
Citation: Li, L.; Wang, S.; Bo, Y.; Yang,

B.; Li, X.; Liu, K. Spatial-Temporal

Evolution and Cooling Effect of

Irrigated Cropland in Inner Mongolia

Region. Remote Sens. 2024, 16, 4797.

https://doi.org/10.3390/rs16244797

Academic Editor: Jochem Verrelst

Received: 29 October 2024

Revised: 11 December 2024

Accepted: 19 December 2024

Published: 23 December 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Spatial-Temporal Evolution and Cooling Effect of Irrigated
Cropland in Inner Mongolia Region
Long Li 1,2 , Shudong Wang 1, Yuewei Bo 3, Banghui Yang 4, Xueke Li 5 and Kai Liu 1,*

1 The State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese
Academy of Sciences, Beijing 100094, China; lilong221@mails.ucas.ac.cn (L.L.); wangsd@aircas.ac.cn (S.W.)

2 University of Chinese Academy of Sciences, Beijing 101408, China
3 Shandong Provincial NO. 4 Institute of Geological and Mineral Survey, Weifang 261021, China
4 Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China;

yangbh@aircas.ac.cn
5 The Department of Earth and Environmental Science, University of Pennsylvania,

Philadelphia, PA 19104, USA; xuekeli@sas.upenn.deu
* Correspondence: liuk@aircas.ac.cn

Abstract: Monitoring the dynamic distribution of irrigated cropland and assessing its cooling effects
are essential for advancing sustainable agriculture amid climate change. This study presents an
integrated framework for irrigated cropland monitoring and cooling effect assessment. Leveraging
dense time series vegetation indices with Google Earth Engine (GEE), we evaluated multiple machine
learning algorithms within to identify the most robust approach (random forest algorithm) for map-
ping irrigated cropland in Inner Mongolia from 2010 to 2020. Furthermore, we developed an effective
method to quantify the diurnal, seasonal, and interannual cooling effects of irrigation. Our generated
irrigated cropland maps demonstrate high accuracy, with overall accuracy ranging from 0.85 to 0.89.
This framework effectively captures regional cropland expansion patterns, revealing a substantial
increase in irrigated cropland across Inner Mongolia by 27,466.09 km2 (about +64%) between 2010
and 2020, with particularly pronounced growth occurring after 2014. Analysis reveals that irrigated
cropland lowered average daily land surface temperature (LST) by 0.25 ◦C compared to rain-fed
cropland, with the strongest cooling effect observed between July and August by approximately
0.64 ◦C, closely associated with increased evapotranspiration. Our work highlights the potential
of satellite-based irrigation monitoring and climate impact analysis, offering a valuable tool for
supporting climate-resilient agriculture practices.

Keywords: irrigated cropland; land use change; cooling effect; remote sensing; Google Earth Engine;
machine learning

1. Introduction

Irrigated cropland refers to arable land with irrigation equipment, such as artificial
ditches or pipelines, which use groundwater or surface water to ensure normal crop
growth. This practice consumes large amounts of freshwater resources to achieve stable
and increased yields. While irrigated agriculture accounts for about 20% of the world’s
cropland, it produces about 40% of the world’s food and consumes about 70% of freshwater
resources [1]. Irrigated cropland plays an important role in ensuring food security [2–4] and
has been shown to have a large potential to mitigate regional climate warming [5,6]. Over
the past decade, northern China has actively promoted water-saving irrigation projects,
leading to a substantial expansion of irrigated cropland [7]. However, changes in the
spatial distribution of irrigated cropland and its feedback on regional climate remain poorly
understood [8,9].

Several studies have been conducted to either map irrigated cropland [10–12] or assess
the cooling effects of irrigation [13–15]. However, these two areas of research are often
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treated separately, with many studies focusing exclusively on one or the other. This results
in existing maps of irrigated cropland often being inadequate for accurately assessing
the regional cooling effects of irrigation. The challenges include the following: (a) many
existing maps focus solely on irrigated areas, neglecting non-irrigated cropland [14]; (b)
global or national-scale irrigated cropland maps lack the resolution needed for accurate
regional analysis [16]; and (c) studies often use land surface temperatures (LST) as a feature
for mapping irrigated cropland [17,18], which may bias the assessment of cooling effects.
To overcome these challenges, a research framework is needed to assess both the spatial
dynamics of irrigated cropland and the associated climate impacts.

Accurate mapping of irrigated cropland is a crucial prerequisite for evaluating its
cooling effects. Irrigated cropland mapping is typically approached from three perspectives:
(a) the use of national and regional statistics [11,19], (b) irrigation performance [12,16], and
(c) the biophysical effects of irrigation [20–22]. The spatial allocation method is the primary
approach for mapping irrigated cropland using statistical data [23]. This method enables
the creation of global or national-scale maps by integrating expert knowledge of irrigation
suitability or vegetation indices reflecting crop growth, although collecting and updating
statistical data is challenging, and variations in statistical standards and quality exist [16].
Nevertheless, these maps are widely recognized due to their high consistency with the
statistical data [24,25]. Regional agriculture and water resource management require more-
detailed maps of irrigated cropland. The resolution of maps based on statistical data is too
coarse to meet these demands [16]. To address this, several methods have been proposed
to generate finer maps, focusing on irrigation performance and biophysical effects of
irrigation [12,20]. Irrigated crops enhanced growth due to irrigation, which is reflected in
vegetation indices such as NDVI, EVI, and GI [18,26]. Biophysical effects include changes in
surface temperature, soil moisture and evapotranspiration caused by irrigation. Threshold-
based methods have been used to differentiate irrigated from non-irrigated areas based on
crop growth [12,27]. Alternatively, maps can be derived by detecting irrigation-induced
soil moisture anomalies [20,21]. However, using surface temperature parameters during
mapping may bias the assessment of cooling effects. Therefore, methods focusing on
crop growth are needed to ensure high accuracy and reliability. Machine learning, with
its ability to handle high-dimensional time-series data, is particularly promising for this
task [18,28,29].

Irrigation is a classic example of anthropogenic influence on near-surface climate.
Numerous studies have shown that irrigation has a cooling effect, benefiting crop yields
and human health [30–32]. While land surface models and algorithms have been used
to assess the cooling effect of irrigation [33,34], challenges remain in achieving precise
regional assessments. Land surface models tend to produce coarse results [35] suitable for
the national or global scale but inadequate for regional applications. For instance, Yang
designed the Irrigation Cooling Effect Detection (ICED) method [14], which uses satellite
observations to assess the cooling effect of irrigated cropland in China. The application of
the ICED algorithm in regions with low levels of non-irrigated cropland presents some
challenges. The algorithm uses a neighborhood search to evaluate the difference in LST
between irrigated and non-irrigated cropland. However, in arid climates where non-
irrigated cropland is scarce, grasslands are often used as substitutes, which introduces
uncertainty into the results [14]. Therefore, the method needs to be redesigned to better
detect the cooling effect of irrigation in arid climate zones.

To address these gaps, this study proposes an integrated framework that combines
high-frequency time-series data with machine learning techniques. Our framework lever-
ages dense vegetation time-series indices to capture irrigated cropland growth and phe-
nological differences while incorporating topographic parameters to enhance mapping
accuracy. Multiple machine learning algorithm were evaluated within the Google Earth
Engine platform to identify the most effective model for mapping irrigated cropland dy-
namics across Inner Mongolia from 2010 to 2020. Based on these detailed irrigated cropland
maps, we further employed a moving window strategy to quantify the irrigation cooling
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effect, followed by an analysis of the factors influencing this cooling impact. Our study is
expected to enhance the accuracy of regional irrigation monitoring, providing insights into
how irrigation contributes to local climate regulation, particularly in semi-arid and arid
regions vulnerable to climate stress.

2. Materials and Methods
2.1. Study Area

The study area is Inner Mongolia, China (97◦12′–126◦04′E, 37◦24′–53◦23′N), located
in a mid-latitude arid and semi-arid region with a predominantly temperate continental
climate (Figure 1), with precipitation in the range of 150–450 mm and uneven spatial
and temporal distribution in most areas [36]. The large east–west span of the study area
and pronounced east–west hydrothermal gradients provide a diverse range of climatic
conditions, making it an ideal setting to validate the robustness of the irrigated cropland
mapping methodology and assess the irrigation cooling effect across varying climates [37].
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Figure 1. Map of geographical location of Inner Mongolia.

2.2. Datasets and Data Processing

The main data used in this study include the MODIS vegetation index dataset, the
MODIS LST dataset, the MODIS evapotranspiration dataset, and topographic data. In
addition, we used medium- to high-resolution Landsat data and Sentinel-2 data to assist in
labeling the samples (Table 1). All data used in the study are available in the Google Earth
Engine (GEE) dataset archive (https://developers.google.com/earth-engine/datasets/,
accessed on 29 November 2024) and can be preprocessed and downloaded in GEE.

The vegetation index dataset used in this study was the MOD13Q1 product. The
MOD13Q1 product is derived from the Moderate Resolution Imaging Spectrometer on
Terra and is generated at a spatial resolution of 250 m every 16 days. The MOD13Q1 product
provides two main layers of Normalized Vegetation Index (NDVI) and Enhanced Vegetation
Index (EVI), and the MOD13Q1 product’s synthesis algorithm selects the best available
pixel values from all acquisitions over the 16-day period, using low cloud, low view, and
highest NDVI/EVI values [38]. Since NDVI has good characterization of vegetation growth
conditions [39], resulting in differences in NDVI time profiles between irrigated and rain-fed
cropland [40], it is widely used in mapping studies of irrigated cropland [41,42]. However,
NDVI uses nonlinear stretching to enhance the contrast between near-infrared and red
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band reflectance, which makes NDVI have lower sensitivity for high-vegetation areas [43],
while crops generally have higher NDVI, and it may be difficult to achieve satisfactory
mapping accuracy using only NDVI. EVI, which has higher sensitivity in high-biomass
areas, has addressed the saturation effect of NDVI [44].

Table 1. Summary of datasets used in this study.

Data Sources Bands Spatial Resolution Temporal Resolution Purpose

MOD13Q1 NDVI, EVI 250 m 16 d Classification

MOD11A2 LST_Day_1km, LST_Night_1km 1000 m 8 d Cooling effect analysis

MOD16A2 ET 500 m 8 d Cooling effect analysis

SRTM Elevation 90 m / Classification

Landsat 5/7/8 NIR, Red, Green 30 m 16 d Sample labeling

Sentinel-2 NIR, Red, Green 10 m 5 d Sample labeling

Mapping of irrigated cropland using NDVI and EVI was preceded by quality control
and data smoothing of the NDVI and EVI time series to minimize the impact of outliers.
Time-series data smoothing was performed using Savitzky–Golay (S-G) filtering [45,46],
which is commonly applied for smoothing MODIS data. Data smoothing mitigated the
effects of outliers, while also preserving differences in phenology across land cover as much
as possible (Figure 2).
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Figure 2. NDVI (a) and EVI (b) time-series smoothing results for different land cover.

The MOD11A2 product provides average LST for every 8 days at 1 km spatial res-
olution [47], and we used the daytime LST and nighttime LST layers from the data and
calculated the daily mean LST and daily temperature range (DTR) from these two lay-
ers [48]. We examined the effect of irrigated cropland on daytime LST and nighttime LST
and the effect of average daily LST and DTR calculated from the two layers separately
by moving windows to measure the LST change due to irrigation. The MOD11A2 prod-
uct underwent quality control to remove outliers and was synthesized into a monthly
average LST.

The MOD16A2 product is based on the Penman–Monteith equation and estimates
total evapotranspiration every 8 days by inputting daily meteorological reanalysis data
and MODIS remotely sensed data products (e.g., dynamics of vegetation characteristics,
albedo, and land cover) [49]. The MOD16A2 product was used to analyze the relation-
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ship between irrigation cooling effects and surface evapotranspiration. The MOD16A2
product underwent quality control to remove outliers and was synthesized into a monthly
average ET.

Shuttle Radar Topography Mission (SRTM) is an international research effort that
obtained digital elevation models on a near-global scale [50]. We used the SRTM V3 product
(SRTM Plus) from GEE provided by NASA JPL with a spatial resolution of about 90 m. This
dataset was filled with blank areas using open source data (ASTER GDEM2, GMTED2010,
and NED). During the sample collection, we found that some rain-fed croplands in Inner
Mongolia are usually located in sloping areas, while irrigated croplands are located in
relatively flat areas. Therefore, we calculated the slope from the 90 m DEM data and
downsampled to 250 m to match the NDVI and EVI data.

2.3. Methods

This study consists of two main components, as illustrated in Figure 3. The first
component focuses on classifying irrigated cropland in Inner Mongolia, using 2020 as a
representative year. Critical steps in this part include the collection of classification samples,
pre-processing of classification data, comparison of classifier accuracy, and validation of the
final classification results. After verifying the accuracy and reliability of the classification
method, we applied it to map the annual distribution of irrigated cropland in Inner Mongo-
lia at a resolution of 250 m from 2010 to 2020. The second component quantifies the cooling
effect of irrigated cropland. Indicators such as daytime LST, nighttime LST, average daily
LST, and DTR were used to assess surface temperature differences between irrigated and
rain-fed cropland. Employing a moving window strategy, we analyzed these indicators
to capture spatial and temporal variations in the cooling effect and further explored the
relationship between irrigation-driven crop transpiration and LST.
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2.3.1. Classification System and Sample Collection

This study focuses on distinguishing between irrigated and rain-fed cropland to
analyze the cooling effect of irrigation on LST, hence a robust classification system was
essential for accurate analysis. In this study, cropland was categorized into irrigated
cropland and rain-fed cropland. Considering the presence of a large number of fallow,
abandoned, and retired croplands in the study area, an existing cropland mask was not used
to remove the non-cropland areas. Instead, according to the actual situation of the study
area, five types of ground cover, namely forest, grassland, water, urban, and bare land,
were included to remove the non-cropland areas. Urban and bare land were combined as a
single category representing low vegetation cover, as these were not the focus of this study.

Sample collection is a critical part of supervised classification work, as the quality of
samples directly affects classification accuracy. However, collecting multi-year samples
is often time-consuming and labor-intensive. Leveraging the power of GEE, we were
able to simultaneously display multi-year NDVI/EVI time-series curves for sample points
during the same time as sample collection. Forestland, grassland, water bodies, towns
and bare land were generated by randomly selecting points within the study area. Their
land cover types were identified using multi-year NDVI/EVI time-series curves and 2020
true-color imagery, ensuring that selected points represented stable land cover types from
2010 to 2020.

Collection of irrigated and rain-fed cropland samples was still performed separately
in different years to ensure the quality of the samples. The collection of samples of irrigated
and rain-fed cropland was based on Google High-Definition (HD) imagery, with multi-
temporal optical imagery as an auxiliary reference, mainly during the sowing period (early
May), the growing period (July), and the ripening period (early September) (Figure 4a,c).
The distance of the field from the water source and the irrigation conditions of the field
were also taken into account. In addition, we travelled to the study area to make a field visit
to assess the irrigation situation and to record the coordinates of irrigated and non-irrigated
cropland (Figure 4b,d).
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Figure 4. Irrigated cropland and rain-fed cropland on Google HD imagery and field photos.
(a) and (c) are examples of irrigated and rain-fed cropland samples collected using Google HD
imagery, respectively; (b,d) are field photographs of irrigated and rain-fed cropland, respectively,
taken in July. (e) Spatial distribution of all samples collected.

The principles for discriminating irrigated cropland are [11,16] as follows: (1) cropland
with visible irrigation facilities and in good tillage condition; (2) soil color is brownish in
the absence of vegetation cover during the early stages of crop growth, showing a clear
signal of high soil moisture; (3) crops are dark or light green during growth, with a uniform
and subtle coloration (Figure 4a).
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In contrast, rain-fed cropland was judged on the basis of (1) being far from water
sources, with steep slopes and no significant irrigation; (2) uneven color and rough texture
during the crop growth period; and (3) bright soil color at the beginning of the crop growth
period, which exhibits a low soil moisture signal (Figure 4c).

All the samples were divided into training and validation samples in a 7:3 ratio. We
collected samples from 2010 to 2020 (Figure 4e), with the total number of all land cover
type samples as shown in Table 2.

Table 2. Number of samples for each land cover type, from 2010 to 2020.

Land Cover 2010 2012 2014 2016 2018 2020

Forest 211
Grassland 180

Water body 90
Urban and bare land 215
Irrigated cropland 503 421 447 426 494 575
Rain-fed cropland 360 326 366 305 369 478

2.3.2. Classification Methods

To accurately separate irrigated cropland, rain-fed cropland, and non-cropland, time-
series NDVI and EVI were used as key classification features. Number studies have
demonstrated the effectiveness of NDVI and EVI in mapping irrigated cropland [12,51,52].
In addition, slope, an important evaluation parameter of irrigation suitability, was in-
corporated as a classification feature. The Jeffries–Matusita distance (J–M distance) [53]
analysis showed that the combination of slope, NDVI, and EVI features provided the best
performance for separating different land classes (Figure A2). Therefore, 46 bands of NDVI
and EVI data, with a 16-day step size per year, along with one slope factor, were selected as
classification features.

With the development of machine learning techniques and the demand for classi-
fication accuracy, random forests and support vector machines are widely used in land
cover classification studies [54–59]. In this study, the main parameters of RF and SVM were
fine-tuned using the grid search method, optimizing overall accuracy as the evaluation
metric. The powerful computational capabilities of Google Earth Engine (GEE) facilitated
efficient tuning and ensured robust classification performance.

Random forest (RF) is an algorithm developed by Breiman, generally used in classifica-
tion and regression studies, that operates by constructing a large number of decision trees
at training time. Each tree grows independently to its maximum size based on bootstrap
samples from the training dataset without any pruning, and each node is split using the
best value from a subset of the input variables. Finally, random forest outputs the class
chosen by most trees [60]. The parameters we need to set in random forest in GEE are num-
berOfTrees and variablesPerSplit [61]. Number of Trees in many studies is generally 100 to
2000, while variablesPerSplit defaults to the square root of the number of features [56], but
Breiman argues that variablesPerSplit can be chosen between 1/2 and 2 times the square
root of the number of features [60,62]. We input features of the random forest including
23 NDVI bands, 23 EVI bands, and 1 slope band, so we set numberOfTrees to range from
100 to 2000 in steps of 50 and variablesPerSplit to range from 3 to 14 in steps of 1.

Support vector machines (SVM) were developed by Vapnik et al. [63]. They can find
hyperplanes between different classes of data with a small number of training samples,
and then project these data from the input space to another higher dimensional feature
space so that a linearly differentiable output dataset can be obtained. This projection
process relies on a suitable kernel function, and there are four kernel functions in the SVM:
LINEAR, POLY, RBF, and SIGMOID kernels. For land use classification, RBF is the most
popular technique and has better accuracy than the other kernel functions [56,64]. The
main parameters to be set for RBF in GEE are cost and gamma [65]; in this study cost is
10 m, m = [−4, 4], and gamma is 10 n, n = [−3, 3].
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2.3.3. Methods for Quantifying the Cooling Effect of Irrigated Cropland

We employed a moving window-based method for detecting the cooling effect [14].
This method assumes a consistent climatic background within a certain range of windows
and quantifies the cooling effect of irrigated cropland by comparing the LST of irrigated
cropland with that of rain-fed cropland. Unlike approaches that adjust window size to
increase the number of effective image elements, our method achieves this by reapplying
the moving window. The exact procedure is as follows.

(a) Perform data preprocessing

We used classification data of irrigated and rain-fed cropland from the previous
section and the daytime LST and nighttime LST data from MOD11A2. We resampled the
classification data to 1 km to match the spatial resolution of the LST data. A grid was
classified as irrigated cropland if irrigated cropland covered more than 80% of the 1 km area,
and the same criterion was applied to rain-fed cropland. We calculated the daily average
LST and DTR from the daytime and nighttime LST, then synthesized and downloaded the
monthly LST data using GEE.

(b) Use moving windows to quantify cooling effects

For a given year, we combined the spatial distribution data of irrigated and rain-fed
cropland with corresponding LST parameters. The average LST for all rain-fed cropland
pixels within a window of side length L was calculated and used to replace the LST of the
irrigated cropland pixel at the center of the window (Figure 5). To minimize anomalies
caused by an insufficient number of rain-fed plowed pixels, calculations were performed
only when the proportion of rain-fed pixels in the window exceeded a threshold N. The
initial LST of irrigated cropland (LSTirrigated) was treated as the true value, while the result
obtained by moving the window was regarded as the simulated value (LSTrainfed). The
cooling effect of irrigated cropland was then obtained by the formula:

∆LST = LSTirrigated − LSTrainfed
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Figure 5. Schematic diagram for quantifying cooling effects using a moving window. Yellow patches
indicate rain-fed cropland pixels, and blue patches indicate irrigated cropland pixels; T1 to T3 indicate
LST for rain-fed cropland; Tt indicates LST for satellite observations of irrigated cropland; Ts indicates
LST for pixels of irrigated cropland under simulated non-irrigated conditions; and ∆LST indicates
the result of quantification of the cooling effect.

A positive ∆LST (∆LST > 0) indicates that irrigation increases the LST of cropland,
while a negative ∆LST (∆LST < 0) indicates that irrigation decreases the LST of cropland.

(c) Re-apply the moving window to fill in the gaps

Due to the scarcity of rain-fed cropland in the study region, many irrigated cropland
areas lacked nearby rain-fed cropland as a reference. Consequently, a significant number
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of irrigated cropland pixels did not receive ∆LST after the initial execution of the moving
window, potentially underestimating the regional irrigation cooling effect. To address this
issue, we iteratively applied the moving window multiple times, based on the assumption
that neighboring irrigated croplands have similar cooling effects. Specifically, for a given
irrigated cropland pixel missing a cooling effect value, the gap was filled using the mean
∆LST of surrounding pixels within a moving window centered on the target pixel, using
the same side length L.

The detection of the irrigated cropland cooling effect depends on two key parameters:
the window size L and the proportion of rain-fed cropland pixels within the window. In
this study, L was set to 21 km, and N was set to 10%, ensuring a balance between capturing
sufficient rain-fed cropland reference pixels and maintaining reliable detection results.

3. Results
3.1. Optimal Parameter Combination of RF and SVM

We evaluated the classification performance of RF and SVM with different parameter
combinations in terms of overall accuracy (OA) metrics to ensure the best classification
results. The difference in OA obtained for different parameter combinations of RF was small.
As shown in Figure 6, the highest OA (0.874) was achieved when number Of Tree = 1000
and variablesPerSplit = 10. In contrast, the OA for SVM varied considerably with different
parameter combinations, with the highest OA (0.864) obtained when Gamma = 1 and
Cost = 10. The comparison of the two machine learning algorithms indicated that RF
produced more stable results, while SVM showed fluctuations in performance across the
configuration. Furthermore, RF with optimized parameters outperformed SVM in terms of
OA, making it the preferred algorithm for this study.
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In fact, the large gap between Random Forest and SVM in the classification of irrigated
cropland can be attributed to the high dimensionality of the input features. Random Forest
generates classification results by aggregating votes from multiple decision trees, enabling
it to handle high-dimensional and non-linear data more effectively [66]. This advantage
has been widely demonstrated in land cover classification studies [67,68]. Given this, we
selected RF to map the spatial distribution of irrigated cropland in Inner Mongolia. For each
year, we optimized RF parameters using the same approach, ensuring the most accurate
and reliable classification results.
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3.2. Validation of Irrigated Cropland Maps

Accuracy validation was performed using a confusion matrix from independent
validation samples. Overall accuracy (OA), user’s accuracy (UA), producer’s accuracy
(PA), and Kappa, computed from the confusion matrix, were used to assess the accuracy
of irrigated cropland maps from 2010 to 2020 (Table 3). The assessment results indicate
that the irrigated cropland maps generated using the random forest model exhibit high
robustness. The OA consistently exceeds 0.85, and the Kappa coefficient is greater than 0.80.
In addition, the UA and PA for irrigated cropland indicate that the maps produced in this
study achieved satisfactory accuracy, with minimal misclassification and omission errors.
The relatively low UA and PA for rain-fed cropland may be attributed to its fragmented
nature. The 250 m spatial resolution is relatively coarse, leading to some misclassification.
Overall, the classification results are sufficiently accurate for assessing the cooling effects of
irrigated cropland.

Table 3. Accuracy of irrigated cropland and rain-fed cropland classification in 2010–2020.

Year
Irrigated Cropland Rain-fed Cropland

OA Kappa
UA PA UA PA

2010 0.88 0.89 0.79 0.82 0.87 0.82
2012 0.90 0.89 0.85 0.84 0.88 0.85
2014 0.91 0.88 0.82 0.83 0.89 0.86
2016 0.86 0.92 0.81 0.77 0.88 0.84
2018 0.86 0.88 0.77 0.75 0.85 0.81
2020 0.87 0.84 0.82 0.85 0.87 0.84

To further validate the results, the irrigated cropland maps were compared with
prefecture-level statistical data (https://tj.nmg.gov.cn/datashow/pubmgr/publishmanage.
htm, accessed on 29 November 2024). The comparison showed satisfactory agreement
between the maps and the statistical data, though the maps exhibited an overestimation.
This is consistent with findings from previous studies on irrigated cropland mapping
(Figure 7). The overestimation arises because the statistical data represent the effective
irrigated area, whereas the maps capture the actual irrigated area, including marginal or
partially irrigated zones [16]. Overall, the validation results confirm the reliability of the
irrigated cropland maps, supporting their use in analyzing spatial and temporal changes
in irrigated cropland and detecting associated cooling effects. These results demonstrate
the robustness of the classification framework in capturing key patterns and dynamics in
irrigated cropland.
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3.3. Spatial Distribution and Change in Irrigated Cropland

The spatial distribution of land use in Inner Mongolia in 2020 is shown in Figure 8.
The spatial distribution of land use from west to east is roughly divided into bare land,
grassland, and forest land, with scattered distribution of urban, cropland, and water bodies.
Bare land and urban are the most widely distributed in the Inner Mongolia, with a total
of 470,862.66 km2. Bare land is primarily located in the western part of the study area,
with scattered occurrences in the southeast. This is followed by grasslands with a total
of 435,133.99 km2, mainly in the central and southeastern part of the study area. Inner
Mongolia has 208,768.12 km2 of forest, mainly in the northeast.

Remote Sens. 2024, 16, x FOR PEER REVIEW 11 of 22 
 

 

3.3. Spatial Distribution and Change in Irrigated Cropland 
The spatial distribution of land use in Inner Mongolia in 2020 is shown in Figure 8. 

The spatial distribution of land use from west to east is roughly divided into bare land, 
grassland, and forest land, with scattered distribution of urban, cropland, and water bod-
ies. Bare land and urban are the most widely distributed in the Inner Mongolia, with a 
total of 470,862.66 km2. Bare land is primarily located in the western part of the study area, 
with scattered occurrences in the southeast. This is followed by grasslands with a total of 
435,133.99 km2, mainly in the central and southeastern part of the study area. Inner Mon-
golia has 208,768.12 km2 of forest, mainly in the northeast. 

The cropland in Inner Mongolia is distributed in a strip-like mosaic among other land 
types, among which the area of irrigated cropland and rain-fed cropland are 87,317 km2 
and 138,392 km2 respectively. In addition, irrigated cropland in Inner Mongolia is also 
scattered in low-lying areas of valleys. Rain-fed cropland is generally distributed in areas 
with poor irrigation conditions and large slopes around irrigated cropland, exhibiting a 
more fragmented and scattered distribution. 

 
Figure 8. Classification results for land use in Inner Mongolia in 2020. 

Analyzing the annual changes in irrigated cropland reveals a clear increasing trend 
in Inner Mongolia. Especially from 2014 to 2016, the area of irrigated cropland in Inner 
Mongolia expanded by 20,484.24 km2 (Figure 9a,b). Between 2010 and 2014, the transfers 
into and out of irrigated cropland were roughly balanced. However the substantial in-
crease in irrigated cropland between 2014 and 2016 was actually due to the transfer of 
large amounts of rain-fed cropland and non-cropland. Due to the long-term expansion of 
irrigated cropland, which has led to increased pressure on regional water resources, the 
increase in irrigated cropland was offset by a large amount of irrigated cropland being 
transferred out to rain-fed cropland between 2016 and 2020 (Figure 9b). 

Figure 8. Classification results for land use in Inner Mongolia in 2020.

The cropland in Inner Mongolia is distributed in a strip-like mosaic among other land
types, among which the area of irrigated cropland and rain-fed cropland are 87,317 km2

and 138,392 km2 respectively. In addition, irrigated cropland in Inner Mongolia is also
scattered in low-lying areas of valleys. Rain-fed cropland is generally distributed in areas
with poor irrigation conditions and large slopes around irrigated cropland, exhibiting a
more fragmented and scattered distribution.

Analyzing the annual changes in irrigated cropland reveals a clear increasing trend
in Inner Mongolia. Especially from 2014 to 2016, the area of irrigated cropland in Inner
Mongolia expanded by 20,484.24 km2 (Figure 9a,b). Between 2010 and 2014, the transfers
into and out of irrigated cropland were roughly balanced. However the substantial increase
in irrigated cropland between 2014 and 2016 was actually due to the transfer of large
amounts of rain-fed cropland and non-cropland. Due to the long-term expansion of
irrigated cropland, which has led to increased pressure on regional water resources, the
increase in irrigated cropland was offset by a large amount of irrigated cropland being
transferred out to rain-fed cropland between 2016 and 2020 (Figure 9b).

The 2020 and 2010 maps of irrigated cropland were analyzed to assess the spatial
and temporal changes in irrigated cropland across the study area and to identify potential
drivers behind these changes (Figure 10). From 2010 to 2020, irrigated cropland in Inner
Mongolia generally increased, both in arid areas and in areas with a more intensive distri-
bution of cropland, as well as in mountainous areas with more stringent land regulation
(the Daxinganling Mountains in the northeast of the study area) [69]. In arid regions, this
increase was more sporadic, mainly due to the reclamation and conversion of wasteland or
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grassland into irrigated cropland (Figure 10c). In mountainous areas where land regulation
is more stringent, especially under the constraint of China’s “return of cultivated land to
forest” policy [70], the expansion of irrigated cropland was typically achieved by converting
rain-fed cropland. However, there were many rounded fields in the same area in 2020, due
to the Center-Pivot-Irrigation-Systems effect on rain-fed cropland, as evidenced by our
mapping results (Figure 10a). In regions with relatively adequate water sources and better
irrigation conditions, there is already a considerable amount of irrigated cropland. With
the promotion of water-saving agriculture in Inner Mongolia, which makes it possible to
irrigate more cropland with the same amount of freshwater resources, new water-saving
irrigation facilities will be built (Figure 10b). Our observations also indicated a decline in
irrigated cropland in certain areas, particularly in regions with a dense concentration of
such land (Figure 10). This reduction may be attributed to fields being left fallow or to
insufficient irrigation.
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3.4. The Cooling Effect of Irrigated Cropland

Through quantitative analysis of the cooling effect of irrigated cropland in Inner
Mongolia, we found that the LST of irrigated cropland was generally lower than that
of rain-fed cropland, exhibiting diurnal, seasonal, and interannual differences. Based
on multi-year data from 2010 to 2020, the average daily cooling effect of irrigation was
−0.25 ◦C. Most irrigated cropland (74.24%) experienced a cooling effect, while 25.76% of
irrigated areas exhibited a warming effect (Figure 11a). The cooling effect of irrigated
cropland peaked in July and August (−0.64 ◦C), coinciding with the peak growing season
when irrigation demand was highest due to elevated LST and increased evapotranspiration
(Figure 11b). Outside of the growing season, the LST difference between irrigated and
rain-fed cropland was significantly reduced, with a mean ∆LST of −0.12 ◦C ± 0.03 ◦C from
October to April.
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Diurnal differences were observed in the impact of irrigated cropland on LST
(Figure 11c). Consistent with previous studies, our results show that irrigation has a
stronger effect on daytime LST [14,71]. In winter, irrigated cropland shows a daytime
warming effect, increasing the diurnal temperature range. In summer, the daytime cooling
effect was much stronger than at night, resulting in a reduced diurnal temperature range.
Notably, irrigation-induced reductions in nighttime LST were least pronounced during
the early crop growth period (May to June). This may be due to heavy irrigation during
this stage, where weaker daytime evapotranspiration results in soil water absorbing heat
during the day and releasing it slowly at night [31].

Further experiments showed that the cooling effect of irrigation and evapotranspira-
tion are strongly correlated. ∆ET was calculated using the same moving window approach
as that for ∆LST. Results indicate that ∆ET and daily ∆LST exhibit highly correlated time-
series trends. From June to September, when ∆ET was highest, the irrigation cooling effect
was also strongest (Figure 12a). Mapping the time-series trends onto a scatterplot revealed
that irrigation-induced decreases in LST and increases in ET primarily occurred during
summer and some autumn months. Additionally, ∆LST and ∆ET exhibited a highly linear
relationship, with an R2 of 0.85 (Figure 12b). Higher LST leads to increased evapotran-
spiration, and irrigation further enhances evapotranspiration, thereby mitigating surface
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temperature rise. These findings underscore the potential of irrigation to mitigate climate
change risks.
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Monthly correlation analysis between ∆LST and ∆ET showed significant correlations
for all months (p < 0.05). However, a strong negative correlation (Pearson correlation
coefficient < −0.5) was observed only from June to September (Figure 13). For other
months, while the correlation was weaker, the p-value remained significant due to the
large sample size. These results highlight that the cooling effect of irrigation is most
pronounced during the summer growing season, with evapotranspiration playing a key
role in regulating LST during this period.
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4. Discussion
4.1. Parameterization and Sensitivity Analysis for Quantification of Cooling Effects

The method used in this study to quantify the cooling effect of irrigated cropland
relies on two main parameters, L and N. Sensitivity analyses were conducted to optimize
parameter selection and evaluate the robustness of the method. Compared to N, the change
in the window side length L had a greater impact on the quantitative results of the cooling
effect, about 0.6 ◦C. An excessively large L can amplify the climatic difference between
irrigated and rain-fed cropland, increasing the variance of the results, especially when L
exceeds 35 km (Figure 14a). Conversely, an overly small L may cause the LST of rain-fed
cropland pixels to be influenced by neighboring irrigated cropland pixels, resulting in
an underestimation of the cooling effect [72]. To balance these factors, this study set L to
21 km, a value that minimized the decrease in ∆LST with increasing L while maintaining
relatively low variance.
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The proportion of rain-fed cropland pixels in the window, N, has relatively less effect
on ∆LST (Figure 14b). Instead, N mainly affects the extent of irrigated cropland detection
(Figure 14c). When N was set to 10%, the method ensured adequate detection of irrigated
cropland while avoiding outliers. In practice, 10% of rain-fed cropland pixels within a
21 km window is sufficient to achieve reliable results without compromising the accuracy
of the cooling effect assessment.

4.2. Causes and Possible Influences on the Cooling Effect of Irrigation

Irrigation exerts a cooling effect through its influence on different parts of the surface
energy balance. It simultaneously increases soil evaporation, canopy retention, and vegeta-
tion transpiration [73], allowing more sensible heat fluxes to be redistributed as latent heat
fluxes, thereby directly reducing LST [14,74]. Additionally, increased evapotranspiration
can lead to enhanced cloud formation over the irrigated area, indirectly cooling the surface
by reducing downward shortwave radiation [75]. In arid and semi-arid regions, irriga-
tion ensures adequate water requirements for crops, resulting in denser canopies. These
canopies absorb radiation for photosynthesis and have higher water content and specific
heat capacity, leading to less warming compared to non-irrigated areas [76]. The additional
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vegetative cover also enhances water uptake and transpiration in the root zone, further
amplifying the cooling effect of irrigation [77]. This dynamic explains the strong correlation
observed between ∆ET and ∆LST, especially from June to September, when solar radiation
is highest and vegetation is at its densest.

The effect of irrigation practices on the cooling effect is also significant, and it has been
demonstrated that water-saving irrigation practices, such as drip irrigation, attenuate the
cooling effect because water-saving irrigation drastically reduces the evaporation of soil
moisture and canopy-trapped water evaporation by burying pipes and mulching [78]. Field
experiments have also shown that water-saving irrigation techniques have lower Bowen
ratios compared to conventional irrigation methods, which attenuates the cooling effect of
irrigation [79]. Statistical data show that Inner Mongolia was also promoting water-saving
irrigation technology between 2010 and 2020, increasing from 77% in 2010 to 92% in 2020
(Figure A3). Encouragingly, there was a correlation between the quantification of irrigation
cooling effects in this study and changes in the proportion of water-saving irrigation in
Inner Mongolia, with weaker irrigation cooling effects in years with a higher proportion of
water-saving irrigation (Figure A3). This correlation may be influenced by other factors,
and more in-depth studies are needed to isolate the effects of water-saving irrigation.

To validate the findings, the results of this study were compared with existing research
(Table 4). Due to climatic differences in the study area and differences in methodology,
there was large variation in the cooling effects of irrigated cropland, from −0.096 ◦C to
−5.1 ◦C, in different studies [14,31,71,80,81]. The cooling effects derived from this study
are more conservative relative to those reported by Yang and Chen, likely because their
methodologies overestimated cooling by treating natural vegetation as rain-fed cropland in
semi-arid regions where rain-fed cropland is sparse [14,80]. Additionally, due to the large
east–west span of Inner Mongolia, the climate in eastern Inner Mongolia is relatively wet,
and the cooling effect of irrigated cropland in relatively wet regions is not as pronounced as
in arid regions. Climatic conditions in Nebraska and Inner Mongolia are similar in that both
are wetter in the east and have a greater distribution of irrigated cropland. The findings of
this study are consistent with Li’s results in Nebraska [31], especially in July, which proves
that the results of this study are relatively reliable.

Table 4. Quantification of the cooling effect of irrigation in different studies.

Index Study Area Parameter Result Reference

1 Nebraska (USA) Daytime LST −1.63 ◦C (July); −1.19 ◦C (August) Li, et al., (2020) [31]
2 China Daytime LST in arid regions −3.48 ± 2.40 ◦C Yang, et al., (2020) [14]
3 Northwest China Daytime LST −0.28 ◦C to −0.69 ◦C Zhang, et al., (2023) [71]
4 Globe Daytime LST in arid regions −5.1 ◦C Chen, et al., (2019) [80]
5 North China Plain Daily LST −0.098 K, −0.096 K and −0.165 K Zhang, et al., (2022) [81]
6 Inner Mongolia, China Daytime LST −0.36 ◦C; −1.61 (July) This Study

4.3. Limitations and Prospects

The research framework proposed in this study is scalable and holds significant
potential for remote sensing-based monitoring of regional irrigated cropland and analyzing
the climatic effects of irrigation. However, it has two main shortcomings: the high labor and
time costs associated with sample labeling, and the low spatial resolution of the irrigated
cropland maps and LST data, which introduces uncertainty due to pixel mixing during
cooling effect analysis.

The lack of publicly available datasets for irrigated cropland samples necessitates
extensive manual labeling, resulting in substantial labor and time costs. Although Zhang
et al. [11,82,83] proposed a sample generation method using statistical data, the collection
process and inherent uncertainties in statistical data limit its applicability, particularly in
regions with insufficient or unreliable data. Therefore, future research should focus on
developing more efficient and reliable methods for generating irrigated cropland samples
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to reduce manual effort and improve scalability, such as intersections from multiple-source
existing maps, which could be a viable alternative.

The coarse spatial resolution of both the irrigated cropland maps and LST data further
complicates the analysis [31], especially in regions with fragmented or sporadic farmland
patches. Landsat data, with spectral bands ranging from the visible to the thermal infrared
at a resolution of 30 to 60 m [84], may offer a promising alternative. Future research should
prioritize leveraging Landsat data to reduce the impact of mixed pixels and improve the
accuracy of irrigation cooling effect quantification.

5. Conclusions

This study presents an efficient framework for satellite monitoring of irrigated crop-
land dynamics and quantifying their associated cooling effects. By mapping irrigated
cropland changes across Inner Mongolia from 2010 to 2020 using dense time-series vege-
tation indicators, our framework enables detailed tracking of agricultural expansion and
its climatic impacts. The main conclusions of our study include the following: (1) The RF
algorithm in the GEE platform outperforms the SVM algorithm in classifying irrigated
cropland based on time-series NDVI and EVI, as evidenced by higher accuracy and more
stable performance. (2) Irrigated cropland in Inner Mongolia increased significantly be-
tween 2010 and 2020, especially after 2014, when it increased the most. This expansion is
primarily characterized by the conversion of desert grasslands or bare land into irrigated
cropland in arid regions and the transformation of rain-fed cropland into irrigated cropland
in forest-protected areas. (3) Irrigation reduced the daily LST by approximately 0.25 ◦C,
with the most pronounced cooling effect of up to 0.64 ◦C observed during July and August,
coinciding with peak evapotranspiration.

Collectively, the research framework proposed in this study has potential for mon-
itoring irrigated cropland dynamics and assessing the impact of irrigation on climate.
Meanwhile, this study provides a valuable tool for promoting climate-resilient agricultural
practices. It represents a meaningful step toward sustainable agricultural adaptation under
changing climate conditions.
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