
FSL. Self-supervised pre-training enables the model to learn robust feature representations
from large amounts of unlabeled PolSAR data by solving pretext tasks, such as CL or clus-
tering. The model can then be fine-tuned on a few labeled samples, providing a substantial
performance boost. In the SSL framework, as depicted in Figure 4, a shared backbone
network is employed for both the teacher and student models. The student network is
updated directly, while the teacher network is updated via the exponential moving average
of the student parameters. Two augmented views of the same input PolSAR data are
generated, denoted as x1 and x2. The student model processes x1 to predict a probability
distribution p1, while the teacher model processes x2 to generate p2 after centering. This
setup enables the model to maximize similarity between corresponding representations,
which aligns with the principles of mutual learning and enhances robustness to variations
in input data. The lower section of the figure illustrates the classification process, where
the pre-trained SSL model is fine-tuned on a small labeled dataset, resulting in refined land
cover classification outputs. This dual-phase structure—pre-training with self-supervised
tasks followed by supervised fine-tuning—captures complex scattering mechanisms and
target decompositions in PolSAR data, leading to improved classification accuracy with
few-shot labeled data.

Ren et al. [70] introduced a mutual information-based SSL framework aimed at
improving PolSAR land cover classification with minimal labeled data. The key innovation
lies in exploiting the inherent properties of PolSAR data without relying on manual labels.
The model maximizes mutual information between multi-modal features of the same
pixel while enhancing differences across different pixels, capturing complex scattering
mechanisms in a self-supervised manner. Zhang et al. [71] proposed MLR-SimSiam, a
contrastive pre-training model designed for few-shot PolSAR image classification. The
innovation lies in two key components: polarimetric jittering (PJ), which creates challenging
positive samples by leveraging polarimetric target decomposition, and the mutual learning
regularizer (MLR), which bridges the semantic gap between different augmented data
representations, improving robustness and generalization. Kuang et al. [72] proposed a
complex-valued SSL framework integrating an attention mechanism to focus on informative
channels. The method incorporates both amplitude and phase information, combined
with a noise injection data augmentation strategy tailored to PolSAR noise characteristics,
enhancing model robustness and reducing reliance on labeled data.

Zhang et al. [73] proposed a self-supervised PolSAR representation learning (SSPRL)
model, designed to enhance PolSAR land cover classification, particularly in FSL scenarios.
The core innovation of this model is its ability to learn robust feature representations from
unlabeled PolSAR data using a CL framework without relying on negative samples. The
SSPRL framework includes a dynamic convolutional (DyConv) encoder and employs a
novel positive sample generation (PSG) method tailored for PolSAR data. Additionally, the
model integrates a mix-up regularization strategy, further improving the generalization
of learned features. Qiu et al. [74] proposed an FSL method for PolSAR ship detection



Remote Sens. 2024, 16, 4632 14 of 31

by integrating polarimetric feature selection with improved contrastive self-supervised
learning (CSSL). The method leverages eight polarimetric feature extraction techniques and
pre-trains the backbone network with CSSL, enhancing representation without negative
samples. A multi-scale feature fusion module (MFFM) boosts feature learning, and the mix-
up auxiliary pathway (MUAP) serves as regularization. The model is fine-tuned using a few
labeled samples for ship detection. Wang et al. [75] proposed a dual-branch PolSAR image
classification model that combines generative SSL with local feature extraction to address
the challenge of limited labeled data in PolSAR image classification. The key innovation
lies in the integration of a graph-masked autoencoder (GraphMAE) for learning superpixel-
level polarimetric representations, alongside a CNN-based pixel branch to capture fine-
grained pixel-level features. By fusing the features extracted from both branches, the model
achieves superior classification accuracy and clearer boundary delineation compared to
single-branch models.

Figure 4. Overview of the self-supervised learning framework for PolSAR image classification.

Dong et al. [76] introduced a ViT-based framework for PolSAR image classification,
marking the first application of ViT in this domain. The key innovation is leveraging
self-attention to capture long-range interactions between image patches. The framework
supports both supervised and unsupervised learning, with a novel contrastive learning
strategy simplifying unsupervised pre-training. Cai et al. [77] introduced heterogeneous
network-based contrastive learning (HCLNet) to leverage multi-features of PolSAR data by
combining physical and statistical features for unsupervised high-level representation. The
heterogeneous architecture integrates 1D and 2D CNNs to learn complementary features,
addressing scattering confusion and enhancing land cover distinction. Darvishnezhad
and Sebt [78] introduced a self-supervised ensemble learning framework (SSELF) for land
use and land cover classification. The framework integrates EfficientNet-B0 for feature
extraction and employs Deep Curriculum Learning to rank image patches by complexity.
Ensemble learning strategies further enhance classification accuracy by leveraging features
across various spatial scales and polarimetric bands.
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3.3. Meta-Learning-Based Methods

ML has gained significant attention for its ability to learn how to learn, particularly in
few-shot classification tasks. Unlike traditional methods that rely heavily on large labeled
datasets, ML focuses on acquiring meta-knowledge from previously seen tasks and using
this knowledge to generalize to new, unseen tasks with limited labeled data. In ML, as
shown in Figure 5, tasks are divided into support and query sets across both training
and testing stages, enabling models to learn generalizable features. During training, the
model learns from diverse tasks generated from datasets with more categories, such as
the Flevoland 15 dataset. Each task provides a support set (e.g., “Bean”, “Building”, “Bare
soil”) and a query set from the same categories. This episodic training strategy builds
meta-knowledge, allowing the model to handle new tasks with minimal labeled samples. In
the testing stage, unseen tasks from the Flevoland 7 and Oberpfaffenhofen datasets test the
model’s generalization. Each task consists of distinct support and query sets, challenging
the model to classify categories such as “Linen”, “Canola”, and “Woodland”, which differ
from the training categories. This setup reflects the FSL approach, where models leverage
meta-knowledge to classify unseen classes effectively with limited samples, even across
different domains.

Figure 5. Data division in meta-learning-based few-shot PolSAR classification, showing the training
and testing stages with support and query sets for each task.

In metric-based meta-learning (e.g., prototypical networks), physical features derived
from PolSAR decomposition methods are used to define class prototypes. For example,
class embeddings may incorporate features such as polarimetric entropy (H) or anisotropy
(A), reflecting the physical separability of scattering mechanisms (e.g., urban vs. vegetation
vs. water). By embedding these physically grounded features into the embedding space,
meta-learning improves both the interpretability and robustness of class similarity metrics,
enabling models to generalize effectively across tasks with minimal labeled data. Similarly,
optimization-based methods, such as model-agnostic meta-learning (MAML), leverage
physical priors by pretraining initialization parameters using scattering features, ensuring
rapid and reliable adaptation to new tasks.
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3.3.1. Metric-Based Meta-Learning

One of the most popular categories in ML is metric-based learning. This approach
learns a distance metric that allows a model to classify new data points based on their
proximity to labeled examples in a learned embedding space. Ni et al. [79] proposed a
metric learning-based approach for fine-grained PolSAR image classification, addressing
class similarity challenges in complex scenes. The method utilizes magnet loss, which
enhances feature discrimination by clustering samples and penalizing class distribution
overlaps. This improves the ability to capture subtle differences between similar classes,
crucial for fine-grained classification. Alternative classifiers like kNN and SVM are used
to replace softmax, further boosting classification accuracy. Yang et al. [80] proposed a
meta-graph representation learning (MGRL) framework for PolSAR image classification,
particularly addressing the challenges of FSL across different platforms and categories. The
key innovation lies in combining a dual-path graph convolutional network (DGCN) with
ML to capture both global and local spatial dependencies in PolSAR images. The framework
integrates a trumpet convolutional network (TCN) to extract local scattering features and
a GCN to model global topological structures. Zhang et al. [81] proposed a metric-based
meta-learning framework (MML-FSTC) for few-shot PolSAR terrain classification. The
model consists of two key components: transferable knowledge learning (TKL), which uses
a 3D convolutional neural network (3DCNN) to extract transferable features from base
labeled samples, and meta-knowledge learning (MKL), which fine-tunes the pre-trained
3DCNN through few-shot training episodes. These episodes use support and query sets to
learn the metric-based cosine distance function, enabling the model to classify new terrain
types with minimal labeled data. Shang et al. [82] introduced a novel spatial feature-based
convolutional neural network (SF-CNN) to address the challenges of limited labeled data
and speckle noise in PolSAR image classification. The key innovation of SF-CNN lies
in its dual-branch architecture, which enables input expansion by processing groups of
samples rather than individual ones, thereby effectively mitigating the issue of insufficient
training data. Additionally, the network enhances the discriminative power of the extracted
features by maximizing inter-class distances and minimizing intra-class distances within a
low-dimensional feature space.

Dong et al. [83] proposed a metric learning-based method for extracting collapsed
buildings from post-earthquake PolSAR imagery using eight building-related features
such as entropy (H), scattering angle (α), anisotropy (A), and Yamaguchi decomposition
scattering powers. The method improves the information-theoretic metric learning (ITML)
algorithm by projecting these features into a lower-dimensional space to reduce the effects
of topography and aspect angles. A kNN classifier is then used to classify buildings
as collapsed or intact. Zhang et al. [84] introduced a novel feature evaluation method,
called integrating multiple metrics with collinearity considered (IMC), for mapping forest
above-ground biomass (AGB) using PolSAR data. The IMC method fuses various feature
evaluation metrics, including linear (Pearson correlation), nonlinear (importance from
random forests), and physical (sensitivity index) metrics, while addressing information
redundancy among features. Prototypical networks [28] and relation networks [29] are
two prominent examples of metric-based ML. Cao et al. [44] proposed a metric-based
ML approach as part of their complex-valued cross-domain FSL classification (CCFSLC)
framework for PolSAR image classification. This method is designed to handle domain
shifts and the scarcity of labeled data across domains. Specifically, they employed cosine
similarity as a metric to measure the similarity between support and query features. In
each episode of ML, a support set of labeled samples and a query set of unlabeled samples
are used to refine the model. By minimizing the distance between the support and query
features, the model learns to generalize effectively to new, unseen classes. Hua et al. [85]
developed a relation network framework enhanced by a spatial weighted attention network
(SWANet). The method leverages metric-based ML principles to calculate similarity scores
between query and support samples. SWANet employs spatial attention mechanisms
to improve the representation of polarimetric and spatial features, which is crucial in
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distinguishing complex land covers in PolSAR images. This combination of RN and
attention modules significantly improves classification accuracy.

3.3.2. Optimization-Based Meta-Learning

Optimization-based ML methods have shown great promise for adapting models
to new tasks with minimal labeled data and few gradient updates. These methods are
particularly effective in FSL, where rapid adaptation is required due to the scarcity of
labeled samples. One of the most well-known optimization-based methods is model-
agnostic meta-learning (MAML), which has been widely applied to various tasks, including
natural image classification.

In the context of PolSAR image classification, where unique challenges such as speckle
noise and low intraclass variability complicate model training, MAML has been explored
as a baseline approach. Zhang et al. [27] employed MAML in their few-shot PolSAR
experiments, finding that while MAML is effective at rapid task adaptation, it struggles to
achieve optimal performance due to the specific characteristics of PolSAR data. The lim-
ited intraclass diversity and complex polarimetric scattering mechanisms hinder MAML’s
ability to fully generalize to new classes. To address this issue, they proposed a PolSAR-
specific contrastive learning network (PCLNet) that significantly outperformed MAML
by better capturing these unique data characteristics. Huang et al. [86] introduced a deep
reinforcement learning-based method for fully polarized SAR image classification, which
leverages multiple polarimetric features for improved accuracy. The key innovation of
this approach is the integration of a deep Q-network with polarimetric feature extraction
methods, allowing the model to interactively learn by exploring the classification envi-
ronment. The agent selects actions based on polarimetric features and rewards, enabling
efficient classification even with small sample sizes. Liu et al. [87] proposed an Adaptive
Graph Convolutional Network (AdapGCN) for PolSAR image classification, introducing
innovations that enhance pixel-level classification. A key contribution is the design of
pixel-centered subgraphs, enabling each pixel to aggregate information from both local and
nonlocal neighbors for more adaptive and context-aware feature extraction. The framework
also employs data-adaptive and spatial-adaptive kernels, integrated into the graph convo-
lution process to model data structure and spatial relationships effectively. These kernels
improve pixel communication while reducing computational complexity. Additionally,
a multiscale learning strategy is used to capture complex relationships across different
spatial scales.

3.4. Multimodal-Based Methods

Multimodal learning involves combining information from different data sources or
modalities to build more comprehensive and robust models [88]. By integrating data from
multiple sources or modalities, these methods aim to exploit complementary information
that can enhance classification performance when labeled PolSAR data are scarce. The
multimodal process depicted in Figure 6 illustrates the integration of multiple features for
few-shot PolSAR image classification. In this framework, multi-modal features, including
coherence matrices and various target decomposition methods such as Pauli, Freeman,
and H/A/α, are extracted to enhance classification. These features (labeled as x1 and x2)
are processed through separate feature extraction pipelines, allowing each modality to
capture distinct characteristics. By employing a combination of these features, the model
can better represent complex terrain types in PolSAR images. Each feature extraction
module independently processes the respective modality data, with a focus on capturing
complementary information that might be absent in single-modality data. The final step
is the loss computation (Li,j), highlighted in the pink block. This loss function integrates
the multimodal features to guide the training process, ensuring that the model optimally
leverages complementary information from both input types.
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Figure 6. The diagram illustrates the multimodal feature extraction and fusion process. Coherency
matrices and target decomposition features (Pauli, Freeman, H/A/α) are separately processed
through feature extraction pipelines (blue background) to capture complementary spatial, polarimet-
ric, and semantic information. The final loss computation (Li,j) integrates these features to optimize
classification performance.

Multimodal frameworks integrate PolSAR features, such as polarimetric decomposi-
tions, with spectral or topographic features from other modalities. Physical modeling plays
a crucial role in ensuring that fused features respect domain-specific constraints. For in-
stance, polarimetric entropy or scattering coefficients derived from PolSAR decompositions
are aligned with spectral features from optical data based on shared physical proper-
ties, such as surface reflectance or vegetation indices. Cross-modal alignment modules
incorporate these constraints to enhance the coherence of fused representations, ensur-
ing that the model captures complementary information without compromising physical
consistency. This section explores various multimodal approaches applied to few-shot
PolSAR classification.

3.4.1. Cross-Modal Learning

Cross-modal learning enables models to utilize data from different modalities (e.g.,
combining PolSAR data with optical or textual data) to improve few-shot classification tasks.
In traditional unimodal approaches, PolSAR classification relies solely on polarimetric data,
which may not fully capture all relevant information, particularly in complex environments.
However, by integrating additional modalities, the model can learn more comprehensive
representations of the target objects or scenes.

Quan et al. [89] proposed a novel cross-modal feature learning approach that effec-
tively fuses SAR and optical data to improve land cover classification. The innovation lies
in the use of a dual-stream network, where SAR and optical branches process respective
modality features. A cross-modal interaction module enhances the integration of these
complementary features, improving the model’s ability to classify land cover types with dis-
tinct data characteristics. This method significantly outperforms traditional single-modal
approaches. Dong and Hänsch [90] proposed a multimodal SSL framework for semantic
analysis of PolSAR imagery, aiming to enhance segmentation performance by leveraging
both SAR and optical data. The key innovation of this method lies in the extension of the
DINO framework (self-distillation with no labels) using Vision Transformers and incorpo-
rating multimodal data (SAR and optical) during the pretraining phase. This allows the
model to learn more diverse and generalized representations, which significantly improves
semantic segmentation results, especially in scenarios with limited labeled data. Li et al. [91]
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proposed the multi-feature dual-stage cross manifold attention network (MF-DCMANet)
for PolSAR target recognition, introducing several key innovations in feature extraction
and fusion. One of the primary innovations is the combination of monogenic features and
polarization features through a dual-stage cross-fusion process. The cross-feature network
(CFN) is utilized to extract mid-level semantic information, while the cross-manifold atten-
tion (CMA) module captures nonlinear relationships between features on the Grassmann
manifold, enhancing the model’s ability to represent rich and fine-grained information.
Furthermore, the use of local attention windows improves local feature representation
while reducing computational costs. Jin et al. [92] introduced a cross-modal contrastive
learning (CMCL) method designed for remote sensing image classification. This approach
incorporates both intra-modal contrastive learning (IMCL) and CMCL, optimizing them
jointly to capture semantic consistency within and between modalities. The innovation lies
in the hybrid cross-modal fusion module (HCFM), which compactly integrates local and
global cross-modal features. This allows for more effective classification of multimodal
remote sensing images (MRSI) by capturing global dependencies and complementary infor-
mation across modalities. Hong et al. [93] introduced X-ModalNet, a semi-supervised deep
cross-modal framework that integrates multispectral imagery (MSI), synthetic aperture
radar (SAR), and hyperspectral imagery (HSI) for improved remote sensing classification.
The key innovation lies in its three-module architecture: a self-adversarial (SA) module to
enhance feature robustness, an interactive learning (IL) module to facilitate multimodal
feature fusion, and a label propagation (LP) module to improve classification in semi-
supervised scenarios. Wang et al. [94] proposed a novel cross-modal graph knowledge
representation and distillation learning (CGKR-DL) framework for land cover classification.
The key innovation lies in leveraging both GCNs and CNNs to capture the remote topology
and local feature structures of multimodal remote sensing data. This method addresses
the limitations of traditional CNN-based cross-modal distillation methods by introduc-
ing a multi-granularity graph distillation module, which facilitates stable and effective
knowledge transfer. The framework integrates a feature distillation module based on graph
discrimination to guide knowledge transfer from teacher to student networks, enabling
accurate classification even when some modal data are missing.

3.4.2. Multimodal Fusion

In PolSAR FSL, multimodal fusion techniques can be applied to combine the strengths
of multiple data sources [95]. Ren et al. [96] proposed a multimodal sparse representa-
tion (MSR) framework for PolSAR image classification, focusing on feature fusion across
different modalities. The key innovation lies in combining polarimetric data features,
target decomposition features, and texture features to form a comprehensive multimodal
representation. The framework utilizes multimodal manifold regularizations to preserve
the intrinsic structure of the data from various modalities. The fusion process projects these
high-dimensional multimodal features into a low-dimensional space, improving classifica-
tion performance. Sebt and Darvishnezhad [97] proposed a feature fusion method based
on a local binary graph for PolSAR image classification, integrating features extracted from
both CNNs and GCNs. The key innovation of this approach is the introduction of a mini-
batch GCN that reduces computational costs while handling large-scale PolSAR datasets.
By employing a local graph-based fusion method, the framework enhances classification
accuracy by fusing the distinct features extracted by CNNs and GCNs, while reducing
redundant information through local spatial neighborhood modeling. Shi et al. [98] intro-
duced a novel approach that integrates a double-channel convolutional network (DCCNN)
and an edge-preserving Markov Random Field (MRF) to enhance classification accuracy
in PolSAR images. The key innovation lies in combining a Wishart-based complex matrix
subnetwork with a multi-feature subnetwork to jointly capture statistical characteristics and
high-level semantic features. Additionally, the MRF component specifically preserves edge
details and reduces speckle noise, leading to superior classification performance in hetero-
geneous terrain. Yang et al. [99] proposed a novel method for PolSAR image classification
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that integrates ResBlock and the convolutional block attention module (CBAM) to enhance
the extraction of mid-level features and polarimetric information from PolSAR data. The
key innovation of this approach lies in utilizing CBAM to adaptively focus on the most
important spatial and channel features, improving classification accuracy while reducing
computational complexity. Additionally, a feature selection method based on channel
attention is introduced to minimize redundant information and enhance efficiency. Geng
et al. [100] proposed a feature-enhanced superpixel hypergraph neural network (FESHNN)
for PolSAR image classification, which innovatively combines both spatial and polarimetric
correlations to improve classification performance. The key innovation lies in the use of a
superpixel hypergraph neural network (SHNN) that fuses spatial features and polarimetric
features through the construction of a hypergraph. This hypergraph aggregates information
from neighboring vertices, allowing for a better representation of both local and global
features. Additionally, a feature enhancement module is incorporated to refine pixel-level
and superpixel-level features, further enhancing the model’s discrimination ability.

Wang et al. [101] introduced a multiscale superpixel-guided weighted graph convolu-
tional network (MSGWGCN) for PolSAR image classification, addressing the challenge of
misclassification due to various object sizes and complex boundaries. The key innovation
lies in the use of multiscale superpixel segmentation to capture both local and global spatial
features, which are further processed by a weighted graph convolutional network that
adapts to land cover objects of different sizes. Additionally, a multiscale feature cascade
fusion module fuses pixel-level features at different scales, significantly enhancing classifi-
cation accuracy and boundary preservation. Jamali et al. [102] proposed a local window
attention Transformer (PolSARFormer) for PolSAR image classification, combining both
CNNs and ViT to effectively classify PolSAR imagery. The key innovation of this method
lies in utilizing a Local Window Attention mechanism, which restricts the receptive field of
each query token to its local neighborhood, significantly reducing the computational cost
associated with traditional self-attention models like Swin Transformer. Ren et al. [103]
introduced a low-rank constrained multimodal tensor representation (LR-MTR) method
for PolSAR scene classification. The key innovation lies in utilizing multiple target de-
composition methods (e.g., Freeman, H/A/α, Pauli) to form pseudo-color images, which
are then integrated into a tensor representation. This multimodal fusion, constrained by
low-rank tensor norms, captures cross-modal information while reducing redundancy. The
LR-MTR method improves classification accuracy by preserving the intrinsic relationships
between modalities. Liu et al. [104] introduced a self-trained deep forest (STDF) frame-
work for urban impervious surface area extraction in arid areas using limited samples,
leveraging both multispectral and PolSAR imagery. The primary innovation lies in the
fusion of multispectral features from Sentinel-2 images and polarimetric features from
GaoFen-3 PolSAR data, combined with a self-training mechanism that enhances classifica-
tion accuracy despite the limited availability of labeled samples. The framework employs
a deep forest model, which is particularly effective for small datasets due to its adaptive
model complexity and ability to reduce overfitting. Hua et al. [105] proposed a feature
fusion network for PolSAR image classification that integrates both physical and deep
features to enhance classification accuracy, especially with limited labeled samples. The
key innovation lies in the introduction of a learnable feature fusion module (LFFM) and
an improved feature pyramid network (IFPN). The LFFM autonomously selects the most
relevant features during the fusion process, while the IFPN captures multiscale feature
representations by combining high- and low-level features. These innovations improve the
interpretability and performance of the model by leveraging the complementary character-
istics of physical and spectral features. Wang et al. [106] introduce a novel approach for
fusing SAR and optical data to improve land cover classification. The key innovation lies
in using a dual-stream network, where ResNet extracts deep features from optical images,
and PidiNet captures edge features from SAR data. The framework also incorporates the
iAFF fusion module to facilitate interaction between low- and high-level features from both
modalities. Additionally, the ASPP module is used to enhance global feature dependency
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by managing interactions between high-level features. This method significantly improves
classification performance by combining complementary information from both SAR and
optical imagery.

Fernandez-Beltran et al. [107] proposed a hierarchical multimodal probabilistic la-
tent semantic analysis (HMpLSA) approach for remote sensing image fusion, specifically
integrating SAR and multispectral imaging (MSI) data. The novelty of this framework
lies in its two-level latent topic architecture. The first level generates individual semantic
representations from SAR and MSI, while the second level fuses these representations into
a common semantic space, uncovering inter-sensor feature patterns at a higher abstraction
level. This dual-path fusion approach enables more effective unsupervised land cover
classification by preserving the multimodal structure and enhancing semantic pattern
discovery. Yang et al. [108] introduced a novel CNN-based polarimetric decomposition fea-
ture selection framework for PolSAR image classification, offering several key innovations
in feature selection. A significant contribution is the use of a 1D CNN to efficiently select
high-quality features from polarimetric target decomposition, which are essential for terrain
classification. By employing the Kullback–Leibler distance (KLD), the framework optimizes
feature selection by avoiding random selection and improving efficiency. Unlike traditional
methods, this approach considers the performance of feature combinations rather than
individual contributions. Cao et al. [109] introduced the DFAF-Net, a dual-frequency Pol-
SAR image classification network that innovatively uses frequency-aware attention blocks
(FABs) and an adaptive feature fusion block (AFFB). The key advancements of this method
lie in its ability to leverage complementary information from dual-frequency PolSAR data.
The FAB modules generate attention masks specific to each frequency, enhancing the rep-
resentation of polarimetric and spatial features by focusing on critical frequency-related
details. The AFFB module adaptively fuses these frequency-specific features, significantly
improving the distinction between similar land cover classes. Chu et al. [110] proposed
a novel DL approach for fusing PolSAR and optical images in land-cover semantic seg-
mentation tasks. The key innovation lies in the spatial dense channel attention module
(SDCAM), which captures local channel relationships at different spatial positions. This
enables effective feature fusion between PolSAR and optical images by enhancing the local
channel correlations, a critical factor for accurately distinguishing complex land-cover
types. The dual-stream Siamese encoder allows for separate feature extraction from each
modality, which is then fused using the SDCAM. This approach, coupled with a symmetric
skip-connection decoder, leads to improved segmentation performance by leveraging the
complementary strengths of both PolSAR and optical imagery.

4. Comparison of Different Few-Shot PolSAR Image Classification
4.1. Comparison of Performance on Benchmark Datasets

Table 3 evaluates and compares the performance of various classification techniques
on a benchmark Polarimetric SAR (PolSAR) dataset, Flevoland II. It includes both patch-
based (PB) methods, direct segmentation (DS) methods, and data augmentation (DA)-based
methods. The approaches range from traditional classifiers like SVM and CNN [111] to ad-
vanced deep learning architectures such as U-Net [112], SETR [113], and PolSARMixer [49].
The results demonstrate the significant advantage of data augmentation in improving
classification accuracy and robustness.

For U-Net and SETR, incorporating data augmentation (DA) improves their perfor-
mance compared to the DS approach. U-Net-DA achieves a significant improvement
in mIoU and mDice compared to U-Net-DS. SETR-DA benefits notably from data aug-
mentation, with clear gains across all metrics. Traditional methods (e.g., SVM-PB and
CNN-PB) have considerably lower performance metrics, especially for classes like maize
and onions, showcasing their limitations in handling PolSAR data’s complex feature space.
Direct segmentation methods (U-Net-DS, SETR-DS) often face challenges in global infer-
ence and boundary resolution, as evidenced by their relatively lower metrics compared to
DA-based methods.
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Table 3. Classification results of different methods in the Flevoland II dataset.

Class SVM-PB CNN-PB
[111]

U-Net-DS
[112]

SETR-DS
[113]

U-Net-DA
[112]

SETR-DA
[113]

PolSARMixer
[49]

Potato 99.70 99.52 99.39 99.46 99.86 99.10 99.72
Fruit 99.98 100.0 99.04 92.63 96.99 99.58 99.49
Oats 88.89 100.0 97.67 88.94 95.06 99.54 97.52
Beet 97.62 94.25 98.28 99.48 99.50 97.94 99.51
Barley 99.58 97.61 99.63 99.41 99.76 98.73 99.68
Onions 31.93 90.47 86.13 67.43 85.92 97.69 97.26
Wheat 99.76 96.67 99.85 99.95 99.76 98.67 99.67
Beans 94.05 92.38 100.0 100.0 90.33 93.51 97.84
Peas 99.93 100.0 99.75 86.57 97.47 97.94 98.97
Maize 79.21 98.10 1.57 0.00 93.10 95.95 97.56
Flax 98.50 94.76 99.95 79.50 99.17 98.93 99.30
Rapeseed 99.31 99.53 99.80 99.90 99.84 98.38 99.73
Grass 93.88 97.71 98.15 94.86 98.03 97.75 98.71
Lucerne 93.91 96.67 97.76 94.70 97.72 99.12 98.71

OA 97.69 96.80 98.16 96.67 99.12 99.21 99.51
AA 91.17 96.98 91.21 85.92 96.61 98.75 98.83
mIoU 86.69 87.78 82.79 76.27 94.89 97.96 98.14
mDice 91.23 90.39 84.35 80.28 97.29 98.96 99.06
Kappa 0.9438 0.9674 0.9780 0.9603 0.9896 0.9906 0.9940

Among all methods, PolSARMixer achieves the best overall performance, with the
highest overall accuracy (OA: 99.51%), average accuracy (AA: 98.83%), mean intersection
over union (mIoU: 98.14%), mean Dice coefficient (mDice: 99.06%), and Kappa coefficient
(0.9940). These results confirm the critical role of data augmentation in few-shot PolSAR
classification tasks, effectively mitigating class imbalance and improving the generalization
of classification models. The accuracy metrics in the table align with the referenced study’s
findings, making them suitable for inclusion in a comprehensive survey.

The comparative results of different methods for few-shot classification on the San
Francisco dataset are presented in Table 4. Traditional methods, such as KNN and SVM, ex-
hibit relatively low performance, with OA values of 60.98% and 62.09%, respectively, under
the five-shot condition. In contrast, methods leveraging advanced SSL and transfer learning
strategies achieve significantly higher accuracy. Among SSL-based methods, SimCLR [114]
and RSS (ResNet-based SimSiam [115]) demonstrate improved performance, achieving OA
values of 79.17% and 79.59%, respectively, for five-shot classification. However, methods
integrating transfer learning, such as MI-SSL [70], PCLNet [73], and SSPRL [27], further
enhance classification accuracy. Notably, the MLRSS-RC (ResNet-based MLR-SimSiam with
CBAM) method achieves the best results, with an OA of 82.95% and a Kappa coefficient
of 79.07% under the five-shot condition, and an OA of 88.73% and a Kappa coefficient of
84.64% under the ten-shot condition. These results underscore the effectiveness of com-
bining transfer learning and self-supervised frameworks in addressing the challenges of
few-shot PolSAR image classification.

To evaluate the effectiveness of multimodal approaches for PolSAR classification, we
compared the performance of various methods on the Flevoland I dataset. Specifically, the
method LI-PS-SF in [105] incorporates both physical and deep features, showing significant
improvements in classification accuracy. The comparison is detailed in Table 5, which
presents the OA and Kappa for each method. The dataset consists of 15 different terrain
classes, with 10 labeled samples per class, totaling 150 labeled samples.



Remote Sens. 2024, 16, 4632 23 of 31

Table 4. Few-shot experimental results of different methods on the San Francisco dataset. The best
performance for each backbone is highlighted in bold.

Method 5 Samples per Class 10 Samples per Class
OA Kappa OA Kappa

KNN 60.98 51.23 65.70 57.12
SVM 62.09 52.62 69.30 61.62
CNN [111] 75.63 69.54 80.01 75.01
MLRSS-C [71]
(CNN-based) 76.47 72.72 82.27 78.23

SimCLR [114] 79.17 73.96 82.22 77.77
RSS [115] 79.59 74.49 81.21 76.51
MLRSS-R [71]
(ResNet-based) 79.85 75.13 85.96 80.62

MI-SSL [70] 80.54 73.64 87.61 83.21
PCLNet [73] 82.65 78.31 84.27 80.34
SSPRL [27] 82.10 77.59 88.51 83.09
MLRSS-RC [71] 82.95 79.07 88.73 84.64

Table 5. OA (%) and Kappa of the Flevoland I dataset with different methods.

Method LI-PS-SF
[105]

ProtoNet
[116]

PFDD
[117] WT [118] TMST

[119]
PASGS

[120]
SDBCS

[31]
Super-

RF [121]
MPCNN

[122]

Training ratio 10 samples per class 1% 10%
Total number 150 1677 16771

Stem beans 97.90 99.76 80.97 99.64 96.40 93.77 93.48 96.77 99.79
Rapeseed 93.25 59.55 79.32 84.43 81.95 70.55 84.00 53.13 93.55
Bare soil 100 100 86.61 99.20 99.31 81.03 99.94 94.57 99.84
Potatoes 96.69 93.14 88.01 78.00 65.31 92.52 94.29 96.04 96.04
Beet 97.10 97.63 92.78 97.65 93.45 86.85 79.91 95.70 98.00
Wheat 2 86.05 85.57 65.10 98.76 72.48 81.72 92.03 79.93 95.97
Peas 100 98.62 88.82 97.57 92.29 94.66 85.62 98.64 99.00
Wheat 3 99.51 98.44 95.39 97.46 90.05 95.65 97.52 99.39 93.88
Lucerne 97.63 95.72 94.88 99.00 95.07 93.01 91.53 96.63 98.45
Barley 100 99.92 97.79 99.67 95.64 95.08 99.68 100 40.25
Wheat 88.14 94.40 80.09 89.58 87.09 93.82 96.88 99.05 95.52
Grasses 88.95 89.18 69.35 88.98 72.13 70.87 88.53 84.03 84.03
Forest 99.73 98.23 83.05 96.76 90.32 99.26 97.23 95.88 99.97
Water 100 97.88 97.63 93.13 96.30 90.56 83.14 100 91.27
Building 84.76 90.61 86.53 82.59 76.87 40.76 84.24 0 96.01

OA 96.01 92.93 86.30 92.50 87.01 89.73 91.87 92.18 91.87
Kappa 94.34 92.63 84.51 91.77 85.42 88.83 91.13 91.44 91.13

The results demonstrate that the LI-PS-SF significantly outperforms other SOTA meth-
ods. In particular, it achieves a 9.71% improvement in OA over PFDD and 3.51% over
WT, both of which are notable DL methods. Moreover, compared with semi-supervised
methods such as TMST, the proposed approach achieves a higher OA by 9.00%. Even when
compared with approaches that utilize significantly more labeled data, such as PASGS
(which uses 1% of training samples, totaling 1677 samples) and Super-RF (which uses 10%
of training samples, totaling 16,771 samples), the proposed method still achieves higher
OA by 6.28% and 3.83%, respectively.

Table 6 presents the classification results of different methods when the target-domain
dataset is Germany. The evaluated models include CV-CNN [123], RCV-CNN [111],
PCLNet [27], SSPRL [73], CLIN [124], MKL [81], and CCFSLC [44], along with its cor-
responding real-valued model, RCFSLC [44]. The key metrics used for comparison are OA,
AA, recall, F1 score, and Kappa coefficient.
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Table 6. Comparison of classification results of different methods when the target-domain dataset is
Oberpfaffenhofen.

Category CV-CNN
[123]

RCV-CNN
[111]

PCLNet
[27] SSPRL [73] CLIN [124] MKL [81] RCFSLC

[44]
CCFSLC

[44]

Built-up area 52.83 47.99 75.15 76.03 63.98 61.51 56.76 70.62

Woodland 49.43 98.44 74.79 75.94 94.05 93.74 92.10 94.06

Open area 96.64 92.89 96.23 93.66 92.72 96.01 97.48 95.12

OA (%) 76.80 82.71 86.93 85.92 85.80 86.96 86.28 88.80

AA (%) 66.30 79.78 82.06 81.88 83.61 83.76 82.11 86.60

Recall (%) 67.80 79.56 83.40 82.94 81.65 84.06 82.68 86.11

F1 (%) 66.90 76.67 82.67 82.36 81.86 82.69 81.05 86.03

Kappa 0.5952 0.7098 0.7749 0.7585 0.7611 0.7771 0.7645 0.8087

As seen in Table 6, CCFSLC achieves the highest Overall Accuracy (OA) of 88.80%,
outperforming other methods by a significant margin. It also attains the highest AA of
86.60% and the highest Kappa coefficient of 0.8087, indicating superior classification perfor-
mance and reliability. In category-specific accuracy, CCFSLC shows strong performance
across all categories, particularly in the “Woodland” and “Built-up area” categories.

4.2. Qualitative Comparison of Different Algorithms

Table 7 presents a comparative analysis of different methods used in PolSAR few-shot
image classification, categorized into transfer learning, meta-learning, data augmentation,
and multimodal learning paradigms. Each method has distinct advantages and disadvan-
tages, which should be considered when selecting an appropriate strategy for few-shot
PolSAR image classification.

Data augmentation helps address the scarcity of labeled PolSAR data by generating
synthetic samples, enhancing model robustness. Traditional techniques, such as flipping
and rotating, are simple and effective but fail to capture the complexity of PolSAR data.
Advanced methods, like GANs, produce more realistic data at the cost of higher com-
putational demands. However, despite increasing sample diversity, both traditional and
advanced methods often struggle to generalize to new, unseen classes, particularly when
the augmented data does not adequately represent the true distribution of PolSAR images.

Meta-learning is specifically designed for FSL scenarios, excelling at generalizing
to new classes with limited labeled data. Metric-based approaches classify new data by
measuring proximity to labeled examples, making them highly effective for such tasks.
However, the complexity of meta-learning models poses significant challenges during
implementation and training, particularly for PolSAR-specific features that require care-
ful tuning.

Transfer learning mitigates overfitting by leveraging knowledge from a source domain,
typically a large dataset, to improve classification performance in the target domain with
minimal labeled data. This approach reduces the need for large datasets by adapting
models trained on different tasks. However, it is susceptible to negative transfer, where the
source knowledge does not align with PolSAR-specific characteristics, potentially harming
performance.

Multimodal learning integrates information from multiple data sources, enhancing
feature representation and improving classification accuracy, particularly when polarimet-
ric data alone is insufficient. However, this approach requires sophisticated models and
significant computational resources, making implementation and training more challenging.

In conclusion, the learning paradigm choice depends heavily on the specific characteris-
tics of the PolSAR classification task, the availability of labeled data, and the computational
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resources at hand. Future research should focus on hybrid methods that combine the
strengths of these paradigms while addressing their respective limitations.

Table 7. Comparative analysis of different methods in each paradigm of few-shot image classification
algorithms.

Category Method Advantages Disadvantages

Transfer learning

Pre-trained
Easy to implement, good
feature selection and
transformation

Data distribution is often
different

Self-supervised Alleviates overfitting Prone to overfitting

Domain adaption Alleviates overfitting The number of iterations
should be fewer

Meta-learning
Optimization-based Makes models learn new tasks

quickly
Extensive calculations and
high memory consumption

Metric-based Easy to calculate Weak interpretability and
high memory consumption

Data augmentation
Data generation-based Increases sample numbers Cannot completely solve

overfitting

Feature enhancement-based Increases feature numbers Easy to be disturbed by noise

Multimodal
Knowledge transfer-based Learns better feature

representation
Easy to be disturbed by noise
during the fusion process

Metric-based Simple calculation and high
accuracy

Weak interpretability and
high memory consumption

5. Challenges and Future Trends in Few-Shot PolSAR Image Classification

Few-shot PolSAR image classification faces several challenges that hinder its scalability
and performance. In this section, we identify key challenges and provide corresponding
future trends to address them systematically.

1. Data scarcity and imbalance: One of the primary challenges in PolSAR image
classification is the limited availability of labeled data, especially for rare terrain types,
leading to biased models and poor generalization.

Future trend: To mitigate this, advanced semi-supervised and unsupervised learning
methods should be developed. For instance, integrating self-supervised learning (SSL)
with domain-specific physical priors can help extract meaningful features from unlabeled
PolSAR datasets and improve classification accuracy across all terrain types.

2. Speckle noise and data variability: Speckle noise significantly reduces the spatial
consistency of PolSAR images, complicating classification tasks. Additionally, domain
shifts caused by sensor differences, environmental factors, or acquisition conditions further
degrade model performance.

Future trend: Physics-informed deep learning models that incorporate noise models
specific to PolSAR data can enhance noise robustness. Furthermore, domain-invariant
feature learning and adversarial domain adaptation techniques should be employed to
handle data variability and improve cross-domain generalization.

3. High dimensionality and computational complexity: PolSAR data contains high-
dimensional information across multiple polarization channels, leading to computational
inefficiencies and increased risks of overfitting.

Future trend: Lightweight architectures, such as efficient convolutional neural net-
works and Transformer-based models tailored for PolSAR data, should be developed.
Dimensionality reduction techniques leveraging polarimetric decomposition can also re-
duce computational complexity while preserving critical information.

4. Lack of generalization across modalities: While multimodal approaches offer
enhanced feature representations, integrating PolSAR data with other modalities such as
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optical or hyperspectral data remains challenging due to differences in resolution, noise,
and data formats.

Future trend: Cross-modal fusion techniques should align features across modalities
while respecting their unique physical characteristics. Techniques like graph-based learning
and contrastive learning are promising for ensuring coherent multimodal representations.

5. Interpretability and explainability: Deep learning models often operate as black
boxes, limiting interpretability, especially in critical applications like disaster management
or defense.

Future trend: The integration of explainable AI (XAI) techniques into PolSAR classi-
fication frameworks is essential. For instance, attention mechanisms and saliency maps
can highlight important polarimetric features, improving both model interpretability and
user trust.

6. Conclusions

In this survey, we explored the recent advancements in deep learning methods for
few-shot PolSAR image classification. The inherent challenges of PolSAR data, such as
limited labeled samples, domain shifts, and complex polarimetric features, make few-shot
learning a promising solution for this task.

Data augmentation techniques, both traditional and advanced methods using GANs,
provide a means to expand limited PolSAR datasets by generating synthetic samples. While
traditional methods like flipping and rotating help improve generalization, GAN-based
approaches allow for more sophisticated data generation that can enhance the model’s
ability to distinguish between fine-grained terrain types and handle the complexity of
polarimetric data. Transfer learning, particularly through the use of pre-trained models
like ResNet or ViTs, has been shown to improve classification performance by leveraging
features learned from large external datasets. This technique helps mitigate the overfitting
problem inherent in training deep networks with limited data and can be further refined
through domain adaptation techniques that align the feature distributions between different
PolSAR datasets. Meta-learning-based methods, especially metric-based approaches such
as prototypical networks and RNs, have demonstrated strong performance in few-shot
PolSAR tasks by learning transferable metrics that generalize across new classes with
minimal labeled data. Optimization-based meta-learning methods like MAML also provide
rapid adaptation to new tasks, though their performance may be hindered by the unique
characteristics of PolSAR data. By integrating multiple modalities, such as optical and
PolSAR data, multimodal-based methods offer improved feature representation, leading to
enhanced classification accuracy. These approaches capture complementary information
from different sources, though they come with increased computational complexity and
training challenges.

In conclusion, the choice of learning paradigm for few-shot PolSAR image classifica-
tion depends on task-specific requirements, data availability, and computational constraints.
While transfer learning and data augmentation offer scalable solutions to the limited data
problem, meta-learning provides specialized methods for few-shot tasks. Multimodal learn-
ing, though resource-intensive, can significantly enhance classification performance. Future
research should focus on hybrid models that combine the strengths of these approaches
while addressing their limitations, aiming for robust and scalable solutions to real-world
PolSAR classification problems.
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