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Abstract: Storm events are significant disturbance agents that can cause considerable forest damage
through windthrow. Assessment and mapping of the extent and severity of windthrow is critical to
provide reliable information to forest managers to prioritize post-storm hazard reduction (including
public safety and fire risk) and to guide restoration activities. Detailed on-ground assessments
after windthrow are often impossible due to lack of access and safety concerns. In 2021, severe
windstorms caused unprecedented and extensive windthrow in a temperate eucalypt forest in
south-eastern Australia. The purpose of this study is to quantify the severity and extent of the
damaged forest area as the change in percentage canopy cover using remotely sensed data. We
assessed percentage canopy cover from high-resolution aerial images of 455 randomly selected plots
in disturbed and undisturbed areas to train a model and machine learning framework to predict
landscape scale canopy cover from Sentinel-2 images. A random forest model using all single bands
and percentiles best predicted the canopy cover (R2 = 0.69). Sentinel-2 images were then used to
predict canopy cover pre- and post-windthrow to assess and map the severity of windthrow as the
change in percentage canopy cover. Of the total 63,471 ha of forest area assessed, 63% (39,987 ha) was
impacted by windthrow, with 46% at low severity (<30% canopy cover loss), 11% at moderate (30–50%
canopy cover loss) and 6% at high severity (>50% canopy cover loss). Our study provides the first
quantitative mapping of windthrow severity mapping for a temperate eucalypt forest in Australia
that demonstrates an effective remote assessment methodology and provides critical information to
support post-windthrow management decisions.

Keywords: Sentinel-2; Nearmap Australia; temperate broadleaved evergreen forest; Wombat Forest;
change detection; tidymodels; random forest; windstorm; forest disturbance; Australia

1. Introduction

Severe storm events are significant natural disturbance agents that can cause con-
siderable forest damage through windthrow, i.e., the uprooting and stem breakage of
trees. Extensive windthrow can cause immediate changes to the structure, composition,
and function of forest ecosystems. These events can further impact forest dynamics and
diverse processes from the stand to landscape scales, including forest growth, successional
trajectories, carbon sequestration, evapotranspiration and water yield, biodiversity, fuel
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accumulation, and fire behaviour [1–4]. Windthrow has additional impacts on the socioe-
conomic values of forests including risks to public safety posed by post-storm tree fall
and through loss of timber, amenity values and recreational areas [5]. Climate change is
increasing the frequency, intensity, and extent of weather extremes and, thus, wind-related
disturbance regimes [6–10] with severe storms predicted to increase in previously unaf-
fected regions [11]. However, considerable uncertainty remains about post-windthrow
forest dynamics will respond [12,13].

The occurrence and severity of windthrow primarily depends on the intensity and
duration of the storm event. In mid-latitude temperate zones of both the northern and
southern hemisphere, such extreme storm events are commonly attributed to extra-tropical
cyclones, large-scale systems that produce wind speeds up to 120 km/h and which are
often accompanied or preceded by high rainfall [3]. In temperate (southern) Australia,
however, severe thunderstorms are often the major source of severe convective winds
defined by gusts exceeding 90 km/h and associated with extreme rainfall, hail storms,
and/or tornadoes [14,15]. Wind damage to trees can include complete or partial uprooting,
tree lean, and stem breakage, and depends on individual tree characteristics (root archi-
tecture, height/diameter ratio), stand structures (multi-or even aged), and site conditions
(topography, soil properties, and soil water) [11,16–18]. Consequently, characterization of
wind damage severity is often based on the quantity or proportion of fallen stems within
an area, canopy damage, change in canopy cover, and tree mortality (e.g., [2,3,11,16,19]).
The extent of windthrow can range from small-scale localized damage of a few or single
trees to landscape-scale damage across hundreds of hectares [3].

The assessment and mapping of the extent and severity of windthrow is critical to
better understand patterns of damage to forests and to provide reliable information for
post-storm management decisions. However, existing methods, such as field surveys, are
laborious, time-consuming and limited by restricted access and hazards posed by fallen and
leaning trees, making comprehensive landscape-scale assessments impossible. Recent and
advancing methods that use ground-based, airborne, and satellite remote sensing products
allow for more efficient, cost-effective landscape-scale assessments of forest damage at high
spatial resolution and accuracy as well as monitoring over time [11,20,21]. Remote sensing
products to map and assess windthrown areas range from high-resolution aerial imagery
using unmanned aerial vehicles (UAVs), airplanes, or satellites [19,22,23] or airborne laser
scanner data (ALS) [24,25] to Sentinel-1 synthetic aperture radar (S1) data [26–29], and
multispectral optical satellite imagery data at medium (Landsat) and high (Sentinel-2, S2)
spatial resolution [30–35]. Each product has advantages and limitations, with considerable
variation in spatial and temporal resolution, availability, and costs. Airborne imagery or
ALS can provide very high-resolution outputs and can detect small-scale (i.e., single tree)
changes, but typically have high acquisition costs, limiting data availability and coverage
at broad scales [19,23,25]. Many recent studies have emphasized the potential of S2 data
to detect windthrow with freely available online multispectral (13 bands) optical satellite
images that have global coverage at high spatial resolution (10 m) and high revisit frequency
(5 days) [29,33].

Few methods for mapping windthrow areas with remote sensing data provide in-
formation about the severity of windthrow beyond a binary classification (damaged and
undamaged) [29,33,36,37]. Since trees define a forest, the severity of forest windthrow can
be defined and quantified in terms of the degree of loss of tree canopy cover. So far there
are few methods available that quantitatively assess windthrow severity in forests on a
continuous scale across large areas [24,38,39]. Most mapping methods are focused on fast
detection, delineation, and process automatization using advanced machine-learning meth-
ods [31,32,37]. Such methods are frequently based on change detection that use vegetation
indices as proxies for forest status and function, derived from either post-disturbance-only
imagery or pre- and post-disturbance imagery including a range of different times since
the disturbance event [29,30,33,34,40]. However, there remains considerable scope to sim-
plify these methods to improve transferability across forest types and biomes, including
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examining the utility of single bands to indicate windthrow-severity (as opposed to indices
that are calculated from those bands [29].

Windthrow in temperate forests in south-eastern Australia has been typically limited
to small areas, although occurrences of (damaging) windstorms are not uncommon [41].
There are few examples of windthrow impacts and damage to temperate forests, and
these have only been reported in isolated and localized cases in broadleaved evergreen
eucalypt forests [42–44] or pine plantations [45]. Otherwise, most studies have focused
on windthrow associated with cyclones of the wet tropics of northern and north-eastern
Australia [39,46]. In June 2021, a major storm caused extensive areas of windthrow through-
out temperate eucalypt forests in Central Victoria in south-eastern Australia, providing a
unique opportunity to develop specific windthrow severity methods for temperate native
forests of complex structure.

A better understanding of windthrow severity patterns will help with managing
forest recovery efforts, including for public safety, as well as potential interactions with
other landscape-scale disturbances, like wildfire [47]. While effective and well-established
methods for fire-severity classification and mapping from multispectral optical satellite data
exist for the fire-prone landscapes of south-eastern Australia [48–50], they are not suited to
areas affected by windthrow. Fire-severity mapping is based on a decrease in greenness,
whereas windthrow changes the distribution of greenness through loss of the tree canopy
cover and the persistence of greenness in the understory. Fire and windthrow can also differ
in their impacts on forest structure and vegetation damage; for example, burnt trees often
remain standing, while forests affected by windthrow result in large amounts of woody
debris being deposited on the ground. Differences in greenness between windthrow and
fire damage can also occur post-disturbance with distinct spatial and temporal patterns of
overstory and understory recovery, i.e., resprouting of damaged tree stems might occur
faster after fire than windthrow. Therefore, fire-severity classification methods might
underestimate the true severity of windthrow, necessitating the development of a separate
method to safely and accurately assess windthrow severity from stand to landscape scales.

In this study, we assess and quantify the extent and severity of an extensive windthrow
event in a eucalypt forest landscape of temperate south-eastern Australia. We develop and
test a novel change-detection approach that combines very high-resolution aerial images
with high-resolution multispectral satellite (S2) data. Using this approach, we spatially
predict the extent and severity of windthrow based on the change in percentage canopy
cover.

Our objectives are as follows:

• To test regression models based on high-resolution remote sensing data for estimating
forest canopy cover before and after windthrow in broadleaf evergreen eucalypt-
dominated forests.

• To use the best performing model to assess and quantify windthrow severity based on
percentage change in forest canopy cover.

• To provide a continuous map of windthrow severity across the study landscape.

Overall, we aim to improve the availability of practicable methods for quantifying
windthrow severity—from isolated patches to complex landscapes—in native eucalypt
forests of temperate Australia and thereby provide a stronger basis to support decisions in
the aftermath of windthrow events.

2. Materials and Methods
2.1. Study Area

The study area is located within an extensive temperate forest area in south-eastern
Australia (known as the Wombat State Forest, hereafter ‘Wombat Forest’) about 100 km
north-west of Melbourne, Victoria. The forest is about 70,000 ha in area and spans across
Victoria’s Great Dividing Range with elevations from 590 to 760 m above sea level and an
underlying geology of Ordovician marine sedimentary rocks. Soils are moderate to highly
weathered and classified as kandosols (“stony earths”) and dermosols, acidic-mottled
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duplex soils [51]. The climate is cool temperate, with wet cold winters and dry warm to hot
summers. The long term mean annual rainfall is 880 mm, predominantly falling in winter
and spring [52]. Mean monthly maximum temperatures range from 7 ◦C (July) to 24 ◦C
(January), with daily summer temperatures often exceeding 35 ◦C, while frosts are common
in winter [53] and mean monthly minimum temperatures range from 2 ◦C in winter to 12
◦C in summer [54,55].

The temperate evergreen eucalypt forest is classified as an open forest with tree heights
ranging from 10 to >30 m, a projective foliage cover from 30 to 70% [56], and basal areas of
30–45 m2 ha−1 [54,55]. Open- to tall-open forests are widely distributed across Victoria and
are moderately productive, thus storing the majority of Victoria’s forest carbon [54,55,57].
The Wombat State Forest is dominated by a mix of fire-tolerant eucalypts (i.e., mature trees
capable of resprouting and surviving fire), typically Eucalyptus obliqua L’Hér., Eucalyptus
radiata Sieber ex DC., and Eucalyptus rubida H. Deane and Maiden. The understorey consists
of a sparse shrub layer of 2–4 m height, and a discontinuous ground layer dominated by
Austral bracken (Pteridium esculentum (G. Forst) Cockayne) with native perennial grasses,
forbs, and rushes [58].

The Wombat Forest encompasses the lands of the Wurundjeri Woi Wurrung, Wadawur-
rung, and Dja Dja Wurrung peoples [59]. Post-colonization forest history included timber
harvesting, beginning with extensive clearing during the Goldfields era (1850s to early
1900s), and then for the operation of local saw mills through selective harvesting until early
1970, followed by more intensive shelterwood systems until the 2000s [60]. From 2003 to
2005, the Wombat Forest was part of a community forest management trial [61]. Timber
harvesting was then significantly reduced and ceased by mid-2024 with only local firewood
collection in designated areas remaining. These forest types are prone to occasional wild-
fire, with the last known wildfire in 2009, and, thus, general forest management includes
low-intensity prescribed fires to reduce fuel hazard, a common practice across public land
in Victoria since the 1960s [53,55].

2.2. Storm Event and Methodology Workflow

On the 9 June 2021, parts of Victoria, Australia, were impacted by a severe storm event
accompanied and preceded by heavy rainfall due to severe convective winds (likely with
small tornadoes) at higher elevations with prolonged high wind speeds and gusts up to
130 km/h [15]. It is noted that the reported wind speeds are from Melbourne Airport,
about 70–120 km west of the forest area and at a lower elevation (132 m). The release
of strong convection was associated with orographic uplifting, so that the destructive
wind gusts occurred in higher-elevation areas of Central Victoria [15]. This event caused
windthrow that was unprecedented in extent and severity across Central Victoria in south-
eastern Australia. A subsequent windstorm on the 29th of October 2021 caused further
but relatively minor damage in already affected forest areas compared to the June storm
(Figure 1).

To assess the extent and severity of windthrow, we used regression models to predict
canopy cover across the Wombat Forest area both before and after the windthrow event.
We used plot-scale estimates of percentage canopy cover derived from visual assessments
of very high-resolution aerial images of plots, selected using stratified random sampling.
Ground-truthing of canopy cover estimates was not possible due to the access restrictions
posed by the forest management agency and high safety risks from fallen and leaning trees
and loose branches.
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Figure 1. An example of severe windthrow in the Wombat Forest from high-resolution aerial
images [62]: (a) pre-disturbance in December 2020 and (b) post-disturbance in December 2021, and
(c) on-ground photo shortly after windthrow and first response in road access clearance (June 2021).

Cover estimates were used to develop and train a regression model using single bands
and selected vegetation indices from S2 images as predictor/input variables. The pre-
to post-windthrow difference in percentage canopy cover was then used to determine
windthrow severity across the forest area (see Figure 2 for a summary of the method
workflow).

Data mining, processing, modelling (machine learning), and analysis were under-
taken using the R programming language [63], including the packages ‘slippymath’ [64],
‘sf’ [65,66], and ‘terra’ [67].

2.3. Plot Selection

The stratified random sampling of assessment plots was guided using the difference
in the Normalized Burn Ratio (dNBR) to initially distinguish between undamaged and
damaged forest areas. The indicative map based on a dNBR threshold of >0.15 was derived
from S2 images collected pre-storm (December 2020) and post-storm (December 2021) and
processed using Google Earth Engine (GEE) [68]. The selected time period aligned with the
regular annual collection of very-high-resolution images [62] across the forest, which were
later used to remotely assess canopy cover for each plot. From the indicative map, small
clumps of pixels (<9) were removed, and to capture areas adjacent to damaged areas, as
suggested by [69] a 20 m buffer (2 pixel) was created around the damaged areas. A total of
200 plots (3 × 3 pixel = 30 × 30 m = 0.09 ha) were randomly selected within the damaged
areas, with a further 50 plots within the buffer area and 100 plots in the undamaged area.
These 350 plots were later used to assess post-storm canopy cover from Nearmap images
from 2021. An additional 105 plots (60 within the damaged area in 2021, 15 from the buffer
area in 2021, and 30 from the undamaged area) were randomly selected for later assessment
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of pre-storm canopy cover from Nearmap images from 2020. This resulted in a total number
of 455 plots (Figure 3), equivalent to 0.1% of the Wombat Forest’s area.
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PCA: principal component analysis selection; feature selection includes the potential removal of
variables with large absolute correlations with other variables, and normalizing variables to have a
mean of zero and a standard deviation of one. Percentile groups: 10th, 25th, 50th, 75th, and 95th.
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Figure 3. Location of the study area, namely the Wombat State Forest (grey) in Central Victoria (red
dot in Victoria inset map), in south-eastern Australia. Points on the main map indicate sampling
plots (30 × 30 m) post-windthrow (yellow) and pre-windthrow (blue), evenly distributed between
damaged and non-damaged areas based on the initial dNBR threshold (>0.15).

2.4. Canopy Cover Percentage Assessment

For each plot, high-resolution aerial images [62] were extracted using a 30 m buffer
around each plot center point at the maximum resolution available (zoom 21, 7.5 cm).
Each plot image was visually assessed for canopy cover percentage by dividing the plot
image into 100 3 × 3 m subplots, and then each subplot was manually assessed for canopy
cover of either “present” (>=50%) or “not present” (<50%), with the total sum of “present”
subplots being the total percentage canopy cover per plot (Figure 4). Images were available
from 14 December 2020 as the pre-storm condition (six months before the event) and
from 20 December 2021 as the post-storm condition (six months after the event) [62]. The
assessment of the total of 455 plot images was divided among the 9 co-authors to ensure
objectivity. Each co-author visually assessed 56 plot images following a detailed protocol
to assure quality and consistency. This included a 10% overlap of each co-author’s set of
plots, i.e., 6 images per assessor or 54 in total were assessed twice, to ensure that the visual
analysis was reproducible and evaluated to minimize the subjective error.
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Figure 4. Example to illustrate the percentage canopy cover assessment of high-resolution aerial
images from December 2021 (post-windthrow, Nearmap Australia, 2022) of three different 30 × 30 m
plots. Each plot is split into 3 × 3 m subplots used to record either the presence (>=50%) or absence
(<50%) of canopy cover; values above the pictures are the total percentage canopy cover of the plot
calculated as the ratio of subplots with canopy present divided by the total number of subplots.

2.5. S2 Image Preprocessing and Feature Engineering

Sentinel-2 is a wide-swath, high-resolution, multispectral imaging mission supporting
Copernicus Land Monitoring studies, including the monitoring of vegetation, soil, and
water cover. This study utilized Sentinel-2 Harmonized Level-2A imagery [70], which
provides bottom-of-atmosphere (BOA) reflectance values corrected for atmospheric effects
using the Sen2Cor tool version 2.11.0 [71] developed by the European Space Agency [72].
The harmonized dataset ensures consistency in spectral and temporal data. Cloud masking
was applied using two approaches: first, the Sentinel-2 cloud probability data, which filters
out pixels with high cloud probability to enhance data quality (maximum cloud probability
= 10%) was used; and second, the scene classification layer (SCL) method was used, which
further refines the dataset by masking clouds and isolating vegetative cover for targeted
analysis. The selection of Sentinel-2 data was influenced by its inbuilt functionality and
seamless integration with GEE [68], which provides access to harmonized datasets, cloud
probability layers, and SCL bands, simplifying processing and enabling efficient analysis.
This combination of masking techniques and platform capabilities ensures accurate surface
reflectance values, supporting the reliable detection of storm impacts and post-storm
environmental changes, as well as the reproducibility of workflows using open access
platforms. GEE [68] was used to generate a data cube of S2-derived single bands and
indices as predictors for the landscape-scale regression model (Table 1). S2 imagery was
extracted from two 2-month periods: early summer (November and December), to overlap
with the available time period of high-resolution aerial imagery [62] that was used for our
plot-level estimation of percentage canopy cover; and late summer (February and March),
to allow for a stronger contrast in spectral signals between the canopy of remaining trees
(overstory) and dried-out shallow rooted and annual understory vegetation (e.g., grass,
bracken) as well as canopy browning (die-off) of fallen trees.
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Table 1. Predictor variable grouping and recipe definition.

Period Predictor Variable Selection Recipe

Nov–Dec
single bands

all
all

feature-selected
PCA

percentile ranges
all

feature-selected
PCA

indices
all -

individual -

Feb–Mar
single bands

all
all

Feature-selected
PCA

percentile ranges
all

feature-selected
PCA

indices
all -

individual -

Only bands at the 10 to 20 m spatial resolution were used (10 bands in total), with
resampling to 10 m of the 20 m bands with a nearest neighbor approach. A 3 × 3 S2-pixel
focal smoothing window (30 × 30 m) was applied using [67] to calculate the mean value
of all cells within the window, with the resulting value assigned to the central 10 × 10
m pixel. The S2 collection was processed to generate a mosaic image for the percentiles
(10th, 25th, 50th, 75th, and 95th) across all bands for each grid cell and to estimate the
following indices: NDVI, NBR, NDWI11, and NDW12. All chosen vegetation indices have
been previously used in different disturbance assessments, e.g., windthrow [29,33,40,73] or
fire severity [48–50], and are based on their bands’ sensitivity to variations in chlorophyll
content and biomass (NIR, RED) and water content (SWIR), and they have been shown to
be effective in the detection of storm damages [40,73,74]. Aggregating time-series satellite
data into temporal–spectral percentiles is a common technique [75] to address gaps caused
by cloud cover while preserving differences in phenological characteristics and water use
over the time period.

The NDVI (Normalized Difference Vegetation Index) was calculated as the ratio of the
NIR (S2-Band 8) and RED (S2-Band 4), as follows:

NDVI = (NIR − RED)/(NIR + RED) (1)

The NBR (Normalized Burn Ratio) was calculated as the ratio of the NIR (S2-Band 8)
and SWIR (S2-Band 12), as follows:

NBR = (NIR − SWIR)/(NIR + SWIR). (2)

The NDWI (Normalized Difference Water Index) was calculated as the ratio of the
narrow NIR (S2-Band 8A) and SWIR (S2-Band 11 or S2-Band 12) [76], as follows:

NDWI11 or 12 = (nNIR − SWIR11 or 12)/(nNIR + SWIR11 or 12) (3)

Feature engineering and data preprocessing—consisting of the creation, transforma-
tion, extraction, and selection of predictor variables that were most conducive to creating
an accurate machine learning algorithm—were undertaken using the “TidyModels” frame-
work [77]. Predictor variable recipe definition (Table 1) included the following:

• All single bands with three different recipes: (1) all single bands, (2) principal compo-
nent analysis (PCA)-selected bands, and (3) feature-selected bands (potential removal
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of variables with strong absolute correlations with other variables, and normalized
variables to have a mean of zero and a standard deviation of one).

• Percentiles (10th, 25th, 50th, 75th, and 95th) of single bands from their distribution
across the selected 2-month periods with three different recipes: all available single
bands, PCA-selected bands, and feature-selected bands.

• The above-mentioned selected indices.

2.6. Modelling Framework
2.6.1. Model Selection

CART (classification and regression tree) models were selected as they generally
provide robust results for ecological applications using remote sensing data due to their
ability to identify non-linear relationships between the data and threshold and voting
systems. The following three regression models were compared:

• Random Forest [78,79], which implements Breiman’s random forest algorithm (based
on Breiman and Cutler’s original Fortran code) for classification and regression.

• Ranger [80], a fast implementation of random forests [78] or recursive partitioning,
particularly suited for high dimensional data. Regression forests are implemented as
in the original random forest [78].

• Rparts [81], a decision-tree model via CART that implements recursive partitioning
for classification, regression, and survival trees. An implementation of most of the
functionality of [82].

2.6.2. Workflow

The workflow defined a model that creates many decision trees (n = 1000), each
independent of the others, and using cross-validation sampling (n = 10). The final prediction
used all predictions from the individual trees and combined them. Optimization was
performed using the grid search methods outlined by [77], using tuning parameters for the
number of splits at each branch (min_n), the number of predictors that will be randomly
sampled at each split when creating the tree models (mtry), and tree depth (maxdepth).
The response variable (percentage canopy cover by plot) was split into training (80%) and
independent test (20%) data subsets, with the independent test data subset reserved until
the end of the project and used as an unbiased source for validation (measuring final model
performance) and visualization. A 10-fold cross-validation was applied only on the training
data subset to evaluate model performance, and hyperparameters were optimized using a
grid search approach, according to [83].

Models were built and compared using the “parsnip” package [84] which is part
of the tidymodels framework [77]. This framework simplifies the comparison of model
performance based on model performance metrics including the coefficient of correlation
(R2) and root mean square error (RMSE). The final tree of the best model was then selected
based on the highest R2 and lowest RMSE.

2.7. Map Creation of Canopy Cover Percentage and Windthrow Severity

The final tree was used to generate a spatial prediction using the preprocessed S2
image to create rasters of continuous canopy cover pre- and post-windthrow across the
wider Wombat Forest area including adjacent areas of the same forest type. The final area
of the map was refined to exclude areas of plantations, water bodies, and prescribed burns
that occurred in the period between pre-storm image acquisition (Nov 2020) and the storm
event (June 2021).

The change in canopy cover and, thus, the indicator for windthrow severity, was
calculated as the difference between pre- and post- windthrow canopy cover as a percentage
of the pre-storm canopy cover, as follows:

PC = (CCpost − CCpre)/|CCpre| × 100 (4)
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where PC is the percentage change, CCpost is the percentage canopy cover post-windthrow,
and CCpre is the is the percentage canopy cover pre-windthrow. Negative values indicate a
decrease in canopy cover (i.e., loss through windthrow), while positive values indicate an
increase. The more negative the PC, the greater the severity of windthrow.

3. Results
Model Performance

Overall, the random forest (RF) and ranger model engines performed equally well
and had better model performance than Rparts. Figure 5 shows the output of the RF model
engine for each predictor variable recipe ranked by the highest R2 (Figure 5a,b) and lowest
RMSE (Figure 5c,d) for either time periods Feb–Mar (Figure 5a,c) or Nov–Dec (Figure 5b,d).
The overall best performing model included all available single bands across the late
summer period (Feb–Mar, R2 = 0.68 (0.02 s), RMSE = 14.6 (0.5 s)). The best performing
model for the late spring-early summer period was the model using the 50th percentile of all
available single bands (R2 = 0.67 (0.02 s), RMSE = 14.9 (0.5 s)). In comparison, using indices
as predictor variables did not improve the model outputs. All selected indices combined
had a lower model performance compared to the best single-band model outputs for both
periods (Feb–Mar: R2 = 0.64 (0.02 s), RSME = 15.6 (0.5 s); Nov–Dec: R2 = 0.62 (0.03 s), RSME
= 15.8 (0.5 s)). The performance of models based on individual indices was even lower
than those that used all indices combined or single bands, with different best-performing
models based on single indices between periods (NBR in Feb–Mar compared with NDVI in
Nov–Dec; Figure 5).
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The final fit of the best RF model with the independent test data set showed a signif-
icant correlation between the observed and predicted canopy cover percentage with an
adjusted R2 of 0.69 (Figure 6a) and a negligible pattern in the residuals (Figure 6b). The
higher the variable importance, the higher the loss of model accuracy when this variable
is excluded. High variable importance indicates an increase in mean square error (i.e., a
decrease in accuracy if that variable is excluded from the model). The most important
variables in that model were bands 12 and 11 at the highest percentiles (75th, 95th, and
50th) of their distribution (Figure 6c). Bands 12 and 11 from the SWIR (short-wave infrared)
region are both indicative for vegetation water content and early water stress detection.
The higher percentile metrics allow better spatial-temporal coverage that account for gaps
caused by cloud cover while preserving differences in phenological characteristics, water
use across heterogenous landscapes and exclude noise due to errors.
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This best RF model was used to predict percentage canopy cover across the study
area using S2-images for the pre-windthrow period (Feb–Mar 2021, Figure 7a) and the
post-windthrow period (Feb–Mar 2022, Figure 7b). From these maps, the percent change in
canopy cover was calculated to estimate the severity of windthrow across the study area
based on the change in canopy cover (Figure 7c).

Remote Sens. 2024, 16, x FOR PEER REVIEW 14 of 21 
 

 

 
Figure 7. Predicted canopy cover using a random-forest model [%] (a) before (summer 2020/21) and 
(b) after (summer 2021/22) the windthrow. (c) Percentage change in canopy cover and (d) Percentage 
change in canopy cover [%] per forest area [ha] across the entire study area. (a,b): the greener the 
area the higher the canopy cover percentage; (c,d): green and positive values indicate an increase in 
canopy cover, yellow indicates minimal change, while orange to red and negative values indicate a 
decrease (loss) in canopy cover through windthrow with increasing severity (from yellow to red); 
the inset figure (e) provides more detailed information for canopy loss in the −30% to −90% range. 

More than half of the forested study area (39,987 ha or 63%) was impacted by wind-
throw although most of the impacted area (29,233 ha or 46%) was of low severity (<30% 
canopy cover loss; Figure 7d, Table 2). A total of 7155 ha (or 11%) of the forested area was 
affected by moderate-severity windthrow (canopy cover decrease 30 to 50%), compared 
with 3599 ha (6%) by high-severity windthrow (>50% canopy cover decrease; Table 2). 

  

Figure 7. Predicted canopy cover using a random-forest model [%] (a) before (summer 2020/21) and
(b) after (summer 2021/22) the windthrow. (c) Percentage change in canopy cover and (d) Percentage
change in canopy cover [%] per forest area [ha] across the entire study area. (a,b): the greener the
area the higher the canopy cover percentage; (c,d): green and positive values indicate an increase in
canopy cover, yellow indicates minimal change, while orange to red and negative values indicate a
decrease (loss) in canopy cover through windthrow with increasing severity (from yellow to red); the
inset figure (e) provides more detailed information for canopy loss in the −30% to −90% range.

More than half of the forested study area (39,987 ha or 63%) was impacted by windthrow
although most of the impacted area (29,233 ha or 46%) was of low severity (<30% canopy
cover loss; Figure 7d, Table 2). A total of 7155 ha (or 11%) of the forested area was affected by
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moderate-severity windthrow (canopy cover decrease 30 to 50%), compared with 3599 ha
(6%) by high-severity windthrow (>50% canopy cover decrease; Table 2).

Table 2. Study forest area (wider Wombat Forest, and under state forest tenure) and the extent of
windthrow as mean change in canopy cover (CC) by low (0 to −30% CC decrease), moderate (−30 to
−50%), and high (>−50%) severity.

Forest Total (ha) Windthrow (ha) Low Severity (ha) Mod Severity (ha) High Severity (ha)

Wombat Forest 63,312 100% 39,987 63% 29,233 46% 7155 11% 3599 6%
State Forest 44,101 70% 29,762 67% 21,332 48% 5285 12% 3145 7%

4. Discussion

In this study we demonstrate a methodology for the quantification and mapping
of windthrow extent and severity at a high spatial resolution (10 m) across an extensive
forested landscape. The method predicts change in percentage canopy cover by combining
high-resolution aerial images with multispectral optical satellite data (S2) in a random
forest regression modelling framework. To the best of our knowledge, this is the first study
to map windthrow severity as a continuous variable across a temperate eucalypt forest in
south-eastern Australia.

4.1. Time Period for Change Detection

The best model performance was achieved using S2-images from the late summer
period (Feb–Mar) that were 8 to 9 months after the main windthrow event. This could be
attributed to the stronger contrast in spectral signals between the remaining intact canopy
cover and the, by that time, complete die-off, (browning) of the canopy of fallen trees.
The study’s forests are dominated by resprouting eucalypts (i.e., trees that can resprout
from meristematic tissues in the stem or belowground organs), which is a characteristic
feature and adaptation to tolerate and survive defoliation in this fire-prone landscape [85].
However, spectral signals at this time since windthrow were not yet affected by rigorous
resprouting from damaged standing or partially standing stems or new seedling growth.
Cover of the ground stratum was also at its least in the drier summer months, further
contributing to the distinct spectral signal of windthrown areas by late summer. Fairman
et al. [47] reported a significant increase in grasses, understory vegetation, and eucalypt
seedlings in high windthrow severity areas 2 years after the windthrow event. In a com-
parable approach to our study, Staben and Evens [39] reported significant windthrow
(up to 42% canopy loss) in tropical eucalypt woodlands 10 days after a cyclone, but de-
tected some proportion of canopy recovery one year after the cyclone, likely related to
epicormic resprouting of defoliated crowns or along damaged stems [39]. Our time period
for post-windthrow assessment agrees well with the reported 8 months required for the
most accurate mapping of damaged forest area in the Italian alps using optical remote
sensing data [33,34], despite the distinct forest types. Concurrently, studies using change
detection methods also highlighted that the least accurate mapping was derived from
imagery closer to the disturbance event [33,34,40]. However, forest managers might require
a more rapid mapping of windthrow areas immediately after an event to inform emergency
responses, including clearing fallen trees and debris from roads and ensuring public safety.
For this, an indicative map with potentially lower model performance for windthrow areas
might be sufficient, although this was not explicitly tested in this study, as the chosen time
period was aligned with the availability of high-resolution aerial images and to encompass
additional damage caused by a second storm 4 months after the first. The earliest time pe-
riod to obtain quality satellite data after a windthrow event might also depend on seasonal
weather conditions, since, for example, cloudy conditions are less likely during the summer
months in temperate Australia compared to in the winter, when the main storm occurred.
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4.2. Limitations

A potential limitation of our methodology compared to other methods is the avail-
ability of high-resolution aerial images to remotely assess plot-scale canopy cover, as
regular coverage is limited to the most populated areas in Australia [62] and is not freely
available. Compared to fully automated rapid-detection methods, our approach involved
manual/visual estimation of canopy cover at plot scales; however, automatization of this
step is a focus of our ongoing research, including training based on diverse windthrow
events across temperate forests in Australia.

4.3. Predictor Variables and Model Performance

The random forest model including all single S2 bands and percentile distributions
indicated that the SWIR bands (11 and 12) in the median to high percentile distribution
were the most important variables, consistent with their sensitivity to vegetation/tree water
content and utility in drought detection [74,86]. The SWIR band 12 is also used to calculate
NBR and NDWI12, and while these indices have been frequently applied for windthrow
detection (e.g., [29,33,40,73]), they did not improve our predictions of canopy cover in
this study. Nonetheless, our findings align with those from elsewhere that indicate that
using all available S2-bands provides more accurate results than using individual indices
in modelling approaches for precision agriculture, including crop type, disease, and stress
(e.g., grass, water, and nitrogen) monitoring [87], or for varying vegetation cover across
landscapes [88].

Direct comparison of model performance with other windthrow mapping methods is
problematic, as most previous studies have been based on classification models (as opposed
to regression models) or focused on the volume of fallen trees (as opposed to percentage
change in canopy cover) to quantify windthrow damage [24,38]. While our study is unique,
the performance of our best random forest regression model to predict canopy cover (R2

0.69) was comparable with that of a model based on a non-linear relationship between a
modified vegetation index (derived from multispectral Landsat TM5 satellite data) and
percentage tree canopy cover (derived from very-high-resolution QuickBird satellite data)
that was used to quantify canopy cover loss after a severe tropical cyclone in tropical
eucalypt woodlands of northern Australia (R2 0.73; [39]).

4.4. Extent and Severity of Windthrow

The scale and size of the windthrow event was unprecedented in south-eastern Aus-
tralia, with nearly 40,000 ha of damaged forest area across the Wombat Forest alone.
Substantial windthrow during the same storm event also occurred in the wetter mountain
ash (E. regnans) forests of the Dandenong Ranges National Park, about 160 km east of the
study area, although a comparatively smaller area (~220 ha, [89]) was affected. Previously
reported recent windthrow events in Victoria have been very localized; for example, 3.5
ha in an alpine ash (E. delegatensis) forest in 1998 [43] and about 8 to 10 ha in dry eucalypt
forest in the Grampians National Park (180 km to the west of the study area) were affected
in 2004.

This study’s high-resolution prediction of forest canopy cover and its change due to
windthrow enabled fine-scaled delineation and continuous mapping of windthrow across
the broader Wombat Forest that ranged from low to high severity and small localized
patches to extensive areas. The use of canopy cover to distinguish windthrow severity
aligns well with a common Australian vegetation classification system, which uses foliage
projective cover, life form, and the height of the overstorey to identify structural forma-
tions [56]. A change or decrease in canopy cover greater than 30–40% would constitute a
change in the structural forest formation, i.e., from Open-Forest (70% to 30%) to Woodland
(30–10%), while changes > 50% constitute the conversion of forests towards non-forest
formations. Two thirds of the Wombat Forest was impacted by windthrow in the June 2021
storm event, of which 27% (~10,000 ha, or 17% of the total forest area) had a moderate
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to high severity decrease in canopy cover, which has clear implications for management
interventions focused on tree regeneration and forest restoration [47,90].

This highlights the importance of fine-scale windthrow severity mapping in particular
to inform the management of forest areas most severely affected by windthrow. These
spatially explicit data can support decisions for the prioritization of management actions
to minimize imminent risks to public safety. In addition, the data indicate areas in the
landscape with the most likely changes in the distribution of fuels in these fire-prone
landscapes. A fuel load assessment two years after the main windthrow event in the
Wombat Forest detected significant increases in near-surface and coarse fuels that could
increase the intensity of planned or unplanned fires [47]. Furthermore, windthrow severity
mapping provides critical information to support management towards the long-term goals
of forest regeneration and habitat conservation for threatened species.

4.5. Future Research

Our future research will focus on the applicability and utility of our windthrow
severity mapping in other forest types in Victoria or south-eastern Australia, i.e., the wetter
eucalypt (mountain ash) forest. The expansion of baseline canopy cover estimation across
different forest types and their incorporation into our regression modelling framework will
not only enable the quantification and mapping of windthrow severity at landscape scales.
This and our future research on automatization of plot-scale canopy cover estimation will
ultimately improve and advance our windthrow severity modelling towards a more rapid
detection method. Our windthrow severity modelling framework provides the opportunity
to further investigate and better understand which parts of the landscape or forest structure
were most susceptible to windthrow and what factors, e.g., soil moisture, topography,
or management history, influenced the detected windthrow pattern. There is a strong
likelihood that south-eastern Australia will experience more destructive storm events in the
future, with indications that climate change will lead to more frequent and intense climate
extremes that include heavy rainfall typically caused by cyclone, front, and thunderstorm
occurrences [15,91–93]. Together with the frequency and intensity of severe winds, the
risk of windthrow is expected to increase with changes in precipitation and associated
changes to tree soil anchorage and growth [10]. This might necessitate the development
of a windthrow risk framework for which our wind severity modelling framework can
provide the foundation.

5. Conclusions

Our study outlines a novel remote sensing method with random forest regression
modelling to delineate, map, and quantify windthrow severity as change in canopy cover
across a large area in a temperate eucalypt (broadleaf evergreen) forest in south-eastern
Australia. The fine-scale and continuous mapping of windthrow severity allows us to
identify windthrow from low to high severity and from localized to extensive forest areas.
This facilitates and informs forest managers concerning their immediate action plans
to reduce future fire risk and long-term management efforts to rehabilitate damaged
forest areas. With the opportunity to expand and automate our wind severity modelling
framework, a more rapid mapping of windthrow severity for first response management
will be possible, as well as the development for any future windthrow risk framework.
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