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Abstract: Understanding the current water quality dynamics is necessary to ensure that ecological
and sociocultural services are provided to the population and the natural environment. Water quality
monitoring of lakes is usually performed with in situ measurements; however, these are costly, time
consuming, laborious, and can have limited spatial coverage. Nowadays, remote sensing offers an
alternative source of data to be used in water quality monitoring; by applying appropriate algorithms
to satellite imagery, it is possible to retrieve water quality parameters. The use of global remote
sensing water quality products increased in the last decade, and there are a multitude of products
available from various databases. However, in Latin America, studies on the inter-comparison of
the applicability of these products for water quality monitoring is rather scarce. Therefore, in this
study, global remote sensing products estimating various water quality parameters were explored
on Lake Titicaca and compared with each other and sources of data. Two products, the Copernicus
Global Land Service (CGLS) and the European Space Agency Lakes Climate Change Initiative (ESA-
CCI), were evaluated through a comparison with in situ measurements and with each other for
analysis of the spatiotemporal variability of lake surface water temperature (LSWT), turbidity, and
chlorophyll-a. The results of this study showed that the two products had limited accuracy when
compared to in situ data; however, remarkable performance was observed in terms of exhibiting
spatiotemporal variability of the WQ parameters. The ESA-CCI LSWT product performed better
than the CGLS product in estimating LSWT, while the two products were on par with each other in
terms of demonstrating the spatiotemporal patterns of the WQ parameters. Overall, these two global
remote sensing water quality products can be used to monitor Lake Titicaca, currently with limited
accuracy, but they can be improved with precise pixel identification, accurate optical water type
definition, and better algorithms for atmospheric correction and retrieval. This highlights the need
for the improvement of global WQ products to fit local conditions and make the products more useful
for decision-making at the appropriate scale.

Keywords: Lake Titicaca; water quality; remote sensing products; validation; spatiotemporal
variability

1. Introduction

Water quality (WQ) provides valuable information related to the physical, chemical,
and biological status of a water resource. It can be assessed in terms of different parameters
quantifying the concentrations of certain organisms or chemical substances [1]. Surface
water quality is affected by a range of anthropogenic and natural factors, including pop-
ulation growth and urbanization, which accelerates the rate at which untreated sewage
and agricultural chemicals are discharged to natural bodies of water such as lakes [2,3].
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Monitoring the water quality of these resources is critical for the sustainable management,
protection, and conservation of the lake ecosystem.

The continuous deterioration of water quality globally, especially in regions like
the Global South, poses a major threat to human health and other living organisms [2].
Improving water quality heavily relies on effective monitoring, but large data gaps often
exist, particularly in southern regions [4]. Surface water quality monitoring helps address
this by regularly measuring key parameters such as turbidity, temperature, and dissolved
oxygen. However, in many cases, the data required to fully understand water quality
trends is limited due to the costs, time, and labor required for traditional in situ monitoring.

Traditionally, in situ monitoring methods have been the primary approach to collecting
water quality data. While these methods are effective and accurate, they face significant
challenges. In situ water quality monitoring campaigns are often costly, time-consuming,
laborious, and have limited spatial and temporal coverage. As a result, despite their
accuracy, these challenges restrict the overall scope of water quality assessment, making it
difficult to obtain comprehensive, real-time data across large or remote areas.

With advances in technology, remote sensing (RS) has emerged as a powerful tool for
water quality monitoring. By using images taken by sensors, satellites, or drones, different
information about the Earth’s surface or any object on the surface can be derived [5]. This
information is obtained by processing the measurements from the reflection and emission
of radiation captured by a satellite’s sensor from the surface of the Earth [6]. Due to the ease
of data collection and its cost effectiveness, the utilization of remote sensing derived data
has been increasing. Remote sensing can estimate key WQ parameters like chlorophyll-a,
turbidity, and dissolved organic matter based on the water’s optical properties. This ability
to evaluate water quality over time with minimal physical effort presents a significant
opportunity to improve water quality monitoring globally, especially in regions with large
data gaps.

Different technologies and techniques have also been employed to advance water
quality monitoring like the application of citizen science [7–9], unmanned aerial vehicle-
assisted water quality measurement systems (UAMS) [10], fixed sensors measuring at
certain frequencies utilizing the internet of things (IoT) for data transmission [11], and
remote sensing, which is the focus of this study. Remote sensing allows water managers to
evaluate the water quality of the whole water resource over time due to its greater spatial
and temporal coverage [10].

Among the different types of remote sensing, optical remote sensing is used in retriev-
ing water quality parameters. This takes advantage of already launched missions that are
equipped with optical sensors. Using satellite imagery remotely sensed by optical sensors
like Ocean and Land Colour Instrument (OLCI), or Moderate Resolution Imaging Spectro-
radiometer (MODIS) onboard satellites Sentinel-3 and Aqua/Terra, different water quality
parameters can be estimated. Using the (1) empirical, (2) analytical, (3) semi-empirical, and
(4) artificial intelligence (AI) retrieval modes on satellite (multispectral and hyperspectral)
and non-satellite borne remote sensing data, water quality parameters such as chlorophyll-a
(Chl-a), total suspended matter (TSM), dissolved organic matter (DOM), total nitrogen
(TN), total phosphorus (TP), and chemical oxygen demand (COD) can be retrieved, some
of which are optically active, while others can be derived using relationships with other
substances or AI [12].

The potential of remote sensing for water quality monitoring is further demonstrated
by studies such as those conducted by Huovinen et al. [13] and Nazirova et al. [14]. In
2019, a study was conducted by Huovinen et al. [13] to apply remote sensing in estimating
key WQ parameters (lake surface water temperature (LSWT), turbidity, and chlorophyll-a)
in Lake Panguipulli in Chile. In this study, they estimated the WQ parameters based
on satellite images from Landsat 5, 7, and 8, and Sentinel 2 using ACOLITE software
(version version 20180419.0 for Windows), which uses single algorithms for each of the
parameters. In the case of turbidity, the semi-empirical algorithm of Dogliotti et al. was
used, while the empirical Ocean Chlorophyll two-band (OC2v2) algorithm was used
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to estimate chlorophyll-a. Huovinen et al.’s study showed accurate LSWT estimates,
with good spatial and seasonal variation representation of the other parameters. On the
other hand, high correlation was observed by Nazirova et al. [14] when comparing quasi-
synchronous in situ data with RS data. Nazirova et al. [14] estimated turbidity and the
suspended matter concentration from Landsat 8 and Sentinel 2 images using the algorithms
of Dogliotti et al. and Nechad. Although Nazirova et al. [14] evaluated multiple retrieval
algorithms, both studies applied single algorithms across the whole study area to estimate
WQ parameters. This may have caused the inaccuracies in the observed results since doing
so disregards the optical water type of the lake, which can also vary within a lake. As
highlighted in a RS review by H. Yang et al. [12], the applicability of a retrieval algorithm is
essential in making accurate estimates. In addition, they stated that this can be solved by
using defined optical water types and the corresponding applicable retrieval algorithms.
In this study, these were addressed by using global RS products that assign an estimation
algorithm to each pixel of the satellite image of the lake depending on the identified optical
water type of the pixel, ensuring a more accurate estimate.

Nowadays, various remote sensing products utilizing a combination of optimal algo-
rithms can be found in open-source databases from different national space agencies, where
they are usually characterized by spatial resolution, temporal resolution, and available
variables. International institutions like the National Aeronautics and Space Administration
(NASA) and European Space Agency (ESA) offer such products estimating water quality
parameters using combinations of different algorithms. Prior to the release of these global
remote sensing products, calibration and validation with in situ data is conducted, until
a target accuracy is reached. Although these products estimate different parameters by
adapting the optimal algorithms based on the inherent optical property (IOP) of a water
body [12], there are still cases where low accuracy can occur, especially since calibration
and validation is limited by the in situ data used. In this case, Nazirova et al. [14] noted
that a lower correlation is to be expected; thus, regional retrieval algorithms are developed.
Developing a regional retrieval algorithm is outside the scope of this study.

Global WQ RS products such as Copernicus Global Land Service (CGLS) and ESA
Lakes CCI have been seeing increased use globally, like in the studies of Nkwasa et al. [15]
and Nakkazi [16], which used these products in Lake Tana in Ethiopia and Lake Victoria in
Tanzania, Uganda, and Kenya. The two studies showed that the two global WQ RS products
show promising results for lakes in Africa, especially in terms of spatial and temporal
variability. In Latin America, however, specifically for Lake Titicaca, documentation on the
use of remote sensing products for water quality monitoring is rather scarce. One exception
is a study by Baltodano et al. [17], which used Terrascope turbidity and chlorophyll-a
products in the water quality analysis of Lake Titicaca. However, this study only focused
on the Katari River Basin area of the lake. The inter-comparison of the applicability of these
products for water quality monitoring of Lake Titicaca is not well studied. Thus, in this
study, global remote sensing products estimating various water quality parameters were
explored on the whole Lake Titicaca basin and compared with each other.

Increasing concern is seen towards the deteriorating water quality of Lake Titicaca [18].
With the current state of Lake Titicaca and its sheer scale, quicker and more cost-effective
ways of water quality monitoring are necessary. To strengthen the water quality monitoring
efforts for Lake Titicaca, this study explored global remote sensing products that estimate
various water quality parameters. This was accomplished by (1) comparing two remote
sensing derived water quality products while identifying the characteristics of the products;
(2) validating remote sensing derived data with in situ water quality data, specifically
LSWT and turbidity; and (3) illustrating and evaluating the spatiotemporal variability
of LSWT, turbidity, and chlorophyll-a. The results of this study can aid the ministries of
Bolivia and Peru in monitoring the lake water quality, and ultimately in decision making.
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2. Materials and Methods
2.1. Case Study

Lake Titicaca is on the border of Bolivia and Peru. Located 3810 m above mean sea
level with 8300 km2 surface area, it is considered the highest lake among the world’s large
lakes, the largest lake in South America [19], and the most important water resource in the
Andes [20]. Figure 1 shows a satellite image of the entirety of the lake, with Bolivia on the
east and Peru on the west.
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From the 57,500 km2 catchment area, three-quarters is drained by six main rivers
(Ramis, Ilave, Coata, Katari, Huancane, and Suchez) to the lake, which occupies 15% of
the Lake Titicaca basin [21]. Having only one outlet from the lake, Desaguadero River,
most of the water losses from the lake are through surface water evaporation [22]. This
single outlet of the lake also contributes to the long water residence time of approximately
1300 years [23]. Lake Titicaca’s basin can be categorized into the lago (lake), pampa (lake
plain), cerro (lower hill slopes) at 3800 m to 4200 m altitude, and puna (high-altitude
grasslands) at 4100 m to 4600 m altitude and above [24]. The lago portion of Lake Titicaca
is further subdivided into Lago Mayor and Lago Menor (also called Lago Huiñaymarca),
connected by the Strait of Tiquina. Lago Mayor is the larger part of Lake Titicaca with
a surface area of 7131 km2 and an average depth of 125 m, while Lago Menor covers
1428 km2 and has an average depth of 9 m [25]. Lake Titicaca’s catchment is characterized
by two seasons, wet and dry, starting from December until March and April to November,
respectively, January being the wettest month, and July the driest month [21,26].

For the population within the vicinity and neighboring areas of the lake, Titicaca is
an important resource of water for domestic, agricultural, and industrial purposes [27,28].
Residents and indigenous people from both Bolivian and Peruvian sides of the lake depend
on Titicaca for hunting, fisheries, aquaculture activities, and tourism [29,30]. Aside from
sustenance, indigenous communities also consider Titicaca as a sacred lake where the deity
Viracocha was said to have created the sun, the moon, and the stars [31]. Understanding the
current state and maintaining good water quality is necessary to ensure that these ecological
and sociocultural services are provided to the population and the local ecosystem that
depend on this natural resource [32].

In the past, an oligotrophic state was observed across most of the whole lake, which
was maintained in the deep areas of Lago Mayor until recent years; however, the shallow
areas of Lago Mayor and Lago Menor have been transitioning into mesotrophic and eu-
trophic states, mainly due to the direct discharge of domestic waste into the lake, especially
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from the northern villages of Lago Menor [33]. Cities like El Alto, southeast of Lago Menor,
also contribute to the contamination of Lake Titicaca, specifically along Cohana Bay [32,33].
Aside from pollution caused by domestic wastes, heavy metals such as lead, copper, zinc,
cadmium, and mercury have also been found to pollute the lake, some of which have a con-
centration exceeding international safety standards [34]. These metals can bioaccumulate in
different organisms in the lake, especially fish, which are then consumed by the population.
The increasing pollution levels in the lake have reached alarming levels, causing serious
problems for residents and endemic species. In 2015, an algal bloom event occurred, caused
by a longer rainy season, leading to the death of 10,000 endemic giant water frogs [33,35].
These studies show how quickly the water quality of Lake Titicaca is degrading. The
limited WQ monitoring campaigns prove the difficulty of in situ monitoring. With the
current state of Lake Titicaca and its sheer scale, quicker and more cost-effective ways of
water quality monitoring are necessary, and this is where the knowledge of remote sensing
comes into play, which was employed in this study.

2.2. Validation of Remote Sensing Data

Before global remote sensing WQ products are released, sufficient validation is con-
ducted using a selected lake with ample monitoring data to ensure that the accuracy of the
product reaches the target. Some of these lakes include Lake Huron and Lake Erie shared by
the US and Canada, Lake Ijssel in the Netherlands, and Lake Taihu in China, among others,
most of which are in the global north [36,37]. Since these products have global coverage and
limited validation is conducted, consistent global accuracy is also expected to be limited. In
this study, the accuracy of two global remote sensing WQ products, specifically LSWT and
turbidity products, were validated with in situ derived WQ data in Lake Titicaca.

2.2.1. In Situ Data

In this study, in situ data were obtained through data requisition from government
institutions of the two countries. In Peru, data were requested from the Autoridad Na-
cional del Agua (ANA). ANA is a government institution under the Ministry of Agrarian
Development and Irrigation, which was established for the sustainable management and
conservation of Peru’s water resources [38]. Under ANA is the Proyecto Especial Bi-
nacional Lago Titicaca (PEBLT), which follows the vision of ANA and focuses on the
binational water resource management of the Lake Titicaca basin. The data provided covers
nine (9) monitoring campaigns from the years 2012 to 2020 (excluding 2014), comprising
physicochemical, nutrients, and microbiological parameters for monitoring points across
the whole lake extent. The data for the years 2012, 2013, and 2015 to 2020 consist of 24, 27,
and 29 monitoring points, respectively. Since the data provided by PEBLT for the year 2012
did not have the coordinates of the monitoring points, it was not used in the analyses.

From Bolivia, water quality data for the years 2014, 2015, 2017, and 2018 was provided
by the Unidad Operativa Boliviana de la Autoridad Binacional Autónoma del Sistema
Hídrico TDPS (UOB-ALT-TDPS) under the Ministerio De Medio Ambiente y Agua (Ministry
of Environment and Water) of Bolivia. The data from the Bolivian Ministry of Environment
and Water also included physicochemical, nutrients, and microbiological parameters at
monitoring points within the jurisdiction of Bolivia. In some cases where only the month
and year of the monitoring campaign was stated for the in situ data obtained, it was as-
sumed that the monitoring was performed during the 15th day of the month; doing so
minimizes the difference between the assumed and the actual date of the monitoring. To
lessen the bias caused by this assumption, two validations were performed: one validation
utilizing in situ data from all campaigns, and one considering only in situ data from cam-
paigns when sampling dates are certain. In total, in situ data from fourteen (14) monitoring
campaigns were used in the validation, seven (7) of which have indicated dates for all
monitoring points and seven (7) with assumed dates for the monitoring points. Appendix A
provides an overview of the in situ data used in this study, while Figure 2 illustrates the
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spatial distribution of the monitoring points in the lake and the corresponding frequency at
which sampling was conducted at those points.
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Figure 2. Measurement frequency of the monitoring points over Lake Titicaca across 14 monitoring
campaigns.

Points measured between 7 to 9 times scattered over the whole lake are from the
nine (9) PEBLT campaigns. Points measured once to 6 times are located on the Bolivian
side of the lake. These are from the six (6) monitoring campaigns of UOB-ALT-TDPS.

2.2.2. Remote Sensing Products

Validation with in situ data was conducted with two (2) global products estimating
water quality parameters: Copernicus Global Land Service (CGLS, https://land.copernicus.
eu/en/products?tab=get_overview, accessed on 15 February 2024), now officially renamed
Copernicus Land Monitoring Service or CLMS, and the European Space Agency Lakes
Climate Change Initiative (ESA Lakes CCI, https://climate.esa.int/en/projects/lakes/,
accessed on 17 August 2023). The period of data evaluation and comparison was from
2010 to 2020. Table 1 summarizes information of the two products such as coverage period,
spatial resolution, satellite and sensors utilized, and the distributing agency for each
database where water quality products were obtained. From these two databases, products
were obtained for three water quality parameters, lake surface water temperature, turbidity,
and chlorophyll-a concentration (trophic state index (TSI) in the CGLS database). Lake
surface water temperature (LSWT) describes the amount of kinetic energy at the surface,
about 0–1 m below the top surface of the lake [39,40]. LSWT is a Global Climate Observing
System (GCOS) Essential Climate Variable (ECV), influencing the physical, biological, and
chemical processes, which determines a lake’s ecological status [41]. Turbidity is a measure
of the reduction of light intensity passing through water due to different particles [42], while
chlorophyll-a is a measurement indicating phytoplankton biomass, which can describe a
water body’s trophic status [43].

These parameters were retrieved using the different algorithms listed in Table 1 from
data obtained from the satellite and sensor pair matched with the WQ parameter. To illus-
trate, the LSWT product from CGLS was obtained using the Optimal Estimation algorithm
on L1b AATSR and SLSTR-A/B data, covering the periods 2002–2012 and 2016–present,
respectively [44]. The CGLS Turbidity and Chlorophyll-a products were derived from
L1b MERIS and OLCI data for the same two periods [45]. Both products follow the base
methodology for LSWT retrieval. From the pre-processed satellite data, classification of
lake water pixels that can be used for the LSWT retrieval is completed and the algorithm is
then applied to retrieve LSWT before gridding the data and aggregating them temporally to

https://land.copernicus.eu/en/products?tab=get_overview
https://land.copernicus.eu/en/products?tab=get_overview
https://climate.esa.int/en/projects/lakes/
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generate the product [44,46]. One distinct step in the ESA-CCI LSWT product development
is determining the quality level of the retrieval, which is later used in the “collation” step in
the processing [46]. ESA-CCI products are harmonized through daily collation by selecting
pixels with the highest quality level and by applying per-lake inter-sensor adjustment
factors based on a reference sensor [46]. WQ parameters based on lake water leaving
reflectance (LWLR, turbidity and chlorophyll-a), are retrieved by the two products using
the same processing chain, Calimnos. It starts with pre-processing including radiometric
corrections, pixel identification, and atmospheric correction before classifying the optical
water type (OWT) of each pixel, and then applying the specific algorithm for the OWT to
retrieve the WQ parameters [45,46]. The estimation methodologies are further outlined in
detail in the algorithm theoretical basis documents of the products.

Table 1. Summary of Relevant Information on the Remote Sensing Databases.

Database
Name/Agency

Coverage Period
and Temporal

Resolution

WQ Product
Spatial

Resolution (m)
Satellite: Sensor Retrieval Algorithm

Copernicus
Global Land

Service (CGLS)

May 2002
to present;
10-daily

100, 300,
and 1000

Sentinel-3: SLSTR
Envisat: AATSR [44]

LSWT:
Optimal Estimation (OE) by MacCallum

and Merchant (2012) [44]

Sentinel-3: OLCI
Envisat: MERIS [45]

Turbidity:
Analytical algorithm of Binding et al. (2010),

empirical algorithms of Vantrepotte et al.
(2011), and Zhang et al. (2014). Algorithm
parameters were empirically re-tuned by

Neil et al. [45]
Chlorophyll-a:

OC2 algorithm, empirical band ratio of
Gilerson et al. (2010), semi-analytical

NIR-Red band algorithm of Gons et al.
(2005), and adapted QAA algorithm of

Mishra et al. (2014). Algorithm parameters
were empirically re-tuned by Neil et al. [45]

European Space
Agency (ESA)

Lakes CCI

Sept 1992–2022;
daily 1000

Envisat: AATSR
Sentinel 3: SLSTR
Metop: AVHRR

Terra: MODIS [46]

LSWT:
Optimal Estimation (OE) by MacCallum

and Merchant (2012) [46]

Envisat: MERIS
Aqua: MODIS

Sentinel 3: OLCI [46]

Turbidity:
For MERIS data, similar algorithms were
used as CGLS products. For MODIS data:
empirical algorithms of Miller and Mckee
(2004), Ondrusek et al. (2012), Chen et al.
(2007), Petus et al. (2010), and Zhang et al.

(2010) [46]
Chlorophyll-a:

For MERIS data, similar algorithms were
used as CGLS products. For MODIS data:

OC2, OC3, OC_HI, and empirical band ratio
of Gilerson et al. (2010). Algorithms were

re-tuned empirically by Neil et al. [46]

Global remote sensing water quality products offer different ways of obtaining data. The process of obtaining
data for each of the two water quality products is outlined with the utmost detail.

Copernicus Global Land Service (CGLS)

Version 1 of the remote sensing water quality products offered by CGLS was down-
loaded via file transfer protocol (FTP) using the Filezilla client, with the FTP host:
ftp.globalland.cls.fr, accessed on 15 February 2024. Appendix B shows the dataset and
the corresponding paths in the FTP server. The first dataset is a 300 m resolution product

ftp.globalland.cls.fr
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containing bands with information on mean turbidity and trophic state index, among other
water quality parameters [47]. The second product specifically contains lake surface water
temperature data at 1 km resolution [48]. For both datasets, two (2) time periods were
considered when downloading the remote sensing data, the 1st of January 2010 to the
31st of December 2012, and the 20th of April 2016 to the 31st of December 2020. This was
due to the unavailability of data from 2013 to the first few months of 2016 in the CGLS
database. The downloaded data were in NetCDF format, containing 10-day aggregated
estimates of the WQ parameters. The 10-day temporal aggregation of the LSWT product
was based on a weighted average considering the weights assigned to the uncertainty of the
observations, while the aggregation of the turbidity and TSI product was based on the lake
surface reflectance that is the statistically most representative reflectance spectrum within
the 10-day period [44,45]. Since each NetCDF file from CGLS has global coverage, each file
was clipped to the extents of Lake Titicaca using a script in Python before the analysis.

ESA Lakes CCI (ESA-CCI)

ESA-CCI remote sensing water quality version 2.0.2 products were downloaded from
the Centre for Environmental Data Analysis (CEDA) archive using the Lakes CCI Tools
found on Github (https://github.com/cci-lakes/lakes_cci_tools, accessed on 17 August
2023) [49]. The tools include Python scripts, which were used to check the data availability
for the lake and download data specifically for the lake. Downloading data using the Lakes
CCI tools requires input such as the Lake ID (20 for Lake Titicaca), which was necessary for
the script to mask the files and download data for the specific lake only. From this product,
data for the period 1 January 2010 to 31 December 2020 was downloaded. Similar to the
CGLS data, the files are in NetCDF format containing different data bands, each containing
data for a specific water quality parameter, but with daily aggregation.

Although the two products have different temporal aggregations, the comparison was
made without aggregating the ESA-CCI to 10 days since one of the aims of this study was to
evaluate the products for water management as they are. Post-processing like aggregation
can be considered, depending on the interests and needs of the water managers that will
utilize the products.

As part of preprocessing, the downloaded NetCDF files from CGLS and ESA-CCI
were converted to raster files separated into the parameters of interest (lake surface water
temperature, turbidity, and chlorophyll-a concentration) for ease of processing. One of
the water quality products of CGLS is the trophic state index (TSI), which is derived from
the phytoplankton biomass by proxy of chlorophyll-a. Prior to the analysis, the trophic
state index data was converted to chlorophyll-a concentrations using the rearranged TSI
equation from Carlson [50], which was the basis of the conversion of chlorophyll-a to TSI
in the CGLS product [45]:

Chla = e(
2.04−6×ln (2)+ TSI×ln (2)

10
0.68 ) (1)

where Chla = the chlorophyll-a concentration, and TSI is the trophic state index.

2.2.3. Matching In Situ Data with RS Data

To create a comprehensive comparison of the water quality data, remote sensing data
closest to the spatial and temporal location of the in situ measurement at the monitoring
points were extracted for evaluation. Remote sensing data exactly at the sampling coor-
dinates of the in situ data were extracted for the validation. The specific pixel from the
products extracted at the in situ sampling point was considered to have sufficient quality
to represent the WQ parameter at that point considering the temporal aggregation method
employed for the CGLS products [44,45] and the harmonization technique of the ESA-CCI
products [46] described in the previous section. A match-up window of ±3 days, consistent
with other studies [13], was maintained as much as possible for the observations with
available monitoring campaign dates. However, since the CGLS data has a 10-daily spatial
resolution [44,45], some points have a match-up window exceeding the ±3 days match-up

https://github.com/cci-lakes/lakes_cci_tools
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window. The match-up window used in the validation ranges from ±1 day to ±18 days
and 0 to ±9 days for CGLS and ESA-CCI, respectively. Both products were validated using
the in situ data obtained from various monitoring campaigns over the lake.

2.2.4. Statistical Analysis

As a measure of the accuracy of the remote sensing derived water quality parameters,
various statistical parameters such as coefficient of determination R2, bias, Root Mean
Square Error (RMSE), and combined error (Ecom) were used. Due to the importance of
both RMSE and bias, Woo and Park [51] combined the two measures of error to Ecom. The
following equations define these statistical parameters:

R2 = 1 − ∑(xi − x̂i)
2

∑(xi − x)2 (2)

Bias =
1
N

N

∑
i=1

(xi − yi) (3)

RMSE =

(
1
N

N

∑
i=1

(xi − yi)
2

)1/2

(4)

Ecom = (RMSE 2 + Bias2
)1/2

(5)

where xi = the water quality parameter value obtained from remote sensing products,
yi = the in situ water quality parameter measurement, x̂i = the predicted water quality
parameter value based on the linear regression of remote sensing and in situ data, x = the
mean of the remotely sensed parameter, and N is the number of the data points. An overall
validation was conducted by comparing in situ data from all of the monitoring campaigns
to the remote sensing data.

2.3. Spatiotemporal Analysis

To better understand the WQ dynamics of Lake Titicaca, spatiotemporal analysis
was conducted for the three water quality parameters, LSWT, turbidity, and chlorophyll-a
concentration. The spatial analysis provides an insight into the spatial patterns of the
WQ parameters and the long-term monthly evolution of this pattern, while the temporal
analysis illustrates seasonal patterns (either existent or not) and the trend of the parameters
in time and the level of significance of this trend.

2.3.1. Spatial Analysis

Prior to the calculations, filtering of the raster files was completed and only raster files
with more than 80% of pixels containing data for the whole lake were used to calculate the
long-term monthly means. The percentage used is a balance of the adequacy of data for
the calculation, ensuring that each month of the year has a representative map, and ample
coverage of the lake surface area. After filtering, a buffer mask of one-pixel distance along
the shorelines was applied to the raster files from the turbidity and chlorophyll-a products,
following the recommendation from Simis et al. [45], to reduce the uncertainties caused by
mixed land-water pixels along the shorelines and adjacency effects.

Using a Python script, the converted raster files from the preprocessing were read,
filtered, and stored in data frames, which were stored in lists, in which one list element
contains data for one month. Monthly means throughout the period of interest were then
calculated and subsequently used to obtain long-term monthly means. The results of the
calculation were saved as 12 separate raster files corresponding to each month of the year.
After calculation of the long-term monthly means for the spatial analysis, the results were
visualized side by side with the maps for each month, along with a color bar to represent
the parameter values. Python version 3.9.13 was used for the spatial analysis and other
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analyses in this study. The main Python packages used for this analysis are Rasterio [52]
and numpy [53].

Using the 29 monitoring points from the PEBLT campaigns as a starting point, water
quality hotspots (WQH) were identified from the long-term mean turbidity and chlorophyll-
a estimates of the two products. The 29 monitoring points served as the starting point in the
identification of hotspots due to their good spatial distribution in the lake, covering impor-
tant areas. Identification of these WQHs was based on the long-term mean concentration of
the WQ parameter for the study period 2010 to 2020 at the monitoring points in comparison
with the WQ standards of Bolivia and Peru. Locations that have a long-term monthly mean
concentration exceeding the WQ standards are considered as WQHs. Bolivia requires a
turbidity below 50 NTU for Class C or general purpose waters, while Peru limits turbidity
below 100 NTU for Subcategory B waters or recreational waters [54,55]. Of these 29 points,
all were identified to be within the standard for lake surface water quality in terms of
turbidity, having values below 10 NTU. Thus, based on turbidity, there are no WQHs. On
the other hand, based on the eutrophication limits of 6.4 mg/m3 chlorophyll-a concentra-
tion [50], thirteen (13) WQHs were identified. These hotspots, as shown in Figure 3, were
the locations where temporal analysis was conducted. The coordinates of the hotspots are
included in Appendix C.
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2.3.2. Temporal Analysis

As part of preprocessing for temporal analysis, a Python script loops through each
raster file from the two remote sensing products to read and extract the water quality
parameter value at the closest pixel for each water quality hotspot in Figure 3. This was
performed for the periods mentioned in Section 2.2.2. The extracted WQ parameter values
were stored in a csv file, along with the corresponding “Site ID” (or WQH) and “Date”.
The extracted data were sorted by hotspot and the time series for each WQ parameter
was plotted.

To determine whether there is a significant temporal trend in the water quality of the
lake, the Mann–Kendall (MK) test was conducted for the time series of the three parameters.
Due to the seasonal nature of LSWT, the Seasonal MK test of Hirsch et al. [56] was applied to
the parameter, while the Modified Mann–Kendall test using the Trend-free Pre-Whitening
method as proposed by Yue and Wang [57] was applied to the two other parameters.
Different studies show conflicting results on the seasonality of turbidity and chlorophyll-
a [58,59], and in this study, it was observed that a seasonal pattern is not exhibited by the
time series extracted for both WQ parameters. Mining activities and deforestation [17]
affect the turbidity, while nutrient loading and turbidity [59] can affect the chlorophyll-a
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concentration, which may not all strictly follow a seasonal pattern. Thus, the modified
MK test was used for turbidity and chlorophyll-a. The MK test was applied using the
pymannkendall [60] module in Python.

3. Results
3.1. Accuracy of the Remote Sensing Products

Tables 2 and 3 show the results of the validation of remote sensing derived data with
in situ data for mean turbidity and LSWT, considering in situ data from all monitoring
campaigns and considering only in situ data from campaigns with the indicated dates,
respectively. Considering all in situ data, it can be observed in both products that there is an
overestimation bias for lake surface temperatures, while there is an underestimation bias for
mean turbidity measurements. In terms of the combined error (Ecom) and correlation (R2),
both ESA-CCI products perform better. It should also be noted that for LSWT validation of
ESA-CCI, remote sensing data were available for all 14 monitoring campaigns, while the
other products, CGLS LSWT, CGLS and ESA-CCI turbidity, only have available data for
eight monitoring campaigns from 2016 to 2020 for this first case.

Table 2. Summary of the Statistical Analysis for All Monitoring Campaigns for LSWT and Turbidity
Considering All Monitoring Campaigns.

Variable Product R2 Bias RMSE Ecom n p-Value
at 0.05 Alpha Significance

LSWT
CGLS 0.296 0.408 1.817 1.862 143 2.25 × 10−12 True

ESA-CCI 0.326 0.206 1.635 1.648 312 2.31 × 10−28 True

Turbidity CGLS 0.036 −0.026 1.45 1.45 147 0.022 True
ESA-CCI 0.061 −0.187 1.015 1.032 135 0.004 True

Table 3. Summary of the Statistical Analysis for All Monitoring Campaigns for LSWT and Turbidity
Considering Monitoring Campaigns with Indicated Dates.

Variable Product R2 Bias RMSE Ecom n p-Value
at 0.05 Alpha Significance

LSWT
CGLS 0.005 1.835 2.636 3.212 28 0.715 False

ESA-CCI 0.152 0.377 1.801 1.840 144 1.30 × 10−6 True

Turbidity CGLS 0.389 −0.465 1.137 1.228 30 2.30 × 10−4 True
ESA-CCI 0.061 −0.669 1.011 1.212 29 0.197 False

In the second case, it can be observed that the number of points used in the validation
was greatly reduced due to filtering points without given dates. The same behavior was
observed in terms of the biases of the two products in estimating the WQ parameters.
However, a different observation can be seen in the correlation of the two products with the
in situ turbidity data. With a significant correlation, CGLS performs better at estimating tur-
bidity compared to ESA-CCI. Although there are differences in the results of the two cases,
a low correlation is still present in both cases. The scatter plots showing the validation for
each parameter and products are shown in Appendix D.

3.2. Long-Term Spatial and Monthly Pattern of Water Quality in Lake Titicaca

The spatial variation of the water quality parameters is visualized in Figures 4–6. Each
figure shows the long-term average spatial pattern of the WQ parameters in separate maps
for each month of a year. A color bar represents the values of the maps shown in the figures.
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Figure 5. Long-term monthly mean turbidity maps for the period 2010–2020 for (a) CGLS and
(b) ESA-CCI.

Across the whole lake, a well-mixed temperature can be observed. In terms of seasonal
pattern, a consistency with the seasonal weather conditions is observed, with high tempera-
tures from November to April, and low temperatures in the remaining months. The lowest
temperatures can be observed in July and August, with lower temperatures occurring
south of Lago Menor. During the warm months, the highest temperatures are observed in
Lago Menor instead. The temperature difference between Lago Mayor and Lago Menor
is caused by the significant difference in the depths of the two areas. Lago Menor, being
shallower, has less heat capacity, and thus is more susceptible to rapid temperature changes
compared to the deeper Lago Mayor [55]. Comparing the maps for mean lake surface water
temperatures shows that the estimates from both products are almost identical with each
other, spatially and seasonally.

Figure 5 shows that higher turbidity can be observed north of the lake and in the
southern portion of Lago Menor. On average, there is high turbidity in the north of the
lake, the outlet of the Ramis River, during the start of the year until the month of April. The
turbidity north of the lake decreases while it increases in the southern half of Lago Menor.
High turbidity can also be observed along the shores of the lake. In general, the inner parts
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of the lake have lower turbidity. Spatially, a similar spatial and monthly pattern can be
observed for the two turbidity products. However, the high turbidity along the shores is
not as pronounced in the ESA-CCI estimates compared to the Copernicus GLS.
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The red crosses locate the ten (10) highest long-term monthly turbidity. Based on
frequency, the critical point in Lago Menor is the Cohana Bay, the Katari River basin
discharge region (near the Desaguadero river, south of the lake). In Lago Mayor, the critical
points are the outlet of the Keka Achacachi river (SE Lake Titicaca) and near the district of
Pusi (NW Lake Titicaca).

CGLS and ESA-CCI chlorophyll-a concentration estimates in Lake Titicaca are highest
in Lago Menor and the bays in the east and northwest, where the bays of Ancoraimes
city can be found and where the major rivers Suchez, Coata, Ramis, and Huancane termi-
nate. The high concentration in Lago Menor is due to it being shallower, making it more
susceptible to eutrophication caused by anthropogenic activities [61]. Concentrations in
Lago Mayor are almost uniform except for the high concentrations along parts of the bays.
The months of June and July have the highest concentration, while December and January
have the lowest. ESA-CCI estimates show less pronounced high concentrations during
the months of June and July and in Lago Menor, concentrations are not as uniform as the
CGLS estimates.

There are two critical points identified in terms of chlorophyll-a concentrations, one
for Lago Mayor and one for Lago Menor: the outlet of Keka Achacachi river (SE), and the
outlet of Katari River, Cohana Bay (SE), respectively.

In the study period, estimates from both products show consistency with each other
in terms of spatial patterns and magnitudes, with very few discrepancies. Table 4 shows
the mean WQ parameter values over the whole study period for the two regions of the
lake, Lago Mayor and Lago Menor. The mean values are calculated separately for the
regions of the lake due to the significant differences of the parameter values, specifically for
turbidity and chlorophyll-a, with Lago Menor being more contaminated. The two products
estimated the average surface temperature of Lake Titicaca at approximately 14 ◦C, which
is consistent with observations [62]. As observed in Figure 4, the surface water is warmer in
Lago Menor during the warm months, which is also observed in the calculated long-term
mean temperatures.
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Table 4. Long-term mean water quality parameter estimates from the two products in each region of
Lake Titicaca.

Product Lake Region LSWT Turbidity Chlorophyll-a

CGLS
Mayor 13.90 0.76 3.62
Menor 13.93 1.92 16.36

ESA-CCI
Mayor 13.88 0.49 2.06
Menor 14.04 1.49 10.94

3.3. Temporal Variability and Trends of Lake Titicaca Water Quality

Figures 7–9 show the time series of each water quality parameter (lake surface water
temperature, turbidity, and chlorophyll-a concentration, respectively) with the estimates of
the remote sensing products plotted on top of each other. Each subplot shows the temporal
evolution of a parameter in a water quality hotspot.
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Figure 8. Temporal Pattern Comparison of Turbidity for the Remote Sensing Products at Each Water
Quality Hotspot (WQH).

Temporally, the CGLS and ESA-CCI LSWT estimates are very consistent with each
other, showing seasonal fluctuation of LSWT. The magnitude of the estimates is also
consistent with each other, as shown by the almost perfectly overlapping plots, except for
some extremes in the ESA-CCI estimates.

In terms of the mean turbidity temporal pattern, the seasonal variability is less ap-
parent compared to LSWT. There is also less consistency with the estimates between the
two products. A lot of high peak estimates are present in the ESA-CCI product, which are
not present in the CGLS estimates.

The chlorophyll-a estimates show the least consistency between the two products and
a seasonal pattern is not present in the time series of the estimates. More high peaks are
also present in the ESA-CCI estimates. Using the Mann–Kendall test, the trends of the
temporal pattern of the water quality parameters were determined. Figures 10–12 show
the results of the Mann–Kendall test.
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Based on the results of the Mann–Kendall test for the LSWT time series of both
products, the majority of the WQH have no trend, while only two and one WQH has an
increasing trend for CGLS and ESA-CCI, respectively.

In terms of turbidity estimates, most WQH also have no temporal trend in the CGLS
estimates, with only one point having an increasing trend. For the ESA-CCI estimates, the
WQH are almost equally split between no trend and a decreasing trend, and similar to
CGLS, only one point has an increasing trend. Aggregating the WQH time series per lake
showed that most of the calculated trends for the WQHs exhibit a similar overall trend for
Lago Mayor and Lago Menor. For both lakes, there seems to be no significant trend in the
turbidity levels based on the two products.

Finally, chlorophyll-a concentration estimates show mostly decreasing trends from
ESA-CCI, while CGLS shows mostly no trends followed by decreasing trends. Some points
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with an increasing trend are also observed in the ESA-CCI estimates located at the outlets
of Keka Achacachi and Katari River. Unlike turbidity, MK trends identified from each
WQH do not agree with the trends of the aggregated time series. This is especially evident
with the ESA-CCI trends in Lago Mayor, where chlorophyll-a is observed to be decreasing;
however, when aggregated, the trend disappears.

4. Discussion

Two global remote sensing products estimating water quality parameters, Copernicus
GLS and ESA Lakes CCI, were explored and evaluated for Lake Titicaca. Validation and
comparisons were made between the in situ measurements and remote sensing derived
LSWT and turbidity data over 14 monitoring campaigns using statistical analysis. The
spatiotemporal variability of LSWT, turbidity, and chlorophyll-a from the two products was
also analyzed and compared, through visual inspection and Mann–Kendall trend analysis.

4.1. Global Remote Sensing Water Quality Products Accuracy

The comparison of RS derived LSWT and turbidity data with the in situ data showed
low accuracies in both products evaluated in both validations performed. One factor that
may have caused the discrepancies is the measurement methodology employed during in
situ campaigns, especially the depths at which water quality parameters are measured. The
in situ data shows that measurements were mostly conducted at 20% and 80% depth of
the lake at each monitoring point, where data measured at 20% depth (from 0.3 m to 54 m)
were used as surface measurements. On the other hand, remote sensing products estimate
WQ parameters using satellite imagery from various sources, which uses optical and
thermal remote sensing to measure lake water leaving reflectance (LWLR) and brightness
temperature in the topmost surface of the lake, respectively. Measured LWLR is used to
estimate optically active parameters such as turbidity and chlorophyll-a, while brightness
temperature is used to retrieve LSWT [46]. Another factor that may affect the accuracy
of RS with in situ data is the synchronization of both data. Since in situ measurements
were not carried out for this study, and only available historical data were used, perfect
synchronization of the remote sensing derived data and in situ measurements cannot be
achieved. It should also be noted that due to missing information in the data, like the
exact date of some monitoring campaigns, assumptions were made that may affect the
accuracy in the validation. On average, a match-up window of 4 days and 1 day was
used for the CGLS and ESA-CCI products, respectively. The higher match-up window of
the CGLS data is caused by the 10-daily temporal aggregation of data, compared to daily
aggregation in ESA-CCI. The observed mean match-up window for CGLS is outside of the
±3 days recommended match-up window according to Huovinen et al. [13]. In a study by
Nazirova et al. [14], in situ measurements were conducted at a time when satellite images
were also taken, synchronizing both measurements, which resulted in a good correlation
between the in situ and remote sensing data. The results of this study are in agreement
with Nazirova et al. [14], since it was observed that ESA-CCI products perform better due
to its closer average match-up window. This shows that asynchrony between data results
in a lower correlation.

Additionally, the different correlation of each product to in situ data may also be
affected by the differences in the algorithms used (both atmospheric correction and pa-
rameter retrieval) in the products, temporal aggregation, as well as the spatial resolution
of the products [16]. Spatial resolution of the products is dependent on the resolution
of the source satellite imagery, which varies for each product. One important factor that
may also affect the comparison, which may often be overlooked, is the quality of the in
situ data. For large lakes like Lake Titicaca, in situ measurements may not always have
the best quality, due to different factors like the lake’s size, accessibility to the different
parts of the lake, resource limitations, and its transboundary nature, which can hinder
extensive and comprehensive sampling [63–65]. In most cases, in situ data are taken as
absolute and are considered the correct data. However, this is not always the case. There
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are various factors that may lead to poor quality in situ measurements, such as human
error, instrument error, and unfavorable site conditions. The same is true in terms of remote
sensing data, which can easily be affected by cloud cover, atmosphere, sun glint, adjacency
effect, and calibration errors [66]. According to Simis et al. [46], the challenging part of
estimating global water quality parameters using remote sensing is developing universally
applicable algorithms for both atmospheric correction and parameter estimation, especially
due to the highly variable nature of inland water bio-optical properties. The low accuracies
observed from the two validations performed highlights the need for local algorithms for
more accurate estimates.

Overall, a better correlation with in situ data was observed with LSWT products
compared to turbidity products. This is consistent with other studies [13,67] showing good
agreement between LSWT estimates using RS data and in situ measurements. This is due
to the LSWT retrieval being based on physics, which stabilizes performance across space
and time [44], whereas the WQ parameters based on LWLR are retrieved using analytical
and (semi-)empirical relationships of variables [46].

Although better results were obtained in the validation of LSWT products, there are
still uncertainties caused by quick temperature fluctuations common in surface waters at
high altitudes, and the fact that the exact time of the day the in situ LSWT measurements
were taken. Overall correlation coefficients (CGLS: 0.30; ESA-CCI: 0.33) also showed low
correlation in the validation despite being better than the turbidity products validation.
Better product performance can be achieved by improving data preprocessing (water/non-
water pixel identification, optical water type definition and identification, etc.), atmospheric
correction and retrieval algorithms [68]. As remote sensing product quality is dependent
on the input data quality, proper selection of satellite imagery is necessary. Moreover,
UAV imagery obtained from high-resolution sensors and in situ water surface reflectance
measurements, which are not influenced by the atmosphere, can complement satellite
imagery as input data to WQ retrieval algorithms [69].

4.2. Spatiotemporal Variability of Water Quality in Lake Titicaca

Analysis of the spatiotemporal variability of Lake Titicaca water quality exhibited
both similar and differing patterns across the two products. It is noteworthy that LSWT
estimates from both products showed identical spatiotemporal patterns, which may be due
to utilizing the same optimal estimation (OE) algorithm of MacCallum and Merchant [70],
as well as sharing some of the same sources of satellite images. The spatial LSWT pattern
shows an almost well-mixed temperature across the whole lake except for the lower
temperatures in Lago Menor during cool months and higher temperatures in Lago Menor
during warm months. This is caused by Lago Menor being shallower compared to Lago
Mayor. Meanwhile, the temporal variability of LSWT is dictated by the local climate pattern
of the catchment.

Spatially, the same long-term pattern can be deduced from the turbidity estimates of
both products; however, a lesser extent of high turbidity is shown by the ESA-CCI product,
especially along the shores. Higher turbidity is estimated north of the lake during the first
quarter of the year and south of the lake during the last quarter of the year. This roughly
coincides with the wet season in the catchment, which means rainfall run-off transports
sediments to the lake, causing high turbidity. A similar spatial pattern can be said for the
chlorophyll-a estimates, which just have a more widespread high concentration over Lago
Menor. This observation agrees with the results of Ruiz-Verdu et al. [71]. Throughout the
year, Lago Menor is eutrophic, while Lago Mayor fluctuates between mesotrophic and
oligotrophic states based on the classification of Carlson [50]. The high concentrations in
the different parts of the lake are driven by phytoplankton bloom due to nutrient loading
from the tributary rivers during wet periods [17,71]. This also explains the temporal pattern
of turbidity and chlorophyll-a; however, it is less pronounced than the pattern observed
with temperature.
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Looking at the ten highest long-term monthly turbidity and chlorophyll-a revealed
some critical points in Lake Titicaca, which include Cohana Bay. Baltodano [17] studied
the Katari River Basin and calculated high NDVI values along Cohana Bay, which they
attributed to the presence of aquatic vegetation and noted that it can also be due to eutroph-
ication reported from in situ monitoring [72,73]. The spatial analysis also identified new
critical points like the area near the district of Pusi and the outlet of Keka Achacachi river,
which are not yet studied.

The similarities in spatial patterns can be attributed to both products using the same
processing chain, Calimnos, while the differences may have been derived from various
factors. This includes differences in spatial resolution and temporal aggregation of 10-daily
versus daily aggregation. The difference in the extent of high turbidity observations may
be rooted in the inaccuracy of pixel identification along the shores of the lakes, and the
adjacency effect from land pixels, which may have been aggravated by the spatial resolution.
This was to be expected since improvements in the pixel identification algorithms were still
being developed when the products were made; thus, assumptions were made that the
Idepix module that identifies water pixels can adequately differentiate water pixels from
mixed land/water pixels [45,46]. As highlighted by Stelzer et al. [74], a crucial step in the
retrieval is assigning an optical water type to each pixel of a satellite image, which is heavily
dependent on the identification of the pixel as water and the atmospheric correction. Thus,
they recommended users mask a buffer of one pixel in the shorelines of the lake since it is
difficult to control and flag the misidentification in the area, especially for users that are
interested in lake averages rather than maps, to reduce errors and uncertainties of estimates
near the shorelines [45]. This has been improved in the newer version of Calimnos used by
the newest ESA-CCI products, which introduced mixed-water types to consider the effect
of adjacent lands to water [46].

The temporal pattern of chlorophyll-a shows noticeable differences between products
caused by the conversion from the trophic state index to the chlorophyll-a concentration
as also explained by Nakkazi [16] and Baltodano [75]. This causes higher concentration
peaks in the ESA-CCI estimates to be underestimated by the CGLS product due to the
maximum value limit corresponding to a TSI of 100 in the algorithm used to convert TSI to
chlorophyll-a concentrations. The observed data gaps, particularly for the period of 2013 to
2016, especially for the CGLS products, which were not included in the analysis, may be
due to the scarcity of input data from satellite imagery.

Temporal trends of the WQ parameters at the WQHs are not in agreement with each
other between the products, which is especially noticeable in the turbidity estimates, where
no trends were mostly determined in CGLS, while a mix of trends were found for ESA-CCI.
Aguilar-Lome et al. [76] found that there was an increasing trend in the LSWT of Lake
Titicaca, which they attributed to the significant increasing trend of local air temperature.
A study showed that there is an increasing trend in the turbidity of Lake Titicaca’s waters.
In contrast, chlorophyll-a trends across the whole lake were mostly consistent with each
other, with a decreasing trend. Upon aggregating the turbidity and chlorophyll-a time
series per lake, the calculated trends weakened, especially for the ESA-CCI estimates; thus,
no significant trends were identified. This can also mean that the contamination is rather
concentrated in some areas and does not affect the whole lake. Studies [33,77] also showed
that increasing eutrophication is observed in the lake. In more turbid waters like the Lago
Menor of Lake Titicaca, less light penetrates, thus hindering growth of aquatic plants, and
in turn impacting chlorophyll-a. This shows how complex chlorophyll-a trend studies are,
due to its highly susceptibility to uncertainties caused by the complexity of phytoplankton
dynamics [78]. Another observation in this study is the high variability in the time series,
especially with the ESA-CCI estimates. This high variability adds another complexity to
trend analyses, which may obscure and weaken a trend [79]. Although trend analysis
provides important information on the rate and trend of the change in the water quality of
a lake, it does not provide an insight into the causes of this trend [79]. To shed light on the
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causes of these trends, it is recommended to relate the drivers that may affect water quality
trends, which can be achieved through land use and land cover change analysis.

4.3. Comparison of CGLS and ESA-CCI Products

Comparing the two global remote sensing WQ products in terms of temporal avail-
ability and resolution, WQ parameter availability, and estimate accuracy shows that both
products have their advantages and disadvantages, depending on the focus of the applica-
tion. One downside of the CGLS data is the 10-daily aggregation; however, it is available
until the present. In contrast, the daily aggregation of ESA-CCI products is an advantage
but the latest dataset, v2.1, only has data availability until the end of 2022. The ESA-CCI
v2.1 dataset was released under the second phase of the project, which started in 2022
and is expected to last for three years. The finer spatial resolution of LWLR derived CGLS
products gives it an edge over the 1 km resolution of ESA-CCI products. LSWT products, on
the other hand, are just on par with each other when it comes to spatial resolution, accuracy
of estimates and spatiotemporal variability. The same is true for the availability of WQ
parameters; however, TSI estimates may not be as reliable when converted to chlorophyll-a
and compared to the ESA-CCI product due to the limitations caused by the conversion
algorithm. When it comes to spatial variability and estimate accuracy, ESA-CCI turbidity
estimates are more dependable, especially along the shores due to the added mixed-water
types in the Calimnos v2.1.

5. Conclusions

In this study, the feasibility of global remote sensing products for monitoring the water
quality of Lake Titicaca was evaluated through a comparison with in situ measurements
and an analysis of the spatiotemporal variability of LSWT, turbidity, and chlorophyll-a.

Validation of remote sensing derived data showed that LSWT estimates are better
correlated with in situ data than turbidity estimates. On average, LSWT estimates have
an overestimation bias, while the opposite is true for turbidity estimates. Inaccuracies are
attributable to various factors such as measurement uncertainties, synchronization of data,
atmospheric correction, the retrieval algorithms, and the spatial resolution. The observed
spatial patterns from the three WQ parameters evaluated are accurate as verified by the
actual field conditions and comparisons between each other, where high turbidity and
chlorophyll-a are observed in Lago Menor and at the outlets of major tributaries. The
consistency of the spatiotemporal and long-term monthly variability of LSWT between
the two products is remarkable, which is due to the use of the same retrieval algorithm.
In contrast, the difficulty in pixel identification, specifically along the shoreline, caused
some minor differences in the estimated spatial variability of turbidity and chlorophyll-
a. Temporally, only a few WQHs exhibited similar patterns for turbidity, even less for
chlorophyll-a. This is due to the limitations caused by the conversion of TSI to chlorophyll-
a concentration. Moreover, temporal trends of the WQ parameters were mostly not in
agreement with each other. The decreasing trend mostly observed with chlorophyll-a
estimates may be caused by the phytoplankton dynamics complexity.

The effects of the difference in the temporal aggregation of the two products are most
evident in the temporal analysis, where a lot of peak highs and lows were observed in the
ESA-CCI estimates, while the CGLS estimates do not exhibit these peaks. The difference
between the temporal aggregations was retained during the analysis since one of the aims
of this study was to evaluate the two products as they are. Further processing of data from
the products is at the water managers’ discretion as they see fit for their use case.

In terms of reliability, it can be said that the products are on par with each other, each
with upsides and downsides. CGLS products are advantageous in the sense that they are
available until the present, also given that the LSWT estimates yielded a higher accuracy.
However, LWLR products (turbidity, chlorophyll-a) of ESA-CCI will be more reliable for
spatiotemporal variability studies due to its more updated retrieval processing chain.
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This study showed that water quality monitoring in Lake Titicaca using remote sensing
products is possible, but it is not without its limitations. First, only two products were
evaluated within a limited period restricted by the temporal availability of data. In future
studies, it will be relevant to explore how the two products will compare with others,
such as Terrascope, Ocean Color, NOAA Gap-filled products, and in the far future, data
obtained from the recently launched PACE mission of NASA. In situ validation could also
have been improved by conducting seasonal validation, which was not possible due to the
availability of in situ measurements. Moreover, as rainfall greatly influences water quality
dynamics [80], the effects of precipitation on the water quality of Lake Titicaca can also
be evaluated. Lastly, trend analysis by itself does not provide insight into the causes of
water quality degradation; thus, land use and land cover change analysis is recommended
to relate drivers that may affect water quality in Lake Titicaca.

Overall, global remote sensing water quality products can be used to monitor Lake
Titicaca, currently with limited accuracy. The accuracy can be improved with improved
pixel identification, accurate optical water type definition, and better algorithms. This also
highlights and supports Simis’ [46] statement on the challenges of estimating global water
quality parameters due to the highly variable bio-optical properties of inland waters. Thus,
improvement of global WQ products is necessary to fit local conditions in tropical lakes to
make the products useful for decision-making at the appropriate scale.
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Appendix A

Table A1. Summary of In Situ Data Obtained and its Sources.

Campaign Date Coverage Parameters Data Source Monitoring
Dates

Sept 2013 Whole lake
Turbidity,

Temperature

PEBLT Assumed
Oct 2013 Whole lake PEBLT Assumed
Mar 2014 Bolivia IBTEN—ALT—UOB Indicated
Oct 2014 Bolivia IBTEN—ALT—UOB Indicated
Sept 2015 Whole lake Temperature PEBLT Indicated

Oct 2015 Bolivia turbidity,
Temperature IBTEN—ALT—UOB Indicated

Apr 2016 Whole lake Temperature PEBLT Indicated
Jun 2017 Whole lake

Turbidity,
temperature

PEBLT Assumed
Nov 2017 Bolivia IBTEN—ALT—UOB Assumed
Jul 2018 Bolivia IBTEN—ALT—UOB Assumed

Nov 2018 Whole lake PEBLT Assumed
Aug 2019 Whole lake PEBLT Assumed
Dec 2019 Whole lake PEBLT Indicated
Oct 2020 Whole lake PEBLT Indicated
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Appendix B

Table A2. Summary of CGLS Dataset Used.

Dataset FTP Folder Path Parameters Included

300 m resolution, near-real time (nrt)
based on Sentinel-3 and reprocessed

based on Envisat

(2010–2012):/home/glbland_ftp/Core/
BROCKMANN/dataset-brockmann-lwq-

nrt-300m
(2016–2023):

/home/glbland_ftp/Core/BROCKMANN/
dataset-brockmann-lwq-reproc-300m

Mean turbidity, Trophic state index

1 km resolution, near-real time (nrt)
based on Sentinel-3 and reprocessed

based on Envisat

(2010–2012):/home/glbland_ftp/Core/
BROCKMANN/dataset-brockmann-lswt-nrt

(2016–2023):/home/glbland_ftp/Core/
BROCKMANN/dataset-brockmann-

lswt-reproc

Lake Surface Water Temperature

Appendix C

Table A3. Identified Water Quality Hotspot Coordinates.

Hotspot Number Latitude (◦) Longitude (◦)

WQH-01 −15.336 −69.758
WQH-02 −15.389 −69.547
WQH-03 −15.437 −69.848
WQH-04 −15.685 −69.195
WQH-05 −15.85 −69.947
WQH-06 −15.974 −68.822
WQH-07 −16.268 −69.27
WQH-08 −16.274 −68.622
WQH-09 −16.309 −68.836
WQH-10 −16.39 −68.75
WQH-11 −16.422 −68.992
WQH-12 −16.544 −69.033
WQH-13 −16.545 −68.909
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