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Abstract: In the field of modern navigation and positioning, the ground-based eLoran system, serves
as a vital backup to the global navigation satellite system (GNSS), which is crucial for numerous
key applications. Signal demodulation, integral to eLoran’s precision timing and information trans-
mission, significantly affects system performance. Aiming at the pulse position modulation (PPM)
characteristics of eLoran signals, this paper introduces an innovative phase spectrum smoothing
demodulation (PSSD) algorithm, crafted to improve demodulation performance under complex
noisy and interference-laden conditions. Following a systematic review of existing demodulation
techniques in eLoran, this paper details the theoretical foundation, key steps, and significant im-
pact of parameter selection for the PSSD algorithm. Then, the unique advantages in dealing with
noise, continuous wave, and skywave interference are analyzed and verified. Through extensive
experimental validation under various SNR and interference conditions, the PSSD algorithm shows
significant superiority in demodulation performance compared with the traditional envelope phase
detection (EPD) algorithm. The effectiveness of the PSSD algorithm in interference mitigation and its
stable performance across diverse conditions confirm its potential to meet the high-precision timing
requirements of eLoran systems, contributing to the advancement of modern communication systems.

Keywords: eLoran; phase spectrum smoothing demodulation; signal reception processing; modern
communication systems

1. Introduction

In the present era, the global navigation satellite system (GNSS) acts like an invisible
net, providing us with high-precision positioning, navigation, and timing (PNT) services.
Its significance is evident [1,2]. However, much like a double-edged sword, while GNSS
brings convenience, its vulnerability to various interferences and spoofing attacks poses a
threat to applications in related fields [3–6]. This vulnerability compels us to reevaluate
the reliability of PNT services and information transmission, prompting us to actively
explore reliable alternative or complementary technologies. In this context, the enhanced
Loran (eLoran) ground backup system emerges. The eLoran system, with its strong
anti-interference ability, wide coverage, stability, and excellent performance, serves as an
important supplement and backup for the GNSS system [7–10]. In recent years, many
countries around the world have actively engaged in or resumed development of the
eLoran system. This trend indicates that the establishment and advancement of the eLoran
system are not only inevitable requirements for the construction of time–frequency systems
in various countries but also indispensable and crucial parts of enhancing the national
satellite–ground integrated PNT system [11–13].
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In eLoran receivers, demodulation is a crucial signal processing module, directly
affecting the accuracy of timing and information transmission. Globally, scholars have
extensively researched eLoran demodulation technology. Currently, the commonly used
eLoran demodulation technology is the envelope phase detection (EPD) method [14]. It
extracts phase differences by sampling the envelopes of two orthogonal signal paths to
achieve demodulation, but has limitations in anti-interference and noise resistance. In 2007,
Lo et al. proposed the signal matching correlation–pulse position detection (SMC-PPD)
algorithm based on signal sliding correlation in the time domain [15]. However, as noise
and interference increase, the error frequency of peak position detection significantly rises,
leading to a higher bit error rate. In 2020, Yuan et al. proposed the envelope correlation–
phase detection (EC-PD) algorithm, which combines two envelope correlation schemes for
different scenarios [16]. It studies the impact of skywave on signal-to-noise ratio (SNR)
gain and switches adaptively based on it, improving modulation performance to some
extent. However, it remains in the time domain phase demodulation category. In 2022,
Lyu et al. proposed an algorithm based on the log likelihood ratio (LLR) [17]. It calculates
and compares the probability of each bit, skips the demodulation process, and improves
the decoding success rate to a certain extent. However, it does not consider the impact
of various interference environments on probability calculations and requires further
derivation and verification. In 2024, our research achieved a remarkable breakthrough by
successfully introducing machine learning into eLoran demodulation research. We deeply
explored and proposed the application of machine learning algorithms like MSVM. The
experimental results show their excellent performance and application potential. However,
due to resource limitations, they could not be fully implemented, tested, and optimized,
and thus were not used as comparison objects in this paper [18].

To enhance the performance of eLoran receivers in complex electromagnetic environ-
ments such as continuous wave interference (CWI) and high noise levels, and to ensure
the functional realization of eLoran system, this study introduces an innovative phase
spectrum smoothing demodulation (PSSD) algorithm from a new perspective. Based on
the pulse form and spectral characteristics of eLoran signal, the PSSD algorithm employs
advanced time–frequency domain signal processing techniques to minimize the impact
of noise and interference. By leveraging phase difference discrimination in the frequency
domain, it aims to enhance the accuracy and reliability of signal demodulation.

The similar spectral smoothing technology finds extensive applications in other signal
processing fields, such as audio signal processing (noise reduction, echo cancellation,
and audio enhancement), image processing (image restoration, denoising, and super-
resolution imaging), communication systems (improving signal transmission reliability and
efficiency by resisting multipath interference and frequency-selective fading), as well as
biomedical imaging, radar signal processing, seismic data processing, and astronomy data
analysis [19–26]. The introduction of PSSD is also of far-reaching significance, making
a substantial contribution to promoting the development and application of the eLoran
system and related fields, mainly involving the following three aspects.

Firstly, in terms of technological innovation, the PSSD algorithm brings new ideas
and methods for eLoran demodulation technology. It integrates advanced signal process-
ing concepts and introduces a combined time–frequency domain processing approach,
expanding the boundaries of signal processing and leading the technological development
direction in this field.

Secondly, in terms of system performance improvement, it significantly enhances
the stability of the eLoran system in harsh environments, improves timing accuracy and
information transmission capabilities, endows the system with stronger environmental
adaptability, and meets users’ demands for high-precision PNT services.

Thirdly, in terms of promoting industry development, it helps to promote the upgrad-
ing of eLoran-related industries, provides new technical support for industrial develop-
ment, drives the development of related fields such as communication and navigation,
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promotes technological integration among various fields, and cultivates professional talents,
providing guarantees for the sustainable development of the industry.

In the following sections, we will elaborate on the principles and implementation of
the PSSD algorithm, as well as present the experimental results and performance analysis.

2. Background Principles
2.1. ELoran Signal System

The eLoran system is an internationally standardized ground-based radio
system [27,28], an advanced iteration of the Loran-C system incorporating Eurofix data-link
techniques [29]. Operating within the frequency band of 90 to 110 kHz with a central carrier
frequency of 100 kHz, the eLoran system ensures stable and reliable signal transmission.
The most significant improvement in the system was achieved by modulating information
onto the third to eighth pulses of each pulse group, thereby achieving efficient data com-
munication. The standard current waveform at the base of the eLoran signal transmitting
antenna is defined by Formula (1) [30].

s(t) =

{
A(t− τ)2 exp

(
−2 (t−τ)

65

)
sin(2π fct + Pc), τ ≪ t≪ 65 + τ

0, t < τ
(1)

where A is a constant related to the peak amplitude; t is the time in µs; τ is the envelope-
to-cycle difference in µs; fc = 100 kHz is the carrier frequency, and Pc = 0 or π is the phase
code parameter, in radians. According to the above definition, Figure 1 shows the standard
Loran C pulse waveform and the normalized amplitude spectrum.
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Figure 1. Standard Loran-C signal: (a) normalized signal waveform; (b) normalized amplitude spec-
trum.

The signal-to-noise ratio (SNR) of the Loran-C signal has its specific definition. It
refers to the ratio of the signal received level to the root mean square level value of the
atmospheric noise, and can be expressed as a dimensionless number or in decibels. Among
these, the signal level is defined as the effective value level of the continuous wave at 25 µs
after the starting point of the pulse envelope [31]. The SNR in the subsequent simulations
of this paper is all based on the above definition as the standard.

Each station chain in the eLoran system consists of a master station and several sub-
stations, distinguished by a unique group repetition interval (GRI) that facilitates rapid
identification and precise timing [32,33]. Both the master station and the sub-station have
two pulse group phase coding formats of A and B law (Amaster, Bmaster and Asub, Bsub),
alternated in a cyclical pattern for broadcasting, respectively [34,35].

By leveraging Eurofix data-link technology, the eLoran system introduces three-state
pulse position modulation (PPM) with time modulation quantities of 0 or ±1 µs, as shown
in Figure 2 [36,37]. This modulation takes advantage of the eLoran signal’s pulse character-
istics to form frame information.
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The frame construction is meticulously designed to carry information through a
specific modulation method based on the 128-character ASCII code [38]. Each frame consists
of 30 pulse groups with 180 modulated pulses. In each pulse group, the modulation status
of six pulses (third to eighth) corresponds to an ASCII character pattern and is converted
into a 7-bit binary code, enabling each frame to convey 210 bits of information [27]. It also
lays the groundwork for the dissemination of time code information and the potential
sharing of additional data, such as differential correction values, in the future.

The construction of frame information is designed to be resilient against common
transmission errors and interference. By integrating Reed–Solomon (RS) codes and Cyclical
Redundancy Check (CRC) codes with powerful error correction capabilities, the system’s
robustness is remarkably enhanced, providing a firm foundation for the demodulation
process [39–42].

2.2. Traditional EPD Algorithm

In the eLoran system, data acquisition hinges on demodulating the transmitted modu-
lation elements to reconstruct the frame information. For eLoran signals with a carrier cycle
of 10 µs, phase shifts of 0◦ or±36◦ are generated by emissions of 1 µs that are on-time, early,
or late. The EPD algorithm functions by assessing the phase differences at the time-domain
sampling points between the modulated signal and the reference signal (the first pulse of
group). It then converts these into corresponding modulation code words, and proceeds
with decoding to obtain the final time code information. This is a fundamental logic used
in eLoran receivers.

First of all, after the modulated signal passes through pre-processing modules (such
as BPF and anti-interference) and the phase tracking module, the signal is divided into I
and Q channels. Then, the I and Q branches interact with local sine and cosine carriers
and undergo low-pass filtering, thereby preserving the sine and cosine components of the
modulation phase and phase offset. The resulting quadrature sampled data are denoted as
(ai, bi), with the reference signal’s phase offset captured as (are f

i , bre f
i ). Using these data, the

phase difference (α-β) is calculated through Formulas (2)~(4).{
tanαi = sinαi/cosαi = ai/bi

tanβi = sinβi/cosβi = are f
i /bre f

i
(2)

tan(αi − βi) =
tanαi − tanβi

1 + tanαitanβi
=

aib
re f
i − bia

re f
i

aia
re f
i + bib

re f
i

(3)

αi − βi = arctan

(
aib

re f
i − bia

re f
i

aia
re f
i + bib

re f
i

)
(4)

where αi and βi represent the phase of the modulated signal and the reference signal at the
i-th sampling point, respectively, and αi − βi is the corresponding phase difference.
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Following this, the algorithm uses multi-threshold processing, set at ±18◦, to ascertain
the polarity of the phase difference. Phase differences within the −18◦~18◦ range are
deemed “0” modulation; those surpassing 18◦ are labeled as “+” modulation; and those
falling below −18◦ are recognized as “−” modulation. Ultimately, based on the statistical
outcomes from N sampling points, the modulation state is determined by a majority
decision, with error correction applied according to the principle of balanced modulation
when an equal number of modulation states occur [18,43].

Despite its wide usage, the EPD algorithm faces inherent limitations. As a time-
domain method, it requires high signal quality. However, eLoran signals are prone to
electromagnetic interference such as noise and CWIs, which causes severe waveform
distortion and phase detection errors, consequently affecting the decoding success rate.
Also, as an AM signal, the eLoran signal is not sampled on a perfect 100 kHz carrier,
introducing a certain bias in the 36◦ phase detection itself.

The example provided in Figures 3 and 4 illustrates the impact of noise and CWI on
signal waveform and the resulting phase difference curve after EPD demodulation. In this
pulse group, the correct modulation is “− 0 + 0 0 0”. However, due to the phase difference
often being within the wrong threshold range, the fourth, sixth, and seventh pulses are
all wrongly demodulated as “+” modulation. As the power of CWI and noise increases,
these fluctuations become more pronounced. This highlights the limitations of the EPD
algorithm and the potential errors in practical applications.
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Having evaluated the limitations of the EPD algorithm in the eLoran system, it is
clear that advanced demodulation techniques are urgently needed. These techniques
should address noise and interference issues while enhancing the reliability and precision
of the system. In the next section, we will explore innovative methods to overcome these
challenges and improve demodulation performance.
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3. Method Description

Building on the insights from the previous section, this section introduces a suite of
advanced demodulation algorithm designed to bolster the signal processing capabilities of
the eLoran system. Starting with a detailed explanation of the principles and steps of the
algorithm, the advantages of the method in anti-interference and its effectiveness in real
scenes is further studied.

3.1. Phase Spectrum Smoothing Demodulation

Phase detection demodulation technology is widely used in eLoran receivers. As
introduced in Section 2.2, the EPD algorithm relies on time-domain phase detection and
typically employs a BPF to improve signal quality. However, it has great limitations when
dealing with in-band noise and CWIs. To overcome these challenges, this paper proposes a
novel phase spectrum smoothing demodulation (PSSD) algorithm based on phase spectrum
filtering. This algorithm aims to more effectively suppress noise and interference through
frequency domain processing, thereby enhancing the demodulation performance of eLoran
signals. The following sections will detail its principles and steps.

1. Fast Fourier Transform (FFT) processing. For a given eLoran pulse signal x(t), the
FFT is performed to obtain its frequency domain representation X( f ), which includes
the signal’s amplitude and phase spectra. This information will be used for the
next step of phase spectrum smoothing. The FFT operation can be mathematically
represented as:

X( f ) = FFT(x(t)) =
∫ +∞

−∞
x(t)e−j2π f t (5)

Notably, in the FFT process for eLoran signals, the choice and application of the trun-
cation window are crucial. It is designed to pick out the effective portion of the signal
and reduces the noise energy. This enables a more accurate frequency components
analysis and lays the groundwork for subsequent phase smoothing processing.

2. Phase spectrum filtering. For the eLoran signal’s specific bandwidth, the key fre-
quency range components (denoted as Lfreq in the frequency domain X( f )) are sub-
jected to filtering. This process aims to maintain the integrity of the signal while
enhancing its phase stability and mitigating the impact of noise and interference on
the phase spectrum.
Let H( f ) represent the transfer function of the smoothing filter. The phase spectrum
filtering can be mathematically expressed as:

X f ilt( f ) = X( f )·H( f ) (6)

where X f ilt( f ) represents the frequency domain signal after smoothing. The choice of
the smoothing filter’s length and shape is critical, as it dictates the degree of smoothing
applied. The appropriate Gaussian window filter is selected through experimentation,
which effectively smooths the phase spectrum, reducing noise levels and controlling
phase jumps. This is crucial for the subsequent calculation of phase differences,
ensuring that the signal information used is both stable and reliable.

3. Phase difference vector acquisition. The purpose of this step is to calculate the
phase difference between the test signal and the reference signal within the frequency
domain. By comparing the complex spectra within the range of Lfreq, a phase difference
vector that reflects the changes in phase shift between the two signals can be obtained.
Moreover, it is necessary to address the discontinuity of the phase vector caused by
2π jumps.
For X f ilt,test( f ) and X f ilt,re f ( f ) in the frequency domain, calculate the phase vector
according to the real and imaginary parts of each frequency point as follows:

φtest( f ) = phase
(

X f ilt,test( f )
)

(7)
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φre f ( f ) = phase
(

X f ilt,re f ( f )
)

(8)

Given the phase φ( f ) at frequency point f, the unwrapping process is mathematically
defined to correct for discontinuities due to 2π jumps. Specifically, for each frequency
point f , the phase is adjusted as follows:

• If φ( f )− φ( f − 1) > π in the positive direction:

φ( f )← φ( f )− 2π (9)

• Alternatively if φ( f )− φ( f − 1) < −π in the negative direction:

φ( f )← φ( f ) + 2π (10)

The unwrapping operation is applied to both φtest( f ) and φre f ( f ), yielding the un-
wrapped phases φtest,unwrapped( f ) and φre f ,unwrapped( f ), respectively. This process
involves adjusting the phase at each frequency point to ensure continuity. Subse-
quently, the phase difference vector ∆φ( f ) is calculated as:

∆φ( f ) = φtest,unwrapped( f )− φre f ,unwrapped( f ) (11)

This approach ensures a continuous and consistently oriented representation of the
phase difference, which is essential for reliable frequency domain analysis.

4. Weighted phase difference calculation. Considering the PPM characteristics of eLoran
AM signals, the phase difference curves obtained from different modulated signals
exhibit a predominantly linear trend with different slopes in the frequency band, and
are symmetrically distributed near the 100 kHz frequency point.
Based on this feature, a suitable normalized weighting window is selected. Through
testing multiple window functions, the Gaussian window is chosen for its optimal
performance and is configured with suitable parameters to perform a weighted sum-
mation on the phase difference vector ∆φ( f ), resulting in a single weighted phase dif-
ference.

∆Φweighted = ∑ f ∆φ( f )e−
1
2 (

f− fc
σ )

2

(12)

Subsequently, the weighted phase difference ∆Φweighted is unwrapped in the range
−π/2 to π/2 to obtain ∆Φ, ensuring an effective demodulation range.

5. Modulation decision. Utilize the obtained ∆Φ to determine the modulation state of
the eLoran signal through the modulation decision process. The modulation decision
criteria are consistent with the EPD algorithm. Based on the value of ∆Φ, apply the
following decision criteria:

• If ∆Φ ≥ π/10, then the modulation decision is “+”.
• If −π/10 < ∆Φ < π/10, then the modulation decision is “0”.
• If ∆Φ ≤ −π/10, then the modulation decision is “−”.

A flowchart based on the above algorithm steps is shown in Figure 5. It is evident that
the FFT signal length, FFT resolution, signal bandwidth selection, and Gaussian window σ

are key parameters affecting the algorithm’s performance in this study. They collectively
determine the accuracy, stability, and computational efficiency of signal processing. We have
selected the following parameter values as relatively optimal configurations based on an in-
depth understanding of eLoran signal characteristics, previous design research experience
with eLoran receivers, and meticulous experimental analysis of parameter sensitivity.
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1. FFT Signal Length: The width of the truncation window U is set at 170 µs (specif-
ically, from −42.5~127.5 µs centered on the highest point of the standard signal).
This selection considers the pulse characteristics, effective duration, and SNR of the
eLoran signal.

2. FFT Resolution: Extensive experiments showed that increasing the FFT resolution
(e.g., by 100 Hz) does not significantly improve demodulation performance. Therefore,
a resolution of 1 kHz is set for the FFT, which balances the frequency resolution with
a sampling rate of fs = 2 MHz and computational efficiency.

3. Signal Frequency Bandwidth: The phase spectrum processing is focused on the
Lfreq = 92~108 kHz band, which covers the main frequencies and high-power compo-
nents of the eLoran signal.

4. Gaussian Window: Based on experiments, considering the spectral characteristics
and central frequency selectivity of the signal, we have adopted two sets of different
Gaussian window parameters:

• Phase Spectrum Smoothing: The window width is set to 5 (corresponding to
5 kHz), and σ is set to 1.5. This parameter selection aims to effectively smooth
the signal’s phase spectrum while maintaining its spectral characteristics.

• Phase Difference Weighted Summation: The window width is set to 17 (corre-
sponding to 17 kHz), and σ is set to 2. This parameter selection helps to improve
the accuracy of the weighted phase difference in summation process.

Experimental results indicate that the selected parameters demonstrate high perfor-
mance and good robustness of the algorithm under a variety of signal environments and
interference conditions, proving the rationality of our parameter selection.

The PSSD algorithm offers a more effective approach to demodulation in eLoran sys-
tems by addressing the limitations of traditional methods. Its frequency domain processing
and carefully selected parameters enhance the signal’s stability and accuracy, providing a
promising solution for improved demodulation performance.

3.2. SNR Gain

In eLoran systems and other radio systems, noise significantly impacts signal de-
modulation performance. SNR gain, which enhances the signal strength relative to noise
during demodulation through specific algorithms or techniques, is crucial for improving
the system’s demodulation accuracy and reliability.

The EPD algorithm, although improving the SNR to some extent through BPF, is
evidently insufficient in handling in-band noise. Particularly in high-intensity noise en-
vironments, the residual noise energy can cause signal distortion and adversely affect
demodulation accuracy. In sharp contrast, the newly proposed PSSD algorithm showcases
significant advantages in handling in-band noise, especially under low SNR conditions.

The PSSD method leverages phase difference information from the in-band phase
spectrum for demodulation. Firstly, a truncation acquisition technology is employed
to collect the useful segment of the signal by means of windowing and perform FFT,
effectively reducing noise and interference energy. Subsequently, a Gaussian window is
used to smooth the effective part of the spectrum, further enhancing the in-band SNR. This
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processing method cleverly combines the unique pulse characteristics of eLoran signal
waveform and the shape characteristics of the broadband amplitude spectrum.

In order to quantify the improvement in demodulation performance brought by this
gain, we introduce a new metric, “Effective Signal-to-Noise Ratio” (ESNR), defined as the
ratio of eLoran signal power Psignal_inband to noise power Pnoise_inband within the effective
bandwidth Lfreq (92~108 kHz), as shown in Equation (1). This metric is specifically designed
to assess the performance of eLoran signals in the key frequency range and can provide an
intuitive reflection of the power dynamics within the effective bandwidth.

ESNR =
Psignal_inband

Pnoise_inband
(13)

To illustrate the advantages of the truncation window and spectral smoothing in PSSD
algorithm, an example under SNR = −10 dB white noise environment is presented.

Figure 6 depict the phase difference vector curves for three different modulations. It is
evident that these curves, post-truncation window sampling and spectral smoothing filter-
ing, exhibit remarkable smoothness, closely resembling noise-free conditions, effectively
reducing the risk of phase jumps. In contrast, without truncation and smoothing, the phase
fluctuates dramatically. In Figure 6b,c, the weighted phase differences are calculated as
0.0485π and 0.2871π, respectively, which are within the wrong threshold range, leading to
incorrect modulation decisions of “0” and “+”.
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Furthermore, we modulated the eLoran pulse group with time codes and added
white noise with different SNRs. Conducting multiple sets of experiments according to the
algorithm steps. Meanwhile, using Formula (13), we can accurately estimate the ESNR in
frequency domain before and after filtering, thereby deriving the statistical mean value of
ESNR gain, ∆ESNR, and combining it with demodulation accuracy rate (DAR) for in-depth
discussion. The above types of data are comprehensive organized in Table 1.
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Table 1. ESNR gain and DAR performance improvement statistics of PSSD algorithm.

SNR
ESNR (dB)

∆ESNR (dB)
DAR (%)

Before
Filtering

After
Filtering

PSSD
with WS

PSSD
Without WS EPD

−20 −10.18 −1.17 9.01 43.04 32.55 33.47
−15 −5.12 3.86 8.98 63.05 33.81 45.32
−10 −0.11 9.03 9.14 84.61 52.94 68.40
−5 4.82 13.92 9.10 98.17 92.89 91.46
0 9.92 18.97 9.05 100 99.98 99.65
5 14.87 23.94 9.07 100 100 100

10 19.87 28.86 9.00 100 100 100

WS = truncation window sampling and spectral smoothing filtering.

As indicated by Table 1, under different SNRs, there is a significant gain in ESNR,
which is further converted into an improvement in demodulation performance. For in-
stance, at SNR = −10 dB, ∆ESNR is 9.14 dB. Compared with the case without truncation
window and smoothing, the DAR of PSSD algorithm remarkably increases from 52.94% to
84.61%, while that of the EPD algorithm is only 68.40%. In addition, in other SNR environ-
ments, a similar conclusion can be drawn, and the lower the SNR, the more significant the
improvement in demodulation performance.

The comparative analysis in this section covers noise environments within different
SNR ranges and aims to demonstrate the new algorithm’s theoretical correctness. Experi-
mental results firmly establish the new algorithm’s effectiveness in handling in-band noise
and its superiority in demodulation accuracy, especially its application potential under low
SNR conditions.

3.3. CWI Resistance

In the practical application of eLoran systems, CWI is a common and challenging
issue, often originating from other radio equipment or intentional jamming activities. CWI
potentially poses a direct threat to signal quality and demodulation accuracy.

As previously discussed, the EPD algorithm relies on BPF that are ineffective against
in-band noise and CWI. Although digital signal processing techniques can provide some
suppression of in-band interference, a considerable amount of residual often persists.
Additionally, the use of analog notch filtering, while aimed at mitigating interference,
can also inadvertently damage the spectral integrity, resulting in signal distortion. In
contrast, the PSSD algorithm utilizes advanced interference suppression techniques. As
detailed in Section 3.1, it employs truncation windows to reduce interference energy and
employs spectral smoothing filtering to further decrease the interference modulus power,
significantly enhancing the system’s resistance to CWI.

To demonstrate the interference suppression advantages of the PSSD algorithm,
two sets of experimental examples are provided (see Section 4.1 for CWI parameter set-
tings):

a. Noise-free scenario, “−” modulation, 2 CWIs are introduced to compare the impact
of different processing methods on phase difference stability.
Figure 7 illustrates that without truncation windows and phase smoothing, the
method cannot effectively resist CWI even in a noise-free environment, leading to
unstable phase differences and potential demodulation errors. In contrast, after the
truncated window and smoothing with Gaussian weight coefficient, the amplitude
spectrum and phase difference curve (yellow lines) are smoother, restraining interfer-
ence and maintaining demodulation accuracy to some extent. Calculation reveals that
the weighted phase differences from the red and yellow phase difference curves are
−0.0973π and −0.1411π respectively. Accordingly, based on the threshold (−π/10),
incorrect (“0”) and correct (“−”) demodulation results are obtained, respectively.
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b. SNR = −10 dB white noise scenario with 2 CWIs (matching the settings from example
a); the DARs are compared to evaluate the different processing methods.
Figure 8 showcases the statistical results of multi-groups of experiments. When
SNR = −10 dB and CWI exist, the average DAR of PSSD algorithm stands at 74.91%,
which is notably higher than 61.99% of the EPD algorithm. This further validates
the new algorithm’s ability to resist CWIs in a low SNR environment. The results
depicted in Figure 8 provide solid evidence of the effectiveness and robustness of the
PSSD algorithm in handling challenging interference conditions.
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This section is underpinned by experimental examples, which affirm the effectiveness
of the PSSD algorithm in countering CWI. In both noise-free and low SNR scenarios, the
algorithm’s phase smoothing processing proficiently sustains phase difference stability and
notably augments demodulation capabilities. When compared with the EPD algorithm, the
PSSD algorithm exhibits outstanding superiority in anti-CWIs. In Section 4, more compre-
hensive performance analysis under diverse interference conditions will be presented to
further illustrate the robustness of the PSSD algorithm.

3.4. Skywave Interference Resistance

This section assesses the impact of skywave interference on the PSSD algorithm and
demonstrates its effectiveness in countering such interference.

Skywave interference, a prevalent form encountered in eLoran system operation due to
signals reflected from the ionosphere with highly uncertain intensities, can pose challenges.
When intense skywave interference is close to ground wave signals, the mixed signal can
be difficult for eLoran receivers to separate, potentially leaving residual interference that
accurate realization of the subsequent signal processing module functions.

Theoretically, beyond environmental noise, given that the test and reference signals
are subjected to skywave interference of identical intensity and position, the waveform
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distortion remains consistent. Therefore, it can be deemed that skywave exerts negligible
influence on the demodulation process, a concept that has been confirmed within EPD
algorithms. The PSSD algorithm analyzes signals in the frequency domain via FFT process-
ing. Assuming the test and reference signal are subjected to the same degree of skywave
interference, it can be expected that the characteristics of phase difference ∆Φ of the mixed
signals xre f ,mix(t), xtext,mix should be similar to those without skywave, thus theoretically
eliminating the influence of skywave interference on demodulation.

To substantiate the theoretical rationale outlined previously and the effectiveness of
PSSD algorithm in handling skywave interference, we analyzed the impact of different
intensities of skywave on the phase difference. First, in a noise-free environment, we
studied its effects on the PSSD theory through experiments. Specifically, delay difference:
40~160 µs, step size: 0.5 µs; and sky-to-groundwave ratio (SGR): 6 dB and 12 dB.

Figure 9 depicts the variations in ∆Φ under different skywave interferences. In the
two subfigures, the mean values of ∆Φ for “+”, “0”, and “−” modulations are 0.1998π,
0, −0.2005π and 0.1999π, 0, −0.2003π respectively. The deviations from the no-skywave
scenario (0.1997π, 0, −0.2007π) do not exceed π/250. The results indicate that, even
under skywave interference, after phase spectrum smoothing, the PSSD algorithm can
still accurately capture the original characteristics of the signal. Regardless of its position
and SGR, the impact of strong skywave interference on the trend of ∆Φ is negligible,
thus ensuring the correctness of demodulation. In addition, more experiments found
that skywave brings a power gain effect to the mixed signal, changing the SNR. When
skywave and groundwave are in phase, the SNR and demodulation accuracy increase.
Conversely, when out of phase, they decrease. This phenomenon occurs in both the PSSD
and EPD algorithms. However, as shown in Figure 9, skywave interference does not impact
the phase difference or the algorithm itself. In reality, there are also skywave separation
techniques to minimize its impact on eLoran systems [13].
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Drawing from the above theoretical discussions and empirical results, it can be con-
cluded that the PSSD algorithm can effectively resist skywave interference and safeguard
the accuracy of the demodulation process. This discovery indicates that in subsequent
simulation experiments, skywave interference is no longer a critical factor requiring special
attention. Thus, we can focus on optimizing the algorithm’s performance and evaluating
its performance in different practical scenarios. Combined with the PSSD algorithm’s
ability to deal with in-band noise and CWIs, this makes it an all-encompassing and potent
demodulation method for eLoran systems.

4. Experimental Results and Performance Analysis
4.1. Experiment Design

Building upon the analysis of the theory of PSSD algorithm and its anti-interference
capabilities in previous sections, this section aims to comprehensively evaluate its demodu-
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lation performance advantages in diverse environments through a series of well-designed
experiments. The experimental design is outlined bellow:

1. Experimental environment:
All experiments were conducted on a high-performance computer with Windows 10
operating system, an Intel Core i7 processor, and 32 GB of memory. MATLAB R2017b
was used as the experimental platform to ensure accurate and reproducible algorithm
simulations. The experimental dataset simulated eLoran signals under different SNR
and CWI conditions. DAR was the main performance evaluation metric.

2. Parameter Settings:

• Input signal: Continuous modulated pulse group signals.
• Data modulation: Standard time-code frame data modulation was adopted.
• Sampling rate: 2 MHz.
• Bandpass filter: Set to 90~110 kHz, specifically designed for the EPD algorithm

to filter out-of-band noise and interference.
• SNR: −20~10 dB white noise environment, with a step size of 1 dB.
• CWI: 0–4 single-frequency interferences (C1, C2, C3, C4) with specific frequencies

and SIRs. C1: 97.2222 kHz, −7 dB; C2: 101.3333 kHz, −10 dB; C3: 103.6666 kHz,
−9.21 dB; C4: 99.1111 kHz, −8.24 dB. Each interference was introduced with a
random initial phase. Since most of the interference energy has been removed
during preprocessing, a moderate interference power can be set. In all experi-
ments involving CWIs throughout this paper, they are labeled and combined
sequentially (e.g., “1 CWI” refers to C1, “3 CWIs” refers to the combination of
C1, C2, and C3)

• Experimental reproducibility: To ensure the reliability of statistical results and
reduce random errors, each set of experimental conditions was repeated 10 times,
with each run consisting of 50 frames (9000 pulses to be detected).

4.2. Comprehensive Performance Analysis

Based on the well-designed experiments, the results below visually present the DAR
comparison of PSSD and EPD algorithms under various interference conditions.

The eLoran system adopts the CRC-RS cyclic check and error correction coding
method, and a DAR of 90% becomes a key indicator for stable decoding of eLoran re-
ceivers. The black marks in Figure 10 present the SNRs under this indicator (−8.4 dB
and −5.3 dB respectively). It is evident in an interference-free environment that the PSSD
algorithm optimizes the SNR benchmark for successful decoding by 3.1 dB.
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Figure 11 presents the DAR comparisons of PSSD and EPD algorithm under different
CWI conditions. Through this series of subfigures, we can systematically observe the change
trends of DARs of the two algorithms as the number of CWIs increases. It highlights the
significant anti-interference advantage of the new algorithm. Figures 10 and 11 cooperate
with each other and jointly reveal the three primary trends:
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1. Demodulation accuracy increases with higher SNR.
2. Fewer interferences correspond to higher demodulation accuracy rates.
3. The PSSD algorithm outperforms the EPD algorithm under all test conditions.
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Tables 2–6 provide detailed information on the performance improvements of the new
PSSD algorithm over the EPD algorithm at different SNR intervals, further confirming the
aforementioned trends and quantifying the performance enhancements within specific
SNR ranges.

Table 2. Average DAR (%) statistics of PSSD and EPD algorithm without CWI.

SNR Range (dB)
DAR (%)

Gain (%)
PSSD EPD

−20~−15 52.45 38.39 14.06
−15~−10 74.18 56.31 17.87
−10~−5 92.22 80.51 11.71
−5~0 99.44 96.63 2.81
0~5 100 99.92 0.08

5~10 100 100 0

Table 3. Average DAR (%) statistics of PSSD and EPD algorithm with 1 CWI.

SNR Range (dB)
DAR (%)

Gain (%)
PSSD EPD

−20~−15 50.73 37.93 12.80
−15~−10 68.99 53.15 15.84
−10~−5 82.76 71.43 11.33
−5~0 89.59 82.46 7.13
0~5 91.21 86.64 4.57

5~10 91.34 87.92 3.42
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Table 4. Average DAR (%) statistics of PSSD and EPD algorithm with 2 CWIs.

SNR Range (dB)
DAR (%)

Gain (%)
PSSD EPD

−20~−15 50.04 37.88 12.16
−15~−10 67.33 52.51 14.82
−10~−5 79.59 69.48 10.11
−5~0 85.77 80.36 5.41
0~5 87.72 83.88 3.84

5~10 88.67 85.46 3.21

Table 5. Average DAR (%) statistics of PSSD and EPD algorithm with 3 CWIs.

SNR Range (dB)
DAR (%)

Gain (%)
PSSD EPD

−20~−15 49.62 37.39 12.23
−15~−10 66.21 51.12 15.09
−10~−5 77.59 67.14 10.45
−5~0 83.88 76.13 7.75
0~5 85.94 80.04 5.90

5~10 86.53 81.97 4.56

Table 6. Average DAR (%) statistics of PSSD and EPD algorithm with 4 CWIs.

SNR Range (dB)
DAR (%)

Gain (%)
PSSD EPD

−20~−15 47.10 37.39 9.71
−15~−10 60.52 50.19 10.33
−10~−5 70.67 62.19 8.48
−5~0 74.23 69.24 4.99
0~5 75.42 72.31 3.11

5~10 76.99 74.51 2.48

According to the statistics in the table, we can clearly see the advantages of PSSD
algorithm, and draw the following conclusions:

1. Impact of SNR: The demodulation accuracy is positively correlated with SNR. Through-
out the increase from −20 dB to 10 dB, the PSSD algorithm consistently shows supe-
rior performance.

2. Analysis of the impact of CWI numbers: As the number of CWI increases, the DAR
values gradually decrease. For instance, within the SNR range of −10~−5 dB, the
average DARs for different numbers of interferences are 82.76%, 79.59%, 77.59%, and
70.67%, respectively, showing a clear downward trend. This indicates that the presence
of CWI negatively affects the demodulation process, with stronger interferences
leading to greater negative impacts.

3. Advantage of PSSD algorithm in dealing with CWIs: The PSSD algorithm exhibits
outstanding anti-interference capabilities when facing different levels of CWIs and
can better maintain the demodulation performance. For instance, in the −10~−5 dB
interval, as the number of CWI increases from 1 to 4, the DAR differences between
the PSSD and EPD algorithms are 11.33%, 10.11%, 10.45%, and 8.48% respectively.
This indicates that the unique technologies of PSSD, like truncated window sampling
and spectral smoothing, play a crucial role in handling interference and make it
outstanding in a complex interference environment.

The analysis of figures and tables clearly shows that the proposed PSSD algorithm has
significantly improved demodulation performance under various conditions, especially in
low SNR and complex interference environments. This fully confirms its robustness and
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superiority in eLoran signal demodulation and strongly demonstrates its great potential
value in practical applications.

5. Conclusions

The eLoran system, a crucial GNSS auxiliary, is substantially affected by various
interferences that can undermine the precision of PNT services. This study proposes a
novel PSSD algorithm to enhance the demodulation performance of eLoran signals in
challenging noise and interference scenarios.

Key Contributions and Findings:
In summary, the implications of this study are twofold: enhancing the robustness and

effectiveness of the current eLoran system and promoting the development and application
of advanced signal processing techniques. The PSSD algorithm is a significant innovation
in signal processing. Our findings show the positive impact of PSSD and lay a solid foun-
dation for future signal processing research. The PSSD algorithm represents a significant
innovation in signal processing.

1. Algorithm innovation: The PSSD algorithm utilizes advanced signal processing tech-
niques in the frequency domain, including truncated window sampling and spectral
smoothing, to effectively mitigate the impact of noise and interference, remarkably
enhancing signal quality and demodulation accuracy.

2. Performance evaluation: Through well-designed experiments, we comprehensively
evaluated the performance of the PSSD algorithm under diverse conditions. The
experimental results indicate that the PSSD algorithm outperforms the traditional EPD
algorithm in all tested situations, particularly in low SNR and complex interference
environments

Limitations and Future Work:
Although the PSSD algorithm has shown excellent performance in theory and experi-

ments, this study has certain limitations. For example, the constraints of receiving terminal
hardware and available computational resources may pose challenges to the practical appli-
cation of the algorithm. Future research needs to address these issues and further optimize
the algorithm and explore new types of algorithms. The following specific directions are
worthy of exploration:

1. Hardware implementation and testing: Implement the PSSD algorithm in actual
eLoran receivers and test it under a broader and more complex real environment to
verify its universality and effectiveness.

2. Algorithm optimization: Develop more efficient algorithm variants or optimization
strategies to reduce computational complexity and enhance adaptability to limited-
resource hardware.

3. Hardware upgrade and acceleration: Explore improving signal sampling rates and
using dedicated accelerators like FPGA to improve the algorithm’s performance and
enable it to handle complex tasks more efficiently.

4. Algorithm expansion: Explore the application of classic digital signal processing
algorithms such as DACM, SVD, and PSI in eLoran demodulation. Analyze their
theoretical compatibility with eLoran signals; design implementations and conduct
tests under various SNR and interference settings to identify their advantages and
disadvantages, thus paving the way for potential integration with the PSSD algorithm.

In conclusion, the PSSD algorithm represents a significant step forward in the field of
eLoran signal demodulation, offering an effective technical means to the challenges posed
by noise and interference. Future research will continue to optimize the algorithm, explore
its potential applications in broader scenarios, and ensure the continuous progress and
innovation of eLoran systems in the field of communication for the benefit of reliable navi-
gation.
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