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Abstract: Gust fronts (GFs) belong to the boundary layer convergence system. A strong GF can cause
serious wind disasters, so its automatic monitoring and identification are very helpful but difficult
in daily meteorological operations. By collecting convective weather processes in Hubei, Jiangsu,
and other regions of China, 1422 GFs from 106 S-band new-generation weather radar (CINRAD/SA)
volume scan data are labeled as positive samples by means of human–computer interaction, and
the same number of negative samples are randomly tagged from no GF radar data. A deep learning
dataset including 2844 labels with a positive and negative sample ratio of 1:1 is constructed, and
80%, 10%, and 10% of the dataset are separated as training, validation, and test sets, respectively.
Then, the training dataset is expanded to 273,120 samples by data augmentation technology. Since
the height of a GF is generally less than 1.5 km, three deep-learning-based models are trained for
GF automatic recognition according to the distance from the radars. Three models (M1, M2, M3)
are trained with the data at a 0.5◦ elevation angle from 65 to 180 km away from the radars, at 0.5◦

and 1.5◦ angles from 40 to 65 km, and at 0.5◦, 1.5◦, and 2.4◦ angles within 40 km, respectively. The
precision, confusion matrix, and its derived indicators including receiver operating characteristic
curve (ROC) and the area under ROC (AUC) are used to evaluate the three models by the test set.
The results show that the identification precisions of the models are 97.66% (M1), 90% (M2), and
90.43% (M3), respectively. All the hit rates are over 89%, the false positive rates are less than 11%,
and the critical success indexes (CSIs) surpass 82%. In addition, all the optimal critical points on the
ROC curves are close to (0, 1), and the AUC values are above 0.93. These results suggest that the
three models can effectively achieve the automatic discrimination of GFs. Finally, the models are
demonstrated by three GF events detected with Qingpu, Nantong, and Cangzhou radars.

Keywords: deep learning; gust front dataset; gust front identification; weather radar

1. Introduction

In strong convective weather systems such as a severe storm or squall line, the cold
air in the mature phase sinks to a low altitude and advances against the warm ambient
airflow at the front of the thunderstorm to form a convergence line. This line is called a gust
front (GF) if it reaches a certain strength [1]. In weather radar images, a GF appears as one
or more arc narrowband echoes at the front of the thunderstorm, outflow boundary, bow
echo, or squall line. A GF is often accompanied by an increase in atmospheric pressure,
decrease in temperature, sudden changes in wind direction and wind speed, and obvious
ground divergence behind it [2]. The low-level wind shear generated by GFs may pose
a threat to aircraft operations, especially during takeoff and landing. Therefore, effective
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automatic monitoring of GFs is necessary [3]. When a GF encounters a strong echo cell,
the reflectivity of the cell will increase rapidly [4]. In addition, if a GF intersects with an
existing convective system, the GF will develop more strongly and cause more destructive
disasters [1]. In recent years, the GFs of convective cold pools are also increasingly recog-
nized as triggering subsequent convective cells [5]. Therefore, improved techniques for
monitoring outflow boundaries may help to better understand the location, timing, and
intensity of GF events [6].

At present, the research on GFs mainly focuses on algorithm improvement and case
analysis. In 1986, Uyeda proposed an automatic GF recognition algorithm (AGFA) based
on velocity convergence [7]. In 1993, the main method for detecting wind shear was the
GF detection algorithm in the TDWR system of the Federal Aviation Administration of
the United States. Local airport controllers and supervisors have found these algorithms
very helpful in detecting GFs [8]. Then, in 1994, combining a meteorological mechanism
and spatiotemporal distribution characteristic, Troxel suggested a machine intelligence
GF recognition algorithm (MIGFA) which included a functional statistical template to
extract the narrowband weak echoes caused by GFs [9]. MIGFA was a milestone for GF
recognition as the function template correlation (FTC) method was introduced firstly, and
many MIGFA-based algorithms were proposed subsequently. MIGFA is improved with
pixel-based fusion technology, but the average accuracy is reduced from 81.5% to 68%
compared with the original algorithm although it performed better with the same batch
of data. This reflects that the method has limited generalization ability because of its data
dependence [10]. Based on the statistical features of radar echoes, a GF is recognized
by a predefined template with set threshold values [11]. MIGFA is also applicable to
microscale or weak GFs [12]. A dynamic weight is suggested to adjust the threshold values
of MIGFA [13]. With the development of digital image-processing technology techniques
such as mathematical morphology have been introduced to improve the GF recognition
algo-rithms. Its accuracy reached 73.6% in individual cases [14]. Also, based on MIGFA, a
neural fuzzy-based GF detection algorithm (NFGDA) is proposed, and its accuracy reaches
93% for S-band radar [15]. Later, a new dual template local binary (LBDT) algorithm based
on radar image features was used to identify potential areas of narrowband echoes for GF
automatic detection, and the algorithm has a high detection probability and low false alarm
rate [16].

However, it is difficult for these traditional methods based on feature templates to
match all narrowband echoes with size and shape differences by limited templates. With
the widespread application of deep learning, two deep convolutional neural networks, i.e.,
the ultra-fast regional convolutional neural network (Faster RCNN) and Inception V2, are
introduced to train a GF identification model whose accuracy reaches 87%, but the model
needs to be verified with more data as the number of GF labels is only 28 during modeling
in [17].

Ignoring the differences between samples, the algorithm and accuracy of GF recogni-
tion have been continuously enhanced in the past 20 years (Table 1). Nevertheless, these
improvements are mainly based on MIGFA, with few based on deep learning methods.

Table 1. GF recognition algorithms by year and accuracy.

Year Author Algorithm Accuracy

1994 Troxel et al., 1994 [9] MIGFA 81.5%
1994 Kwon et al., 1994 [10] Pixel-base data fusion MIGFA 68%
2013 Zheng et al., 2013 [11] Bidirectional gradient method 68.4%
2016 Xu et al., 2016 [13] Improved MIGFA 68%
2016 Leng et al., 2016 [14] Mathematical morphology 73.6%
2017 Hwang et al. [15] NFGDA 93%
2020 Xu et al. [17] Faster RCN and Inception V2 91.7%
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By designing an appropriate neural network architecture and collecting sufficient
data, deep learning can realize a map from one vector space to another to achieve complex
nonlinear relationships.

The remainder of this study is organized as follows. Section 2 covers the description
including data sources, construction of labeled datasets, data augmentation, and stan-
dardization. Section 3 provides a brief introduction to the Unet neural network and its
parameter settings in this study and the model training processes. In Section 4, the models
are evaluated by the given evaluation indicators through the test set. Section 5 demon-
strates the application effect of the models with the radar base data during three GF events.
Finally, some conclusions are given and the prospects for deep learning in GF identification
are discussed in Section 6.

2. Data and Methods
2.1. Label Collection

The dataset for deep learning comprises volume scan data from 106 S-band new-
generation weather radar (CINRAD/SA) during eight convective weather events that
occurred in Hubei, Jiangsu, and other regions between 2002 and 2014. The CINRAD/SA
radar runs a volume scan once every six minutes. These scans consist of a series of plan
position indicator (PPI) sweeps at a sequence of increasing elevations. The reflectivity used
in this study is sampled every 1000 m up to 430 km. The radar data were controlled to
eliminate the pollution of ground clutter and other nonmeteorological echoes using the
algorithm developed by the radar detection team of the State Key Laboratory of Serious
Weather, Chinese Academy of Meteorological Sciences. A total of 1422 GFs were labeled by
means of human–computer interaction which cost a significant amount of manpower and
time. Since clutter and weak echoes were the main source of errors in GF recognition, more
than 30,000 negative samples of clutter and weak echoes were specifically labeled in the
dataset. The tags were fixed at a size of 60 km × 60 km, which included the radar parameters
at nine elevation angles. For displaying the features of GF tags, the radar reflectivity at a
0.5◦ elevation angle of partial positive samples was found, which is illustrated by grayscale
images in Figure 1. The same number of negative samples were randomly tagged from no
GF radar data.
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samples. The saved data include radar base data for all elevation angles and parameters.
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The 1280 positive samples from GF events one and two in Table 2 were used as training
and validation set data, and the remaining 142 positive samples in Wuhan (2014-07-31
0818-0913 UTC) were used as independent test set data. In addition, 142 samples in the
training set were used as the validation set. In order to ensure the model has a better
recognition effect, a large amount of data is used to train the neural network, and the test
set data are sparse. In order to ensure that the evaluation results are closer to the actual
identification results, 114 GF label data collected by the Nantong radar station on 10 June
2023 are added as the test set data.

Table 2. Radar station and data time.

Number Radar Station Time (UTC)

1 Wuhan

2002-08-23 2247-2305
2002-08-24 0000-0537
2005-06-14 1200-1225
2014-07-31 0818-0913

2 Nanjing

2009-06-03 1600-1824
2009-06-14 0936-1142
2011-07-25 0912-1200
2012-05-16 1040-1129

3 Nantong 2023-06-10 0731-0926

2.2. Data Augmentation and Normalization

A GF appears as a narrowband echo in a radar image whose intensity, size, and
orientation of echoes are irregular due to the influence of the storm matrix, terrain, and
boundary layer. Therefore, the narrowband echo feature in the radar echo images of the GF
remains unchanged regardless of data rotation.

As examples, six GF labels detected with the Wuhan radar at 0455, 0507, 0513, and
0537 UTC on 24 August 2002, at 1200 UTC on 14 June 2005, and at 0855 UTC on 31 July 2014
(Figure 2) are randomly selected to demonstrate the data augmentation steps. It should be
emphasized again that the grayscale images shown below are actually saved as radar base
data for all elevation angles and parameters.
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Figure 2. The 60 km × 60 km GF label grayscale images with 0.5◦ elevation reflectivity detected with
Wuhan radar at (a) 0455, (b) 0507, (c) 0513, and (d) 0537 UTC on 24 August 2002, (e) 1200 UTC on
14 June 2005, and (f) 0855 UTC on 31 July 2014. The narrowband echoes in the central region of the
grayscale images are the primary feature of the labeled data collected in this study.
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(1) According to the rotational invariance of GF features, the 1138 GF positive samples
in the training set are augmented to 136,560 by rotation counterclockwise every 3◦

around the matrix center of the label data. After adding the negative samples with the
same size and quantity, a total of 273,120 samples are obtained to build the training
data set. As an example, the left half of Figure 3 shows the images rotated by 30◦ at
the corresponding times in Figure 2.
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Figure 3. (a1–f1) Images in Figure 2 rotated 30◦, and (a2–f2) 40 km × 40 km label images clipped from
the 60 km × 60 km images of (a1–f1) to eliminate the blank data while the GF features are preserved.

(2) Obviously, there will be no data at the four corners of the rotated images, so the
60 km × 60 km images are clipped to 40 km × 40 km to eliminate blank data while
the GF features are preserved (Figure 3). Therefore, the size of the label matrix in this
study is actually unified as 40 km × 40 km.

(3) The labels are saved as matrix forms. The matrixes are normalized by the maximum
and minimum value methods using Equation (1) in which the values greater than
70 dBZ (decibel reflectivity factor) are set to 70 and less those than 0 dBZ are set to 0,

X*
i =

Xi − Xmin
Xmax − Xmin

(1)

In which X∗
i represents the value of the ith point after normalization, Xi represents the

original value, Xmax and Xmin are 70 and 0 dBZ, respectively.
It is worth emphasizing that Figures 2 and 3 provide a visual representation of the

data augmentation process, but the training of the neural network is based on the raw radar
intensity data.

Different from first converting radar data into grayscale images for model training,
the models are trained directly using radar base data, which is also one of the highlights of
this study.

3. Model Construction
3.1. Algorithm Introduction

In recent years, deep learning has played an important role in image recognition. A
deep learning-based model has shown good performance in squall line recognition [18].

The Unet network, one of the most commonly used deep learning algorithms, performs
well in image segmentation and classification. However, a large number of parameters in
Unet need to be trained due to its deep levels, which leads to a slow rate of convergence,
and it is prone to overfitting when the network is large.

In this study, a Unet-based GF recognition network was designed (Figure 4). The
vertical lines represent the network layers, and the numbers above each vertical line indicate
the number of nodes in that layer. The two numbers beside the vertical lines denote the
matrix size. An output value of one indicates the presence of a GF, while zero denotes its
absence. Short black right-facing arrows signify convolution with a step size of 1, a padding
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size of 1, and a kernel size of 3 × 3, preserving the matrix size after convolution. Long
gray right-facing arrows represent feature fusion after downsampling. Black downward
arrows denote maximum pooling with a step size of 2 and a filter size of 2 × 2. Gray
upward arrows indicate upsampling with a filter size of 2 × 2, restoring and decoding
abstracted features to the original matrix size while preserving important features in their
corresponding positions.
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Figure 4. The Unet-based GF recognition network.

Compared to the original Unet neural network, this study reduces one layer of convo-
lution, pooling, and feature concatenation processes for a shallower neural network that
pays more attention to local features such as textures.

3.2. Model Training

Since the height of a GF is generally less than 1.5 km [19], three Unet-based GF
identification models are trained to use more radar information according to the detection
height of the radar beam in standard atmosphere, and the closer the GF is to the radar
station, the more elevation angles can be observed. Therefore, three models are trained
with different elevation angles. Model one (M1) is trained with 206,880 samples which
include the data at only one elevation angle (0.5◦) from 65 to 180 km away from the radars,
model two (M2) with 49,200 samples at two elevation angles (0.5◦, 1.5◦) from 40 to 65 km,
and model three (M3) with 17,040 samples at three elevation angles (0.5◦, 1.5◦, and 2.4◦)
within 40 km. In addition, the early stop mechanism is adopted to prevent overfitting.
Namely, the iteration is stopped, and the model is saved if the loss function value of the
validation set does not decrease after eight continuous epochs. Stochastic gradient descent
(SGD) is selected as the optimizer, the learning rate is set to 0.01, ReLU is adopted as the
activation function, and dropout layers are added to further prevent model overfitting
during model training.

4. Model Evaluation
4.1. Evaluation Indicator

The precision, confusion matrix, and its derived indicators such as receiver operating
characteristic curve (ROC) and the area under the ROC (AUC) are used to evaluate the
three models by the test set. The confusion matrix can intuitively display the accuracy and
categories of classification models by counting the numbers of wrong and right categories
and derives five scoring indicators, namely, probability of detection (POD), false positive
rate (FPR), missed alarm rate (MAR), critical success index (CSI), and precision, whose
formulas are listed in Equations (2)–(6). TP means that a GF actually occurs and is recog-
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nized by the models, and FN means that a GF actually occurs but is not recognized. FP
means that a GF does not occur but is mistakenly recognized, and TN means that a GF
does not occur and is not recognized by the models.

POD =
TP

TP + FN
(2)

FPR =
FP

FP + TN
(3)

MAR =
FN

TP + FN
(4)

CSI =
TP

TP + FP + FN
(5)

Precision =
TP

TP + FP
(6)

According to the confusion matrix calculated by the test set, ROC can be presented
with POD (sensitivity) as the vertical axis and FPR (1-specificity) as the horizontal axis,
while AUC is obtained. When AUC = 1, that is, TP = 1 and FP = 0, it means that the classifier
is the most perfect at the point (0, 1). However, this point cannot be found directly but is
replaced with AUC at the closest position (0, 1). So, the larger the AUC, the closer the point
on the curve is to (0, 1), and the better the classifier.

4.2. Evaluation Results

The models are evaluated by the test set which includes 214 (M1), 90 (M2), and 94
(M3) samples.

The confusion matrixes calculated by the test set are shown in Figure 5, in which the
vertical axis represents the real label and the horizontal axis is the model prediction. It
can be seen from the confusion matrixes that the models are highly sensitive to positive
examples and negative examples.

Table 3. The values of the five indicators calculated with the test set by the GF recognition models.

Models POD FPR MAR CSI Precision

M1 98.13% 2.80% 1.87% 95.45% 97.22%
M2 91.11% 11.11% 8.89% 82% 89.13%
M3 89.36% 8.51% 10.64% 82.35% 91.30%
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Figure 5. The confusion matrixes calculated by the test set of (a) M1, (b) M2, and (c) M3 according to
Equations (2)–(6), the values of evaluation indicators are listed in Table 3.

The ROC and AUC with POD (vertical axis) and FPR (horizontal axis) are shown in
Figure 6. The three ROC curves are close to the upper-left corner (0, 1), which indicates
high sensitivity for positive samples and low FPR and MAR. Therefore, the features of GF
have been successfully learned by the network, and the models perform well in the test set.
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5. Model Application

The following sections demonstrate that the three models read the radar base data
within their respective range segments and locate the GF echoes to realize the automatic
recognition of GFs.

5.1. Qingpu Radar

On 30 April 2021, there was an instable atmospheric stratification caused by the
intersection between the warm wet air at a low altitude and the cold air accompanying the
northeast cold vortex moving eastward and southward. A large-scale severe convective
weather event including a thunderstorm and hail occurred from 1000 to 1400 UTC in east
China, and GF echoes appeared many times in Qingpu, Nantong, and other weather radars.

From 1204 to 1402 UTC, the GF echoes appear in a total of 23 volume scan data of
the Qingpu radar, and all the GFs are basically identified by the models. As examples, the
automatic recognition results are illustrated by eight consecutive volume scan data detected
with the Qingpu radar on 30 April from 1215 to 1252 UTC. The models are performed
for each radar data from north to south and from east to west to realize automatic GF
identification. The size of the recognition window is the same as that of the label data, i.e.,
40 km × 40 km, and the length of the step is 8 km. M1, M2, or M3 is called according to
the distance from the window center to the radar. M1 is responsible for the GF recognition
from 65 to 180 km away from the radars, M2 from 40 to 65 km, and M3 from 0 to 40 km.

In order to better demonstrate the models’ recognition effect, Figure 7 shows the
recognition results of the 0.5◦ elevation plane position indicator (PPI) of the Qingpu radar
through human–computer interaction, in which if it is manually determined that a GF is
correctly recognized, the window is represented in red, in black if a GF is missed, and in
yellow if a GF is incorrectly recognized. As can be seen from Figure 7, the models can
accurately identify the area where a GF occurs, and only one window is missed in Figure 7g,
marked by a black window. As an example, Figure 8 shows a cross-sectional view along
the main echo of the GF at 1231 UTC, from which it can be seen that the GF intensity is less
than 30 dBZ and the height is less than 2.5 km.



Remote Sens. 2024, 16, 439 9 of 13Remote Sens. 2024, 16, x FOR PEER REVIEW 10 of 14 
 

 

 

Figure 7. The GF recognition results of 0.5° elevation PPI of Qingpu radar at (a) 1215, (b) 1220, (c) 

1225, (d) 1231, (e) 1236, (f) 1242, (g) 1247, and (h) 1252 UTC, in which the red windows indicate that 

GFs are correctly recognized and the black window represents missed recognition. The distance 

circle is 50 km, and the yellow line in (d) is the position of the section in Figure 8. 

 

Figure 8. The cross-section along the yellow line in Figure 7d. At that moment, the development of 

the GF was robust, with the main body reaching a height of approximately 1.7 km. The intensity 

ranged between 20 and 30 dBZ, and the total length exceeded 120 km. 

5.2. Nantong Radar 

With the cold air continuing to move eastward and southward, the GFs were also 

detected by the Nantong radar about half an hour after the GFs occurred in Qingpu. 

From 1316 to 1351 UTC, the GF echoes appear in a total of seven volume scan data of 

the Nantong radar, and all the GFs are basically identified by the models. Figure 9 shows 

the GFs’ automatic recognition results in six consecutive base data from 1322 to 1351 UTC. 

Different from the Qingpu radar, a large area of clutter echo appears around the GF in the 

Nantong radar. However, because the input data of M2 and M3 come from two and three 

radar elevations, the models can accurately capture the narrowband and other character-

istics of GFs to identify the size and range of the GF main echo. There are no false positives 
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Figure 7. The GF recognition results of 0.5◦ elevation PPI of Qingpu radar at (a) 1215, (b) 1220,
(c) 1225, (d) 1231, (e) 1236, (f) 1242, (g) 1247, and (h) 1252 UTC, in which the red windows indicate
that GFs are correctly recognized and the black window represents missed recognition. The distance
circle is 50 km, and the yellow line in (d) is the position of the section in Figure 8.
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Figure 8. The cross-section along the yellow line in Figure 7d. At that moment, the development of
the GF was robust, with the main body reaching a height of approximately 1.7 km. The intensity
ranged between 20 and 30 dBZ, and the total length exceeded 120 km.

5.2. Nantong Radar

With the cold air continuing to move eastward and southward, the GFs were also
detected by the Nantong radar about half an hour after the GFs occurred in Qingpu.

From 1316 to 1351 UTC, the GF echoes appear in a total of seven volume scan data
of the Nantong radar, and all the GFs are basically identified by the models. Figure 9
shows the GFs’ automatic recognition results in six consecutive base data from 1322 to
1351 UTC. Different from the Qingpu radar, a large area of clutter echo appears around the
GF in the Nantong radar. However, because the input data of M2 and M3 come from two
and three radar elevations, the models can accurately capture the narrowband and other
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characteristics of GFs to identify the size and range of the GF main echo. There are no false
positives and only one missed identification in Figure 9c, marked with a black window.
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vective weather event including a rainstorm, thunderstorm gale, and hail occurred in the 

east of Cangzhou from the afternoon to the night of 10 July 2023. GF echoes appear in a 
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Figure 9. Similar to Figure 7 but the GF recognition results of 0.5◦ elevation PPI of Nantong radar at
(a) 1322, (b) 1328, (c) 1334, (d) 1339, (e) 1345, (f) 1351 UTC, and the yellow line in (c) is the position of
the section in Figure 10. The red windows indicate that GFs are correctly recognized and the black
window represents missed recognition.
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Figure 10. The cross-section along the yellow line in Figure 9c. At that moment, the GF had a main
body height of approximately 1 km, intensity ranging between 15 and 25 dBZ, and a length exceeding
120 km.

Similarly, Figure 10 shows a cross-sectional view along the main echo of the GF at
1334 UTC, from which it can be seen that the echo fully conforms to the definition of a GF
with an intensity less than 30 dBZ and a height less than 2.0 km.
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5.3. Cangzhou Radar

Influenced by a high trough, shear line, and ground inverted trough, a severe convec-
tive weather event including a rainstorm, thunderstorm gale, and hail occurred in the east
of Cangzhou from the afternoon to the night of 10 July 2023. GF echoes appear in a total
of 12 volume scan data of the Cangzhou radar from 0548 to 0748 UTC, and the models
almost achieve accurate recognition of all the GFs. Figure 11 illustrates the automatic
recognition results taking eight consecutive base data from 0600 to 0642 as examples. There
are no false positives and only one missed identification in Figure 11c, marked with a black
window. It should be noted that the Cangzhou radar type is CINRAD/SAD which has
undergone a polarization upgrade. Because its gate width is 250 m, the average values of
four reflectivities are the same as the input of the models.
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Figure 11. The GF recognition results of 0.5◦ elevation PPI of Cangzhou radar at (a) 0600, (b) 0606,
(c) 0612 (d) 0618, (e) 0624, (f) 0630, (g) 0636, (h) 0642 UTC, in which the red windows indicate the
correct recognition of GF and the black one means missed recognition.

The three GF events occur with different weather backgrounds, and the clutter is also di-
verse. All three models can effectively identify the GFs, except for a few missed identifications.

6. Discussion

With the upgrade of radar polarization, polarimetric parameters such as differential
reflectivity and specific differential phase shift will be included in the label data for deep
learning, and more and more GF data will be collected to abstract more GF characteristics
to realize more accurate GF automatic recognition. In addition, based on the recognition
results of GFs, we are further studying what weather background and terrain conditions
will trigger strong convective weather to achieve its forecasting and warning.

7. Conclusions

Three Unet-based GF automatic recognition models are trained with the dataset
including 341,280 labels marked by means of human–computer interaction and data aug-
mentation. These labels are not grayscale images but consist of multiple elevation radar
base data. M1 is trained by the data only within an elevation angle (0.5◦) from 65 to 180 km
away from the radars, M2 the data within two elevations (0.5◦, 1.5◦) from 40 to 65 km, and
M3 the data within three elevations (0.5◦, 1.5◦, and 2.4◦) within 40 km. According to the
evaluation by the test set, the accuracies of M1, M2, and M3 are 97.66%, 90%, and 90.43%,
respectively. The POD of all three models is above 89%, and the CIS are also above 82%.
M1 performs exceptionally well. All the ROC curves are close to the point (0, 1) for a very
high identification probability of GFs.

The actual application effect of the models is demonstrated with three GF events
detected with three radars in Qingpu, Nantong, and Cangzhou. Regardless of how the
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intensity and length of GFs change, the models can accurately recognize the GFs in the
entire process from formation to weakening and are not susceptible to interference from the
clutter in the base data and therefore are more helpful in practical forecasting operations.
The study demonstrates that deep learning has promising application prospects in GF
recognition. However, more GF events need to be collected in the future to continuously
improve the accuracy and the generalization ability of models.

Author Contributions: Conceptualization, H.T. and Z.H.; methodology, Z.H.; software, Z.H. and
F.W.; validation, H.T., F.W. and P.X.; formal analysis, F.W.; investigation, H.T.; resources, Z.H. and L.L.;
data curation, H.T., P.X., L.L. and F.X.; writing—original draft preparation, H.T.; writing—review and
editing, Z.H. and H.T.; visualization, H.T.; supervision, Z.H.; project administration, Z.H.; funding
acquisition, Z.H. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the Key-Area Research and Development Program of
Guangdong Province (2020B1111200001), the Key Laboratory of South China Sea Meteorological
Disaster Prevention and Mitigation of Hainan Province (Grant No SCSF202301), the Joint Fund of
Key Laboratory of Atmosphere Sounding, CMA and Research Centre on Meteorological Observa-
tion Engineering Technology, CMA (U2021Z05), the Key Project of Monitoring, Early Warning and
Prevention of Major Natural Disasters of China (2019YFC1510304), the Science and Technology Devel-
opment Fund of CAMS (2021KJ019), the Basic Research Fund of CAMS (2021Z003), and the Science
and Technology Research Project of Guangdong Province Meteorological Bureau (GRMC2022Z05,
GRMC2021XQ03), the Open Grants of the State Key Laboratory of Severe Weather (2023LASW-B02).

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to privacy restrictions.

Acknowledgments: The authors would like to sincerely thank Leng Liang of the Key Laboratory of
Rainstorm Monitoring and Early Warning in Hubei Province for providing technical guidance and
collection of part of the dataset.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Zhang, P.C.; Du, B.Y.; Dai, T.P. Radar Meteorology; China Meteorological Press: Beijing, China, 2001; pp. 392–402. (In Chinese)
2. Bedard, A.J.; Hooke, W.H.; Beran, D.W. The Dulles Airport Pressure Jump Detector Array for Gust Front Detection. Bull. Am.

Meteorol. Soc. 1977, 58, 920–927. [CrossRef]
3. Klingle, D.L.; Smith, D.R.; Wolfson, M.M. Gust Front Characteristics as Detected by Doppler radar. Mon. Weather Rev. 1987, 115,

905–918. [CrossRef]
4. Kingsmill, D.E. Convection Initiation Associated with a Sea-Breeze Front, a Gust Front, and Their Collision. Mon. Weather Rev.

1995, 123, 2913–2933. [CrossRef]
5. Henneberg, O.; Meyer, B.; Haerter, J.O. Particle-Based Tracking of Cold Pool Gust Fronts. J. Adv. Model. Earth Syst. 2020,

12, e2019MS001910. [CrossRef] [PubMed]
6. Weaver, J.F.; Nelson, S.P. Multiscale Aspects of Thunderstorm Gust Fronts and Their Effects on Subsequent Storm Development.

Mon. Weather Rev. 1982, 110, 707–718. [CrossRef]
7. Uyeda, H.; Zrnic, D.S. Automatic Detection of Gust Fronts. J. Atmos. Ocean. Technol. 1986, 3, 36–50. [CrossRef]
8. Hermes, L.G.; Witt, A.; Smith, S.D.; Klingle-Wilson, D.; Morris, D.; Stumpf, G.J.; Eilts, M.D. The Gust-Front Detection and

Wind-Shift Algorithms for the Terminal Doppler Weather radar System. J. Atmos. Ocean. Technol. 1993, 10, 693–709. [CrossRef]
9. Troxel, S.W.; Delanoy, R.L. Machine-intelligent approach to automated gust-front detection for Doppler weather radars. Sensing,

Imaging, and Vision for Control and Guidance of Aerospace Vehicles. Int. Soc. Opt. Photonics 1994, 2220, 182–193. [CrossRef]
10. Kwon, S.M. Pixel-Level Data Fusion Techniques Applied to the Detection of Gust Fonts. Ph.D. Thesis, Massachusetts Institute of

Technology, Cambridge, MA, USA, 1994.
11. Zheng, J.F.; Zhang, J.; Zhu, K.Y.; Liu, Y.X.; Zhang, T. Automatic Identification and Alert of Gust Fronts. J. Appl. Meteor. Sci. 2013,

24, 117–125. [CrossRef]
12. Zheng, J.; Zhang, J.; Zhu, K.; Liu, L.; Liu, Y. Gust Front Statistical Characteristics and Automatic Identification Algorithm for

CINRAD. J. Meteorol. Res. 2014, 28, 607–623. [CrossRef]
13. Xu, F.; Yang, J.; Zheng, Y.Y.; Zhou, H.G. Improvement of the MIGFA Technique for Identifying Gust Front and Its Verification.

Meteorol. Mon. 2016, 42, 44–53. [CrossRef]

https://doi.org/10.1175/1520-0477(1977)058%3C0920:TDAPJD%3E2.0.CO;2
https://doi.org/10.1175/1520-0493(1987)115%3C0905:GFCADB%3E2.0.CO;2
https://doi.org/10.1175/1520-0493(1995)123%3C2913:CIAWAS%3E2.0.CO;2
https://doi.org/10.1029/2019MS001910
https://www.ncbi.nlm.nih.gov/pubmed/32714494
https://doi.org/10.1175/1520-0493(1982)110%3C0707:MAOTGF%3E2.0.CO;2
https://doi.org/10.1175/1520-0426(1986)003%3C0036:ADOGF%3E2.0.CO;2
https://doi.org/10.1175/1520-0426(1993)010%3C0693:TGFDAW%3E2.0.CO;2
https://doi.org/10.1117/12.179602
https://doi.org/10.3969/j.issn.1001-7313.2013.01.012
https://doi.org/10.1007/s13351-014-3240-2
https://doi.org/10.7519/j.issn.1000-0526.2016.01.005


Remote Sens. 2024, 16, 439 13 of 13

14. Leng, L.; Xiao, Y.J.; Wu, T. Automatic Recognition of Gust Fronts Based on Mathematical Morphology. Meteorol. Sci. Technol. 2016,
44, 1–6+46. (In Chinese) [CrossRef]

15. Hwang, Y.; Yu, T.Y.; Lakshmanan, V.; Kingfield, D.M.; Lee, D.I.; You, C.H. Neuro-Fuzzy Gust Front Detection Algorithm With
S-Band Polarimetric radar. IEEE Trans. Geosci. Remote Sens. 2017, 55, 1618–1628. [CrossRef]

16. Yuan, Y.; Wang, P.; Wang, D.; Jia, H. An Algorithm for Automated Identification of Gust Fronts from Doppler radar Data.
J. Meteorol. Res. 2018, 32, 444–455. [CrossRef]

17. Xu, Y.F.; Zhao, F.; Mao, C.Y. Gust front detection algorithm based on deep convolutional neural network. Torrential Rain Disasters
2020, 39, 81–88. (In Chinese) [CrossRef]

18. Xie, P.; Hu, Z.; Yuan, S.; Zheng, J.; Tian, H.; Xu, F. radar Echo Recognition of Squall Line Based on Deep Learning. Remote Sens.
2023, 15, 4726. [CrossRef]

19. Wang, Y.D.; Jing, X.Y.; Wang, W.D. Analysis on the Birth and Disappearance History and Weather Characteristics of a Rare Gust
Front in Heilongjiang Province. Heilongjiang Meteorol. 2021, 38, 9–13. (In Chinese) [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.19517/j.1671-6345.2016.01.001
https://doi.org/10.1109/TGRS.2016.2628520
https://doi.org/10.1007/s13351-018-7089-7
https://doi.org/10.3969/j.issn.1004-9045.2020.01.009
https://doi.org/10.3390/rs15194726
https://doi.org/10.14021/j.cnki.hljqx.2021.01.002

	Introduction 
	Data and Methods 
	Label Collection 
	Data Augmentation and Normalization 

	Model Construction 
	Algorithm Introduction 
	Model Training 

	Model Evaluation 
	Evaluation Indicator 
	Evaluation Results 

	Model Application 
	Qingpu Radar 
	Nantong Radar 
	Cangzhou Radar 

	Discussion 
	Conclusions 
	References

