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Abstract: Profile soil moisture (PSM), the soil water content in the whole soil layer, directly controls
the major processes related to biological interaction, vegetation growth, and runoff generation. Its
spatial heterogeneity, which refers to the uneven distribution and complexity in space, influences re-
fined spatial management and decision-making in ecological, agricultural, and hydrological systems.
Satellite instruments and hydrological models are two important sources of spatial information on
PSM, but there is still a gap in understanding their potential mechanisms that affect spatial hetero-
geneity. This study is designed to identify the spatial heterogeneity and the driving factors of two
PSM datasets; one is preprocessed from a satellite product (European Space Agency Climate Change
Initiative, ESA CCI), and the other is simulated from a distributed hydrological model (the DEM-
based distributed rainfall-runoff model, DDRM). Three catchments with different climate conditions
were chosen as the study area. By considering the scale dependence of spatial heterogeneity, the
profile saturation degree (PSD) datasets from different sources (shown as ESA CCI PSD and DDRM
PSD, respectively) during 2017 that are matched in terms of spatial scale and physical properties were
acquired first based on the calibration data from 2014–2016, and then the spatial heterogeneity of the
PSD from different sources was identified by using spatial statistical analysis and the semi-variogram
method, followed by the geographic detector method, to investigate the driving factors. The results
indicate that (1) ESA CCI and DDRM PSD are similar for seasonal changes and are overall consistent
and locally different in terms of the spatial variations in catchment with different climate conditions;
(2) based on spatial statistical analysis, the spatial heterogeneity of PSD reduces after spatial rescaling;
at the same spatial scale, DDRM PSD shows higher spatial heterogeneity than ESA CCI PSD, and
the low-flow period shows higher spatial heterogeneity than the high-flow period; (3) based on the
semi-variogram method, both ESA CCI and DDRM PSD show strong spatial heterogeneity in most
cases, in which the proportion of C/(C0 + C) is higher than 0.75, and the spatial data in the low-flow
period mostly show larger spatial heterogeneity, in which the proportion is higher than 0.9; the spatial
heterogeneity of PSD is higher in the semi-arid catchment; (4) the first three driving factors of the
spatial heterogeneity of both ESA CCI and DDRM PSD are DEM, precipitation, and soil type in most
cases, contributing more than 50% to spatial heterogeneity; (5) precipitation contributes most to ESA
CCI PSD in the low-flow period, and there is no obvious high contribution of precipitation to DDRM
PSD. The research provides insights into the spatial heterogeneity of PSM, which helps develop
refined modeling and spatial management strategies for soil moisture in ecological, agricultural, and
hydrological fields.

Keywords: ESA CCI SM products; distributed hydrological model; profile soil moisture; spatial
heterogeneity
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1. Introduction

Profile soil moisture (PSM), which refers to the soil water content in the whole soil
layer, is the key variable in ecological, agricultural, and hydrological systems since it
controls the major processes related to biological interaction, vegetation growth, and runoff
generation [1–3]. In recent years, abundant studies have been conducted to investigate the
temporal change in PSM based on in situ soil moisture datasets or other long time-series soil
moisture datasets, but less attention is paid to its spatial distribution during a specific time
period [4–10]. The spatial heterogeneity of PSM, which refers to the uneven distribution and
complexity of data in space, helps develop refined partitioned management strategies in
ecological, agricultural, and hydrological fields. Thus, it is necessary to pay more attention
to the spatial heterogeneity of PSM.

Currently, satellite instruments and hydrological models are widely used to acquire
spatial information on soil moisture. In situ stations can provide the most accurate
soil moisture observations but are sparse and expensive in most regions and represent
only spotty patterns of soil moisture that lack representativeness in terms of areal
information [11,12]. Various satellite instruments can remotely sense spatial distributions
of land surface variables, such as brightness temperature, and these further provide soil
moisture products based on retrieval algorithms [13–19]. However, satellite instruments
can only provide spatial distribution information on surface soil moisture (SSM) since only
surface soil conditions can be remotely sensed by satellites. Some organizations provide
raw-satellite-data-based PSM datasets, which are acquired by assimilating the raw satellite
SSM into land surface models or exponential filters [20,21]. Compared to the raw SSM
products, these PSM products are used less since they lack validation in terms of regions. As
for hydrological models, most of them have the ability to directly simulate PSM [2]. Some
lumped hydrological models, such as the XAJ model, consider the spatial heterogeneity
of PSM through water storage capacity distribution curves and other methods but cannot
provide real spatial distribution information on soil moisture [22]. Distributed hydrological
models have the ability to provide spatial-temporal distribution information on PSM at
the model-designed temporal and spatial scales [23,24]. However, this spatial information
from hydrological models is not directly observed; rather, it is indirectly simulated and is,
thus, affected by uncertainties from input data, model structures, model parameters, etc.

Although satellite instruments and hydrological models have their own advantages
and disadvantages in terms of providing the spatial distribution of PSM, both of them have
the potential to be used for the identification of the spatial heterogeneity of PSM. It can be
noticed that there are different potential mechanisms that influence the spatial patterns of
the PSM acquired from these two sources. For satellite instruments, PSM is calculated based
on the raw SSM products, and the raw SSM is calculated based on remote sensing optical
factors, such as brightness temperature. The underlying processes that influence the spatial
patterns of satellite-based PSM are related to spectral characteristics, which may be largely
affected by terrain, vegetation cover, land use, etc. As for hydrological models, their PSM
simulations are the simulated intermediate variables of rainfall-runoff transformations;
they are more likely to follow the change of input meteorological conditions and are limited
by hydrological conditions through model calibration. The underlying processes that
influence the spatial patterns of the PSM simulations are hydrological processes, among
which precipitation, evapotranspiration, and runoff may be the major influential factors.
Overall, satellite-based and hydrologically modeled PSM have the ability to represent some
of the information of a spatial pattern, but both of them have difficulty in representing the
real spatial distribution of PSM.

In order to seek out the real spatial heterogeneity of PSM, this study was developed to
identify the spatial heterogeneity of PSM from both satellite instruments and hydrological
models and investigate the respective driving factors. In recent research, there is still a
gap in terms of understanding their potential mechanisms and differences. Some studies
analyze the spatial heterogeneity of soil moisture and its driving factors without specialized
indicators to identify the spatial heterogeneity. Lei et al. (2018) assessed the impact of
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spatial heterogeneity on microwave satellite soil moisture periodic error and found that
there is a causal relationship between satellite soil moisture periodic error and the spatial
heterogeneity of brightness temperature, land cover types, and long-term averaged vegeta-
tion indices [25]. Zhang et al. (2022) evaluated the effects of climate change and human
activities on the spatial heterogeneity of soil moisture based on GLDAS-2.1 (Global Land
Data Assimilation System-2.1) SM products in the Tibetan Plateau by using a geographic
detector method [26]. There are also some papers that report using specialized indicators
to identify the spatial heterogeneity of soil moisture. For instance, Yang et al. (2017) and
Zhang et al. (2021) used a semi-variogram to identify the spatial heterogeneity of field
sampling soil moisture [27,28]. These studies pay more attention to investigating the spatial
heterogeneity of soil moisture from one source, but fewer studies consider the possible
difference in spatial heterogeneity when data are acquired from different sources.

This study chose European Space Agency Climate Change Initiative (ESA CCI) soil
moisture products and the distributed hydrological model (the DEM-based distributed
rainfall-runoff model, DDRM) PSM simulations as sources and three catchments of different
climate scenarios as the study area to investigate the spatial heterogeneity and the driving
factors of satellite-based and hydrologically modeled PSM. When considering the scale
dependence of spatial heterogeneity, the prerequisite for identifying and comparing the
spatial heterogeneity of satellite-based and hydrologically modeled PSM is that the datasets
are mutual and match. This study first acquired profile saturation degree (PSD) data
from different sources that matched hydrologically modeled and satellite raw product
preprocessing in terms of spatial scale and physical properties; then, we identified their
spatial heterogeneity and driving factors by using spatial statistical characteristic analysis,
a semi-variogram, and a geographic detector method. In the rest of the paper, the study
area, remotely sensed data, and other data used in the study are presented in Section 2,
followed by the method used to acquire matching PSM from different sources, as well as
the method used to identify the spatial heterogeneity and its driving factors of PSM in
Section 3. Sections 4 and 5 show the results and discussion, respectively, and Section 6
concludes the paper.

2. Study Area and Datasets
2.1. Study Area

The study chose two humid catchments and one semi-arid catchment as the study
area, including the Qu River (QR) catchment located in the upper and middle reaches of
the Yangtze River, the Nanpan River (NR) catchment located in the upper reaches of the
Xi River, which is one of the Pearl River tributaries, and the Yiluo River (YR) catchment
located in the lower reaches of the Yellow River. The locations and the details of the chosen
catchments are shown in Figure 1. The QR catchment has a drainage area of 39,211 km2,
which is mainly affected by the subtropical monsoon climate. It is characterized by the
northern mountainous land, which is mainly covered by forest, and the southern plain,
which is mainly covered by cultivated land. The annual precipitation in the QR catchment
is around 1200 mm, which is concentrated in the mountainous area. The NR catchment
is affected by the subtropical monsoon climate and has a drainage area of 41,715 km2. It
is characterized by the forest land. In this catchment, the annual precipitation is from
1200 mm to 1700 mm. When compared to the QR catchment, the average elevation in
the NR catchment is low, which may have an effect on the spatial heterogeneity of soil
moisture. The YR catchment was chosen to see the spatial heterogeneity of soil moisture in
a semi-arid region. It is affected by the continental monsoon climate, with a drainage area
of 18,560 km2. In this catchment, the western mountain area is covered by vegetation, and
the eastern plain is covered by loess. When compared to the QR and NR catchments, the YR
catchment has less precipitation, with an annual precipitation of less than 700 mm. Since it
is hard to simulate soil moisture in catchments that are managed by manmade dams using
traditional hydrological models, this study specifically chose the three catchments with
an inflow that is almost unaffected by the reservoirs and dams. It is worth noting that the
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streamflow data from the Tianyi station in the NR catchment represent the natural inflow
runoff to the Tianyi reservoirs and are, thus, not influenced by reservoir regulation.
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2.2. Remotely Sensed Products

The study chose the European Space Agency Climate Change Initiative (ESA CCI)
SM V07.1 COMBINED product (released in May 2022) as the raw satellite product [29–31].
This product combines the measured values of multiple satellite instruments from 1979
to 2021, including Advanced Microwave Instrument-Windscat (AMI-WS), Advanced
Scatterometer (ASCAT), Scanning Multichannel Microwave Radiometer (SMMR), Trop-
ical Rainfall Measure Mission Microwave Imager (TMI), Special Sensor Microwave Im-
ager (SSM/I), Advanced Microwave Scanning Radiometer for Earth Observing System
(AMSR-E and AMSR2), Microwave Imaging Radiometer using Aperture Synthesis (MI-
RAS), Soil Moisture Active Passive (SMAP), Global Precipitation Measurement (GPM)
Microwave Imager (GMI), Microwave Radiation Imager (MWRI), and WindSat. It pro-
vides volumetric soil moisture information (expressed in physical unit m3/m3) of the
topsoil surface (smaller than 2 cm in terms of thickness) at a spatial scale of approximately
25 km × 25 km. It can be seen that the ESA CCI product has the combined datasets of
nearly all the well-known satellite instruments that are related to soil moisture observa-
tions. The ESA CCI products have been widely used in hydrological, meteorological, and
bio-geochemical systems around the world [32,33]. They have also been validated in China,
and results indicate that they have the potential to be further utilized [7].
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2.3. Other Data

The meteorological and hydrological data were used for the hydrological model to
simulate spatial PSM. The meteorological data include precipitation and potential evapo-
transporation data, among which the precipitation data were directly acquired from meteo-
rological stations, whereas the potential evapotransporation data were calculated by using
the Blaney-Criddle method based on mean temperature data, Ta, and the mean daily per-
centage of the total annual daytime hours, p, by using the formula ET0 = kp(0.46Ta + 8.13),
where k is the empirical coefficient of crop impact related to sowing time, crop growth,
growth period length, and climate, with an initial value of 0.85 in the study [34].

Precipitation and potential evapotransporation data were interpolated by using the
inverse distance weighted (IDW) method to match the simulation grids of the hydrological
model [35]. The hydrological data refer to the streamflow data acquired from the outlet
hydrological stations, including the daily streamflow from the Luoduxi station in the QR
catchment, the Tianyi station in the NR catchment, and the Heishiguan station in the YR
catchment. These streamflow data were used for the calibration of the hydrological model.
By considering the availability of input and calibration data of DDRM in the three chosen
catchments, the meteorological and hydrological data from 2013 were used for warming
up the model; the data from 2014 to 2016 were used for calibration, and the data from 2017
were used for DDRM modeling to acquire the PSM simulations.

In the study, the driving factors of the spatial heterogeneity of PSM are investigated.
Apart from precipitation (PRE), the normalized vegetation index (NDVI), the land use and
land cover change (LUCC), the digital elevation model (DEM), soil type (ST), slope (SL),
and aspect (AS) were chosen as the potential driving factors. The NDVI data, LUCC data,
DEM data, and ST data were acquired from the Resource and Environment Science and
Data Center of the Chinese Academy of Sciences “http://www.resdc.cn (accessed on 1
August 2023)”. The ST and SL data were calculated based on DEM data through ArcGIS
software (version 10.5).

3. Methodology

In order to identify and analyze the differences between the spatial heterogeneity of
satellite-based and hydrologically modeled PSM, it is necessary to build datasets that match
in terms of their spatial scales and physical characteristics. Since spatial heterogeneity is
highly affected by the spatial scales of data, the spatial heterogeneity of the PSM datasets
was compared for the satellite spatial scale and modeled spatial scale, respectively. In this
section, the methods used to acquire the matched PSM datasets from different sources are
first described, followed by the methods used to identify the differences in their spatial
heterogeneity and driving factors.

3.1. Acquiring Matched Profile Soil Moisture from a Distributed Hydrological Model

The DEM-based distributed rainfall-runoff model (DDRM) was used in the study
to acquire high-resolution (1 km × 1 km) PSM datasets from the hydrological models.
The DDRM is a conceptual distributed rainfall-runoff model developed by Xiong et al.
(2004), and it has shown good performance in soil moisture and streamflow simulations in
southeast China [36–39].

The model consists of three modules, including grid runoff generation, grid channel
runoff routing, and river network runoff routing. In the grid runoff generation module,
excess rainfall is generated in the DEM grids under the saturation excess runoff generation
mechanism; then, the model routes the excess rainfall in each DEM grid from upstream
to downstream for each subcatchment in the grid channel runoff routing module and,
furthermore, to the downstream of the whole catchment through the river network in
the river network runoff routing module; both are based on the Muskingum method [40].
Details of the model structure and modeling processes of DDRM can be seen in the work
of Xiong et al. (2018) and Chen et al. (2022) [36,38]. There are seven saturation excess
runoff generation parameters and four routing parameters in the DDRM. Details of these

http://www.resdc.cn
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11 parameters are shown in Table 1. The parameter values used in the study were calibrated
by maximizing the objective function of the Nash–Sutcliffe efficiency coefficient (NSE)
between the observed and simulated runoff of DDRM in the three chosen catchments using
the meteorological and hydrological data from 2014–2016, as per [41].

NSE = 1 −

T
∑

t=1
(Qsimt − Qobst)

2

T
∑

t=1

(
Qobst − Oobs

)2
(1)

Qsimt is the simulated runoff at time t, and Qobst is the observed runoff at time t. The
range of NSE is negative infinity to 1. When NSE approaches 1, it means better model
simulation performance. In this study, the spatial scale of DDRM modeling is 1 km × 1 km.

Table 1. Details of DDRM parameters and their calibrated values in the Qu River (QR) catchment,
Nanpan River (NR) catchment, and the Yiluo River (YR) catchment. SMC represents soil moisture
storage capacity.

Parameter Description Range QR NR YR

S0(mm) Minimum SMC throughout the catchment 5–100 88.79 380.33 243.00
SM(mm) Variation range of SMC throughout the catchment 5–700 498.64 480.59 985.61

a(−) Empirical constant reflecting the characteristic of soil water flow 0–1 0.43 0.01 0.01
b(−) Empirical constant reflecting the impact of slope on soil water flow 0–1 0.31 0.71 0.98

n(−)
Empirical constant reflecting the degree of heterogeneity of soil water

storage capacity 0–1 0.98 0.61 0.85

TS(h) Time constant, reflecting the velocity of the soil water flow 2–200 104.79 345.82 339.80
TP(h) Time constant, reflecting the velocity of the runoff generation 2–200 9.02 160.11 323.27
c0(−) Grid channel routing parameters with regard to the Muskingum method 0–1 0.99 0.99 0.98
c1(−) Grid channel routing parameters with regard to the Muskingum method 0–1 0.21 0.01 0.01

hc0(−) River network routing parameters with regard to the Muskingum method 0–1 0.61 0.80 0.83
hc1(−) River network routing parameters with regard to the Muskingum method 0–1 0.39 0.10 0.08

DDRM can provide the depth of profile soil moisture (Si,t) and its storage capacity
(SMCi) at the grid i and the time step t within 1 km × 1 km by using 1 km × 1 km DEM
grids. In order to acquire soil moisture simulations that can match the satellite products,
the Si,t from the DDRM is transformed into profile saturation degree (PSD), given in % and
calculated as

PSDMod
i,t = Si,t/SMCi (2)

where PSDMod
i,t represents DDRM PSD at the modeled grid i and the time step t.

In the study, daily soil moisture datasets within 1 km × 1 km and 25 km × 25 km were
built based on the PSDMod

i,t firstly, and then the seasonal averages and annual averages
of PSDMod

i,t (from 2017) in each grid were calculated to analyze the spatial heterogeneity
during different time periods, among which the datasets within 25 km × 25 km were
acquired by resampling PSDMod

i,t within 1 km × 1 km.

3.2. Acquiring Matched Profile Soil Moisture from Remotely Sensed Products

The chosen remotely sensed product provides surface volumetric soil moisture (SVSM),
given in m3m−3 for satellite-observed spatial scales. In order to match DDRM PSD, satellite-
observed SVSM data were transformed into PSD data in the corresponding spatial scales.
When comparing the PSM datasets at a model-simulated spatial scale (1 km × 1 km), the
preprocessing procedures of satellite data include the downscale step; when comparing
the PSM datasets at a satellite-observed spatial scale, the downscale step is skipped. The
framework to acquire matched PSM from the remotely sensed product is shown in Figure 2.
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Figure 2. The framework to acquire satellite soil moisture products that match hydrologically
modeled soil moisture. The red dashed outline means that this procedure is conducted (or not)
according to the needs of comparison scenarios. (SSD: surface saturation degree; PSD: profile
saturation degree).

Firstly, the raw satellite soil moisture product was transformed into surface saturation
degree (SSD) by using the normalization method, which assumes that maximal volumetric
soil moisture is the soil porosity value. Since the satellites observe surface soil to acquire
land surface information, the remotely sensed products provide only surface soil moisture
information, while the DDRM model provides profile soil moisture information. Thus
secondly, the SSD data were transformed into PSD data by using the exponential filter [42].
This filter assumes that the variation in time of deeper soil moisture is linked to the
differences between the surface and deeper soil moisture. In this research, the satellite-
based PSM is calculated as

PSDSat
m,tn = PSDSat

m,tn−1
+ Ktn

[
SSDSat

m,tn − SSDSat
m,tn−1

]
(3)

where PSDSat
m,tn

and PSDSat
m,tn−1

represent satellite-based PSD at the satellite-observed spatial
grid m and the observing time point tn and the previous observing time tn−1, respec-
tively, while SSDSat

m,tn
and SSDSat

m,tn−1
represent the corresponding satellite-observed SSD.

Ktn represents the gain term at the observing time point tn, and it is calculated as

Ktn = Ktn−1

/[
Ktn−1 + e−(

tn−tn−1
CT )

]
(4)

where Kt1 = 1 is for the initialization, and CT is the unknown characteristic time length
parameter, representing the timescale of the variation in soil moisture to obtain PSM
information. The study evaluates the value of CT by maximizing the correlation between
satellite-based PSD and hydrologically modeled PSD. Finally, the PSD data at the satellite-
observed spatial scale (25 km × 25 km) are downscaled to the hydrologically modeled
spatial scale (1 km × 1 km) by using the inverse distance weighted (IDW) method according
to the need of the comparison scenarios [35]. In this study, the seasonal averages and annual
averages in 2017 for the spatial patterns of satellite-based PSD are also calculated to compare
and analyze the spatial heterogeneity during different time periods.

3.3. Identification of Spatial Heterogeneity of Profile Soil Moisture

In each catchment, the spatial heterogeneity of PSM at the 1 km × 1 km and 25 km × 25 km
spatial scales from different sources is identified, respectively, by using spatial statistical
analysis and the semi-variogram method. In the spatial statistical analysis, the minimum,
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maximum, mean, standard deviation, variation, variance, kurtosis, and skewness of the
averages of the spatial pattern during different time periods are respectively calculated for
the satellite-based and hydrologically modeled PSD. The values of the standard deviation,
variation, variance, kurtosis, and skewness represent the spatial variation in the data. In the
semi-variogram method, the spatial auto-correlation of the PSM of all datasets is evaluated
at first; from this, the spatial correlation of two samples of PSM is quantitatively estimated
from their separation distance [43]. Then, the semi-variogram of PSM is calculated as

γ(h) =
1

2N

N

∑
i=1

[z(xi)− z(xi + h)]2 (5)

where h represents the distance between samples, N represents the number of samples, and
z(xi) and z(xi + h) are the PSM values in the spatial positions (xi) and (xi + h), respectively.
Four theoretical models: linear, spherical, exponential and Gaussian were chosen as the
candidate theoretical models to describe the resulting semi-variograms of PSM [27,28]

1. Linear model:

γ(h) = C0 + C(h/A) (6)

2. Spherical model:

γ(h) =


0, (h = 0)
C0 + C

[
1.5(h/A)− 0.5(h/A)3

]
, (0 < h ≤ A)

C0 + C, (h > A)

(7)

3. Exponential model:

γ(h) =

{
0, (h = 0)
C0 + C

[
1 − e−h/A

]
, (h > 0)

(8)

4. Gaussian model:

γ(h) =

{
0, (h = 0)
C0 + C

[
1 − e−h2/A2

]
, (h > 0)

(9)

where C0 represents the nugget value, C represents the partial still value, and A is the range.
The value of C/(C + C0) can be used to identify the spatial heterogeneity, which represents
weak, medium, and strong spatial heterogeneity at <0.25, 0.25–0.75, and >0.75, respectively.

3.4. Identification of Driving Factors of Spatial Heterogeneity for Profile Soil Moisture

The geographical detector method was used to identify the driving factors of spatial
heterogeneity for PSM from different sources. This method can detect the spatial hetero-
geneity of variables and reveal the driving factors [44,45]. When compared to correlation
analysis and linear regression, this method does not assume that there is a nonlinear or lin-
ear relationship between different variables, which ensures that the results are not affected
by multicollinearity interference between different independent variables. The geographi-
cal detector method is composed of factor, ecological, risk, and interaction detectors, among
which factor detector is used to calculate the contribution q of variable X to the spatial
heterogeneity of the variable Y, which can be expressed as

q = 1 −

L
∑

h=1
Nhσ2

h

Nσ2 (10)
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where σ2
h and σ2 are the variance in the stratum h and the whole area; Nh and N represent

the samples in the stratum h and the total samples. The range of q is 0 to 1. When the
value of q is 1, the spatial heterogeneity of Y can be completely explained by X. In the
case of this study, PSM is the dependent variable Y, the potential driving factors X include
precipitation (PRE), the normalized vegetation index (NDVI), land use and land cover
change (LUCC), the digital elevation model (DEM), soil type (ST), slope (SL), and aspect
(AS). Since the discrete data of the driving factors are needed in the geographical detector
method, the natural breaks in the classification method are used to discretize the PRE,
NDVI, DEM, SL, and AS data [46]. The natural breaks classification method, also called the
Jenks optimization method, is a data classification method designed to determine the best
arrangement of values into different classes. This method is used to reduce the variance
within classes and maximize the variance between classes. Thus, when the natural breaks
classification method is used to discretize the data, the range of each class is determined by
the distribution characteristics of the data and the number of classes they are divided into.
In this study, 5 to 15 classes were tested to discretize the data, and nine classes were chosen
since the discrete data showed reasonable variances. Moreover, the LUCC and ST data have
their own classification system. The LUCC data adopt a two-level classification system: the
first level is divided into six classes, mainly based on land resources and their use attributes,
including cultivated land, forest land, grassland, water area, construction land, and unused
land; the second level is mainly divided into 23 classes based on the natural attributes of
land resources. The ST data are digitally generated based on the “1:100,000 Soil Map of the
People’s Republic of China” compiled and published by the National Soil Census Office in
1995. The traditional “soil occurrence classification” system, which is divided into 12 soil
classes covering various types of soil across the country, was adopted.

4. Results
4.1. Spatiotemporal Variations in Satellite-Based and Hydrologically Modeled Profile Soil Moisture
4.1.1. Temporal Variation in Catchment-Averaged Profile Soil Moisture

Temporal variations in the catchment-averaged soil moisture (SSD and PSD) that
were acquired based on the ESA CCI product and the DDRM are shown in Figure 3. The
corresponding streamflow simulated by the DDRM is also presented in Figure 3. The NSE
of the simulated and observed streamflows is 0.74, 0.88, and 0.68 in the QR, NR, and YR
catchments, respectively. It can be seen that the DDRM shows better performance for the
streamflow simulations in the NR catchment and shows relatively worse performance
for the YR catchment. This is because the YR catchment is a semi-arid catchment that is
mainly characterized by the infiltration excess runoff generation mechanism, while the
DDRM model is built on saturation excess runoff generation. The modeling results are
similar to the relevant studies in these three catchments [2,34,35]. Overall, the streamflow
simulations have similar change trends to the observed streamflows in all three catchments,
which means DDRM has the ability to model the rainfall-runoff processes in the chosen
catchments; thus, the intermediate variable simulations, the PSD simulations, can be
regarded as containing some useful information.

From the change trends in soil moisture presented in Figure 3, it can be seen that the
changing amplitude of ESA CCI SSD is larger than that of ESA CCI PSD. This is because
the surface soil moisture varies with the rapid meteorological changes, but the change in
the amplitude of soil moisture would be largely weakened by the redistribution of soil
layers when water is transported from surface to profile. Moreover, DDRM PSD shows
a larger changing amplitude than ESA CCI SSD and PSD, which is mainly manifested in
obviously smaller minimum values for DDRM PSD. This may due to the fact that DDRM
PSD is less reliable in the low values for two reasons. Firstly, the model is built based
on saturation excess runoff generation, which means that there is no limitation of soil
moisture simulations before the soil is saturated. Secondly, the objective function used to
calibrate the DDRM model parameters in the study, the NSE of the simulated and observed
streamflows, generally shows worse performance in fitting low values. Moreover, since
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there are uncertainties in both ESA CCI and DDRM PSD, it is hard to say which one is more
reliable. Overall, the ESA CCI PSD and DDRM PSD data show similar temporal tendencies
over seasonal changes, which means the PSD data acquired from ESA CCI and DDRM can
be reliable for time; this further indicates that these PSD data have potential to provide
some useful spatial information.
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Figure 3. Time series of catchment-averaged surface saturation degree (SSD) and profile saturation
degree (PSD) acquired from ESA CCI, and PSD simulated by DDRM (a–c), with the corresponding
streamflow simulated by DDRM (d–f) in the QR, NR, and YR catchments.

4.1.2. Spatial Variation in Profile Soil Moisture

The spatial patterns in the ESA CCI and DDRM PSD averages for different seasons
and the whole year of 2017 are shown in Figures 4–6 for the QR catchment, NR catchment,
and YR catchment, respectively. In the 1 km × 1 km spatial scales, the sample sizes of the
PSD datasets are 39,211, 41,715, and 18,560 in the QR, NR, and YR catchments, respectively,
and in the 25 km × 25 km spatial scales, the sample sizes are 63, 67, and 30 for the three
catchments. From the figures, it can be seen that there is an obviously gradual trend in
DDRM PSD from the upstream area to the downstream area, while ESA CCI PSD has
no similar trend. This is because the simulation processes of DDRM PSD in each grid of
the model are affected by the PSD values of other grids, but the observation and retrieval
process of ESA CCI PSD in each grid is relatively independent. Moreover, it can be seen that
both the ESA CCI PSD and the DDRM PSD data show higher values in the low-elevation
areas (normally downstream) than in the high-elevation areas (normally upstream). This
means that the elevation or slope may be the key driving factors of PSD. Moreover, the
river network in each catchment is clearly displayed in the spatial distribution map of the
DDRM PSD averages. This is due to the saturation excess runoff generation mechanism
applied in DDRM, where the soil is always saturated in the grid points of the river network,
which means PSD always equals 1 in the grids of the river network.

When comparing the spatial patterns of PSD in different seasons (January–March,
April–June, July–September, October–December, shown as Jan–Mar, Apr–Jun, Jul–Sept,
Oct–Dec respectively), it can be seen that the spatial patterns of ESA CCI and DDRM PSD
show similar changing trends from January to December. In the QR catchment and NR
catchment, the values of PSD spatial data are relatively high in the Jul–Sept period, and
in the YR catchment, those are higher in the Oct–Dec period, which is consistent with the
changing trends in the corresponding time series, as shown in Figure 3. This is because the
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rainfall values are concentrated in the Jul–Sept period for the QR and NR catchments and
in the Oct–Dec period for the YR catchment. When comparing the spatial patterns of PSD
in catchments with different climate conditions, the spatial distribution of ESA CCI PSD is
similar to the DDRM PSD in the QR and the NR catchments, while that of ESA CCI PSD
is different from that of DDRM PSD in the YR catchment, where the DDRM PSD patterns
show higher values in the downstream but the ESA CCI PSD patterns show higher values
in the upstream. The reason is that the runoff generation mechanism used in DDRM is
different from the actual mechanism in the YR catchment. Moreover, the loess covering the
eastern plain in the YR catchment also affects the actual spatial distribution of PSD patterns.
On the whole, the spatial variations in ESA CCI and DDRM PSD are, overall, consistent
and locally different; the possible driving factors of the PSD spatial patterns can be studied
further.
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4.2. The Identification of the Spatial Heterogeneity of Satellite-Based and Hydrologically Modeled
Profile Soil Moisture
4.2.1. Spatial Statistical Analysis of Satellite-Based and Hydrologically Modeled Profile
Soil Moisture

The boxplots (extremum, standard deviation, mean) of the spatial data of the ESA
CCI and DDRM PSD temporal averages for multiple periods are shown in Figures 7–9
for the QR, NR, and YR catchments, and the descriptive statistics of the spatial data are
presented in the Tables 2–4. It can be seen that the spatial scale is one of the driving factors
of the spatial heterogeneity of profile soil moisture. When the ESA CCI PSD within a
25 km × 25 km spatial scale grid is downscaled to the grid of 1 km × 1 km scale, most of
the spatial statistical values decrease for all three catchments; for example, the variation in
the spatial pattern of the PSD averages for the whole year in the QR catchment reduces
from 5.55% to 3.87%; in the NR catchment, this reduces from 5.96% to 3.30%; in the YR
catchment, this reduces from 11.23% to 6.49%. When the DDRM PSD within a 1 km × 1 km
spatial scale grid is upscaled to the grid of 25 km × 25 km scale, the change in the spatial
statistical values is also significant. For all catchments, the ranges of the DDRM PSD values
within 1 km × 1 km scale are nearly twice those of the values at the 25 km × 25 km scale.
It can be seen that most of the spatial statistical values decrease after spatial rescaling for
all catchments in this study, whether it is upscaling or downscaling. This is because there
is no new information added to the spatial distribution of PSD in the spatial upscaling
method (resampling method) and the spatial downscaling method (IDW method) used in
this study, but partial information may be lost or changed during the spatial rescaling.

When comparing the spatial statistical values of ESA CCI and DDRM PSD at the same
spatial scale, the values for range, standard deviation, and some of the other statistical
values of DDRM PSD are higher than ESA CCI PSD in nearly all the cases. The different
spatial scales of the raw data of ESA CCI and DDRM PSD may be one of the reasons for this;
it indicates that DDRM PSD shows higher spatial heterogeneity than the ESA CCI PSD for
the same spatial scale. When comparing the spatial statistical values of PSD in the different
seasons of 2017, the standard deviation, variation, and such spatial statistics are higher
during the low-flow period of each catchment, which reveals the spatial heterogeneity to
some extent; for instance, the period of Jan–Mar shows the highest standard deviations for
DDRM PSD at the 1 km × 1 km spatial scale, which are 18.98, 32.19, and 26.01 for the QR,
NR, and YR catchments, respectively. This is because the soil in most of the grids in the
catchments tends to be saturated in the high-flow period, in which case PSD approaches
1, and the spatial heterogeneity of PSD decreases. When comparing the spatial statistical
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values of the PSD spatial patterns with different climate conditions in catchments, the
changing trends of the PSD values over the seasons are in accordance with the runoff
changes in all catchments. In the QR and NR catchments, the period of Jul–Sept shows
higher PSD values, and in the YR catchment, the PSD values for the Oct–Dec period are
higher. This is because the climate conditions in the YR catchment are different from the
other two catchments, and the rainfall concentration period is later than that of the QR and
NR catchments.
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Table 2. Descriptive statistics of the spatial data of ESA CCI and DDRM profile saturation degree
(PSD) temporal averages in the QR catchment.

Minimum Maximum Mean Standard
Deviation Variation Variance Kurtosis Skewness

ESA CCI PSD in 1 km × 1 km
Annual 60.82 85.44 77.78 3.01 3.87 0.09 1.91 −0.65
Jan–Mar 54.25 82.93 72.55 4.30 5.92 0.18 0.00 −0.28
Apr–Jun 60.26 84.94 77.08 3.16 4.11 0.10 1.23 −0.51
Jul–Sept 62.53 86.44 79.64 2.89 3.63 0.08 2.33 −0.91
Oct–Dec 64.93 87.35 80.81 2.36 2.92 0.06 4.75 −0.95
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Table 2. Cont.

Minimum Maximum Mean Standard
Deviation Variation Variance Kurtosis Skewness

DDRM PSD in 1 km × 1 km
Annual 43.86 100.00 62.44 16.11 25.80 2.59 0.26 1.23
Jan–Mar 27.70 100.00 45.21 18.98 41.99 3.60 3.36 2.15
Apr–Jun 49.48 100.00 69.86 15.62 22.36 2.44 −0.79 0.80
Jul–Sept 54.30 100.00 73.39 14.74 20.08 2.17 −0.96 0.80
Oct–Dec 42.50 100.00 61.02 17.71 29.02 3.14 −0.02 1.17

ESA CCI PSD in 25 km × 25 km
Annual 60.82 85.45 78.39 4.35 5.55 0.19 3.27 −1.19
Jan–Mar 54.24 82.95 73.40 5.84 7.96 0.34 0.81 −0.72
Apr–Jun 60.25 85.19 77.67 4.59 5.91 0.21 2.24 −0.98
Jul–Sept 62.53 86.45 80.17 4.19 5.22 0.18 4.06 −1.47
Oct–Dec 64.92 87.36 81.35 3.51 4.31 0.12 6.38 −1.48

DDRM PSD in 25 km × 25 km
Annual 52.37 84.02 62.44 5.95 9.54 0.35 2.11 1.17
Jan–Mar 35.62 77.72 45.16 7.31 16.19 0.53 6.38 2.17
Apr–Jun 57.73 85.71 69.88 6.36 9.10 0.40 −0.32 0.30
Jul–Sept 63.07 89.21 73.38 5.18 7.06 0.27 0.67 0.79
Oct–Dec 51.15 83.34 61.05 6.42 10.52 0.41 1.56 1.14
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4.2.2. The Semi-Variogram Analysis of Satellite-Based and Hydrologically Modeled Profile
Soil Moisture

The optimal theoretical semi-variogram models and the related parameters for the
spatial data of DDRM and ESA CCI PSD temporal averages during different periods of
2017 in the three catchments are presented in Tables 5–7. At the 1 km × 1 km spatial scale,
the optimal theoretical semi-variogram model for the ESA CCI PSD is determined to be the
Gaussian model, and for DDRM PSD, it is confirmed to be the exponential model in all three
catchments. At the 25 km × 25 km spatial scale, the optimal theoretical semi-variogram
model for ESA CCI PSD is the Gaussian model for the QR and YR catchments, and the
exponential model is optimal for the NR catchment. Overall, the Gaussian model and the
exponential model are the common optimal semi-variogram models for PSD spatial data in
the study.
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Table 3. Descriptive statistics of the spatial data of satellite-based and hydrologically modeled profile
saturation degree (PSD) temporal averages in the NR catchment.

Minimum Maximum Mean Standard
Deviation Variation Variance Kurtosis Skewness

ESA CCI PSD in 1 km × 1 km
Annual 60.37 89.18 77.02 2.54 3.30 0.06 5.57 −1.56
Jan–Mar 53.33 77.22 68.88 2.64 3.83 0.07 3.27 −1.20
Apr–Jun 55.12 86.68 69.22 3.04 4.39 0.09 1.76 −0.12
Jul–Sept 67.18 93.36 86.39 2.53 2.93 0.06 9.31 −2.47
Oct–Dec 64.20 91.88 83.17 2.54 3.05 0.06 8.62 −2.29

DDRM PSD in 1 km × 1 km
Annual 13.77 100.00 65.68 24.47 37.25 5.99 −1.40 0.08
Jan–Mar 4.30 100.00 52.59 32.19 61.21 10.36 −1.46 0.31
Apr–Jun 12.33 100.00 52.51 28.75 54.75 8.27 −1.25 0.55
Jul–Sept 26.32 100.00 85.94 15.19 17.67 2.31 −0.37 −0.85
Oct–Dec 8.28 100.00 71.23 24.80 34.81 6.15 −1.27 −0.30

ESA CCI PSD in 25 km × 25 km
Annual 60.36 89.22 76.91 4.58 5.96 0.21 2.76 −1.17
Jan–Mar 53.32 77.22 68.70 4.50 6.55 0.20 1.56 −1.10
Apr–Jun 55.09 86.74 69.05 5.45 7.89 0.30 1.04 −0.02
Jul–Sept 67.17 93.38 86.33 4.53 5.24 0.20 4.85 −1.99
Oct–Dec 64.18 91.91 83.14 4.47 5.38 0.20 4.81 −1.91

DDRM PSD in 25 km × 25 km
Annual 45.42 84.45 65.00 8.14 12.52 0.66 −0.28 −0.01
Jan–Mar 29.19 79.28 51.35 10.67 20.79 1.14 −0.10 0.24
Apr–Jun 30.89 76.76 51.23 9.06 17.68 0.82 0.36 0.56
Jul–Sept 68.29 94.82 86.12 6.13 7.11 0.38 0.28 −0.87
Oct–Dec 50.50 87.40 70.84 8.51 12.01 0.72 −0.55 −0.26

Table 4. Descriptive statistics of the spatial data of satellite-based and hydrologically modeled profile
saturation degree (PSD) temporal averages in the YR catchment.

Minimum Maximum Mean Standard
Deviation Variation Variance Kurtosis Skewness

ESA CCI PSD in 1 km × 1 km
Annual 35.81 72.02 62.44 4.05 6.49 0.16 4.25 −1.11
Jan–Mar 33.18 67.65 57.61 4.46 7.74 0.20 1.53 −0.63
Apr–Jun 34.86 69.93 59.97 4.34 7.24 0.19 1.96 −0.60
Jul–Sept 35.26 72.41 62.38 4.12 6.60 0.17 4.35 −1.16
Oct–Dec 39.74 77.95 69.26 3.69 5.33 0.14 11.41 −2.24

DDRM PSD in 1 km × 1 km
Annual 0.00 100.00 63.11 20.33 32.21 4.13 −0.45 0.20
Jan–Mar 0.00 100.00 61.71 26.01 42.16 6.77 −1.11 0.00
Apr–Jun 0.00 100.00 53.00 23.52 44.39 5.53 −0.68 0.56
Jul–Sept 0.00 100.00 58.09 18.71 32.21 3.50 0.33 0.70
Oct–Dec 0.00 100.00 79.52 16.41 20.63 2.69 2.65 −0.96

ESA CCI PSD in 25 km × 25 km
Annual 35.74 74.18 64.14 7.20 11.23 0.52 4.61 −1.65
Jan–Mar 33.11 68.77 59.34 7.32 12.33 0.54 2.67 −1.33
Apr–Jun 34.78 72.57 61.77 7.28 11.78 0.53 3.23 −1.37
Jul–Sept 35.18 75.71 64.13 7.64 11.91 0.58 3.72 −1.49
Oct–Dec 39.65 78.53 70.68 6.70 9.48 0.45 10.60 −2.57

DDRM PSD in 25 km × 25 km
Annual 43.16 88.51 62.28 7.52 12.08 0.57 3.14 0.71
Jan–Mar 32.49 91.14 60.91 11.38 18.68 1.30 0.63 0.23
Apr–Jun 34.06 80.25 52.15 8.41 16.12 0.71 2.20 0.76
Jul–Sept 43.44 85.29 57.17 6.86 11.99 0.47 6.19 1.58
Oct–Dec 62.32 97.34 78.74 6.71 8.52 0.45 0.89 −0.07
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Table 5. Optimal theoretical semi-variogram models and their related parameters for the spatial data
of ESA CCI and DDRM profile saturation degree (PSD) temporal averages in the QR catchment.

Theoretical
Model Nugget Still Proportion

C/(C0 + C) Range (m) Coefficient of
Determination

Residual
Sum of

Squares (%2)

ESA CCI PSD in 1 km × 1 km
Annual Gaussian 0.00001 0.00324 0.997 10,456 0.808 0.3127
Jan–Mar Gaussian 0.000001 0.00250 0.999 10,549 0.814 0.1723
Apr–Jun Gaussian 0.00001 0.00356 0.997 10,806 0.825 0.3706
Jul–Sept Gaussian 0.00001 0.00347 0.997 10,447 0.808 0.3614
Oct–Dec Gaussian 0.000001 0.00290 0.999 10,468 0.809 0.2423

DDRM PSD in 1 km × 1 km
Annual Exponential 0.0042 0.0522 0.920 1830 0.972 0.028
Jan–Mar Exponential 0.0077 0.0984 0.922 2220 0.947 0.337
Apr–Jun Exponential 0.0003 0.0402 0.993 1500 0.956 0.015
Jul–Sept Exponential 0.0033 0.0354 0.907 1590 0.970 0.008
Oct–Dec Exponential 0.0056 0.0660 0.915 1860 0.975 0.041

ESA CCI PSD in 25 km × 25 km
Annual Gaussian 0.0117 0.0703 0.834 86,009 0.656 70.33
Jan–Mar Gaussian 0.008 0.0912 0.912 85,437 0.697 130
Apr–Jun Gaussian 0.0122 0.081 0.849 84,364 0.634 100
Jul–Sept Gaussian 0.0125 0.0654 0.809 88,400 0.681 52.88
Oct–Dec Gaussian 0.01069 0.03718 0.712 85,804 0.710 9.933

DDRM PSD in 25 km × 25 km
Annual Spherical 0.00001 0.00788 0.999 38,300 0.505 0.0013
Jan–Mar Exponential 0.0002 0.0199 0.990 48,900 0.688 0.02563
Apr–Jun Spherical 0.00014 0.00696 0.980 86,207 0.514 0.0615
Jul–Sept Exponential 0.0002 0.00476 0.958 28,500 0.884 0.0003
Oct–Dec Spherical 0.00001 0.00969 0.999 37,400 0.568 0.0010

The proportion of C/(C0 + C) in the semi-variogram model can represent the spatial
heterogeneity of the data. For all cases, the proportion of C/(C0 + C) is higher than 0.75,
which means that the spatial data of both ESA CCI and DDRM PSD show strong spatial
heterogeneity in different seasons, different spatial scales, and different catchments. It
should be noted that scale dependency is one of the most important characteristics of
the spatial heterogeneity of the data. For the data in different spatial ranges, it is hard
to distinguish which spatial data have stronger spatial heterogeneity. In the study, one
of the parameters in the optimal theoretical semi-variogram models—the range—shows
a significant difference for the different spatial data of ESA CCI PSD and DDRM PSD.
The range parameter is around 10,000 m for ESA CCI PSD at 1 km × 1 km for all three
catchments, and it is around 1500 m for DDRM PSD at 1 km × 1 km. In contrast, the range
parameter is much higher for ESA CCI PSD and DDRM PSD at 25 km × 25 km. For the
optimal theoretical semi-variogram models, it can be seen that this parameter is dissimilar
when the spatial data are in the same spatial scale. This is because the data of ESA CCI PSD
at 1 km × 1 km and DDRM PSD at 25 km × 25 km are not the raw data. Thus, it is hard to
compare the spatial heterogeneity of these data through the C/(C0 + C) proportion. Since
the range parameter is similar in the different seasons of each of the spatial datasets, it can
be seen that spatial data in the low-flow period mostly show larger spatial heterogeneity
than those in the high-flow period. In addition, since the range parameter in different
catchments is also similar when comparing data from one source, it can be found that
the PSD data in the YR catchment show higher spatial heterogeneity, and those in the QR
catchment show relatively low spatial heterogeneity, meaning that the spatial heterogeneity
of profile soil moisture is higher in a semi-arid catchment.
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Table 6. Optimal theoretical semi-variogram models and their related parameters for the spatial data
of ESA CCI and DDRM profile saturation degree (PSD) temporal averages in the NR catchment.

Theoretical
Model Nugget Still Proportion

C/(C0 + C) Range (m) Coefficient of
Determination

Residual
Sum of

Squares (%2)

ESA CCI PSD in 1 km × 1 km
Annual Gaussian 0.00001 0.00348 0.997 10,504 0.835 0.2898
Jan–Mar Gaussian 0.00001 0.00475 0.998 10,402 0.831 0.5596
Apr–Jun Gaussian 0.00001 0.00373 0.997 10,697 0.844 0.3201
Jul–Sept Gaussian 0.00001 0.00432 0.998 10,350 0.826 0.4711
Oct–Dec Gaussian 0.00001 0.00363 0.997 10,843 0.847 0.3045

DDRM PSD in 1 km × 1 km
Annual Exponential 0.0047 0.0761 0.938 1620 0.819 0.3403
Jan–Mar Exponential 0.3100 5.0100 0.938 1680 0.820 1650
Apr–Jun Exponential 0.0209 0.2968 0.930 1710 0.823 6.075
Jul–Sept Exponential 0.0001 0.0363 0.997 1440 0.702 0.1082
Oct–Dec Exponential 0.0035 0.0683 0.949 1560 0.766 0.3376

ESA CCI PSD in 25 km × 25 km
Annual Exponential 0.0012 0.0682 0.982 63,900 0.752 0.5022
Jan–Mar Exponential 0.001 0.0346 0.971 74,400 0.801 0.1357
Apr–Jun Exponential 0.00028 0.02826 0.990 68,100 0.803 0.0813
Jul–Sept Exponential 0.00005 0.0281 0.998 60,000 0.721 0.08278
Oct–Dec Exponential 0.00057 0.02484 0.977 72,300 0.815 0.0576

DDRM PSD in 25 km × 25 km
Annual Spherical 0.0001 0.0412 0.998 41,500 0.334 0.1401
Jan–Mar Exponential 0.016 0.54 0.970 42,000 0.420 26.76
Apr–Jun Spherical 0.0001 0.0369 0.997 31,800 0.511 0.06259
Jul–Sept Exponential 0.0244 0.0737 0.669 38,156 0.569 47.5
Oct–Dec Exponential 0.0023 0.0522 0.956 49,500 0.639 0.215

4.3. Contribution of Driving Factors to the Spatial Heterogeneity of Profile Soil Moisture

Tables 8–10 show the q statistics of the different driving factors of the spatial distribu-
tion of ESA CCI PSD and DDRM PSD, respectively, at 1 km × 1 km using the geographical
detector method. It can be found that although the q values of the different driving factors
of the spatial heterogeneity of ESA CCI PSD and DDRM PSD are quite different but the
orders of relative importance are similar. In the QR and YR catchments, DEM contributes
most to the spatial heterogeneity of both ESA CCI PSD and DDRM PSD, for which the
QR catchment average q value is 0.308 for ESA CCI PSD and 0.121 for DDRM PSD, and
in the YR catchment, it was 0.291 for ESA CCI PSD and 0.089 for DDRM PSD. PRE is the
second-most important driving factor for both ESA CCI PSD and DDRM PSD in these two
catchments, in which the average q value is 0.266 for ESA CCI PSD and 0.029 for DDRM
PSD in the QR catchment and 0.159 for ESA CCI PSD, 0.033 for DDRM PSD in the YR
catchment. The importance of PRE in terms of the spatial heterogeneity of PSD in this
study is consistent with a previous paper, which found that PRE contributes more than
60% of the spatial heterogeneity of GLDAS-2.1 (Global Land Data Assimilation System-2.1)
SM products [22]. Further, ST is the third-most important driving factor in the QR and
YR catchment. It can also be noticed that the NR catchment shows different orders of
relative importance in terms of driving factors. For the ESA CCI PSD, the importance is
PRE > ST > DEM, and for the DDRM PSD, the order is LUCC > ST > NDVI. This may be
due to the fact that the amount of classes of ST in the NR catchment is greater than those
in the QR and YR catchments, which is above 30 in the NR catchment and is around 20 in
the QR and YR catchments. Moreover, slope and aspect show little influence on the spatial
heterogeneity of both ESA CCI PSD and DDRM PSD in all three catchments; this may be
due to the slope aspect being more likely to influence water flow in the surface soil by
gravity and evapotranspiration, but it shows little direct influence on deeper soil moisture.
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Table 7. Optimal theoretical semi-variogram models and their related parameters for the spatial data
of ESA CCI and DDRM profile saturation degree (PSD) temporal averages in the YR catchment.

Theoretical
Model Nugget Still Proportion

C/(C0 + C) Range (m) Coefficient of
Determination

Residual
Sum of

Squares (%2)

ESA CCI PSD in 1 km × 1 km
Annual Gaussian 0.00001 0.0095 0.999 10,458 0.813 2.758
Jan–Mar Gaussian 0.00001 0.00937 0.999 10,845 0.833 2.505
Apr–Jun Gaussian 0.00001 0.00942 0.999 10,861 0.831 2.608
Jul–Sept Gaussian 0.00001 0.01012 0.999 10,810 0.832 2.919
Oct–Dec Gaussian 0.00001 0.00847 0.999 10,977 0.835 2.052

DDRM PSD in 1 km × 1 km
Annual Exponential 0.0017 0.0385 0.956 1680 0.918 0.03359
Jan–Mar Exponential 0.0001 0.0592 0.998 1350 0.648 0.1828
Apr–Jun Exponential 0.013 2.474 0.995 1830 0.908 229
Jul–Sept Exponential 0.00159 0.03288 0.952 1770 0.952 0.01684
Oct–Dec Exponential 0.00001 0.02222 0.999 2040 0.948 0.01581

ESA CCI PSD in 25 km × 25 km
Annual Gaussian 0.0001 0.0368 0.997 52,654 0.642 4.481
Jan–Mar Gaussian 0.0001 0.0425 0.998 58,196 0.727 4.333
Apr–Jun Gaussian 0.0001 0.0381 0.997 56,811 0.719 3.572
Jul–Sept Gaussian 0.0001 0.0383 0.997 52,307 0.627 5.211
Oct–Dec Gaussian 0.00001 0.0309 0.999 48,670 0.539 4.400

DDRM PSD in 25 km × 25 km
Annual Gaussian 0.00001 0.01452 0.999 50,575 0.652 0.4635
Jan–Mar Exponential 0.001 0.756 0.999 62,790 0.822 4810
Apr–Jun Gaussian 0.00001 0.02652 0.999 52,654 0.703 1.254
Jul–Sept Gaussian 0.00001 0.01322 0.999 46,765 0.679 0.2381
Oct–Dec Gaussian 0.0001 0.0366 0.997 56,118 0.704 2.960

Table 8. The q statistics of different driving factors on the spatial distribution of ESA CCI and the
DDRM profile saturation degree (PSD) temporal averages of the QR catchment in the geographical
detector method.

PRE NDVI LUCC DEM ST SL AS

ESA CCI PSD in 1 km × 1 km
Annual 0.0413 0.1487 0.0879 0.2959 0.1439 0.0814 0.0082
Jan–Mar 0.6889 0.0248 0.1510 0.4453 0.2296 0.1002 0.0096
Apr–Jun 0.2848 0.1849 0.0852 0.2924 0.1394 0.0803 0.0095
Jul–Sept 0.2074 0.1391 0.0747 0.2584 0.1428 0.0697 0.0081
Oct–Dec 0.1098 0.0824 0.0711 0.2492 0.1435 0.0767 0.0062

Averaged 0.2664 0.1160 0.0940 0.3082 0.1598 0.0817 0.0083
DDRM PSD in 1 km × 1 km

Annual 0.0099 0.0272 0.0165 0.1245 0.0227 0.0137 0.0004
Jan–Mar 0.0184 0.0048 0.0172 0.1182 0.0309 0.0170 0.0005
Apr–Jun 0.1009 0.0173 0.0144 0.1402 0.0288 0.0123 0.0019
Jul–Sept 0.0038 0.0291 0.0168 0.1027 0.0194 0.0067 0.0005
Oct–Dec 0.0108 0.0217 0.0180 0.1190 0.0196 0.0178 0.0004

Averaged 0.0287 0.0200 0.0166 0.1209 0.0243 0.0135 0.0007

When comparing the contribution of driving factors to the spatial heterogeneity of
profile soil moisture in different seasons, it can be found that the influence of PRE on PSD
varies greatly with seasons. PRE contributes little to the spatial heterogeneity of annual
PSD averages; this is because annual averages smooth out the difference in changes within
the year. For ESA CCI PSD, PRE contributes most to the Jan–Mar period, the contribution
is 68.89% (q = 0.6889), 23.61% (q = 0.2361), and 36.22% (q = 0.3622), respectively, in the three
catchments. It may be because when most of the soil is unsaturated in the low-flow period,
the soil moisture responds quickly to PRE. For DDRM PSD, PRE contributes most to the
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Apr–Jun period, Jul–Sept period, and Oct–Dec period, respectively, in the three catchments.
This may be because the soil moisture calculation module of DDRM is controlled not only
by PRE but also by antecedent rainfall, soil moisture storage capacity, flowing mechanism,
etc., and there is model structure uncertainty during the soil moisture simulations.

Table 9. The q statistics of the different driving factors on the spatial distribution of ESA CCI and the
DDRM profile saturation degree (PSD) temporal averages of the NR catchment in the geographical
detector method.

PRE NDVI LUCC DEM ST SL AS

ESA CCI PSD in 1 km × 1 km
Annual 0.0368 0.0128 0.0236 0.0545 0.0856 0.0003 0.0043
Jan–Mar 0.2361 0.0437 0.0209 0.0470 0.1166 0.0010 0.0047
Apr–Jun 0.0958 0.0196 0.0182 0.0246 0.1579 0.0014 0.0073
Jul–Sept 0.1066 0.0189 0.0342 0.0809 0.0794 0.0019 0.0038
Oct–Dec 0.0953 0.0117 0.0392 0.0993 0.1184 0.0028 0.0047

Averaged 0.1141 0.0213 0.0272 0.0613 0.1116 0.0015 0.0049
DDRM PSD in 1 km × 1 km

Annual 0.0109 0.0627 0.0775 0.0446 0.0468 0.0037 0.0002
Jan–Mar 0.0125 0.0385 0.0860 0.0393 0.0601 0.0099 0.0048
Apr–Jun 0.0026 0.0565 0.0798 0.0453 0.0507 0.0076 0.0039
Jul–Sept 0.0786 0.0214 0.0764 0.0343 0.0605 0.0069 0.0040
Oct–Dec 0.0182 0.0900 0.0838 0.0402 0.0562 0.0091 0.0040

Averaged 0.0246 0.0538 0.0807 0.0407 0.0549 0.0074 0.0034

Table 10. The q statistics of the different driving factors on the spatial distribution of ESA CCI and the
DDRM profile saturation degree (PSD) temporal averages of the YR catchment in the geographical
detector method.

PRE NDVI LUCC DEM ST SL AS

ESA CCI PSD in 1 km × 1 km
Annual 0.0674 0.0694 0.0700 0.2966 0.1348 0.0001 0.0132
Jan–Mar 0.3622 0.0382 0.0780 0.3341 0.1477 0.0004 0.0120
Apr–Jun 0.1059 0.1102 0.0986 0.3943 0.1773 0.0006 0.0113
Jul–Sept 0.0795 0.0456 0.0522 0.2333 0.1149 0.0003 0.0163
Oct–Dec 0.1806 0.0247 0.0461 0.1982 0.0801 0.0002 0.0096

Averaged 0.1591 0.0576 0.0690 0.2913 0.1309 0.0003 0.0125
DDRM PSD in 1 km × 1 km

Annual 0.0033 0.0107 0.0111 0.0806 0.0155 0.0006 0.0005
Jan–Mar 0.0427 0.0168 0.0504 0.1771 0.0486 0.0021 0.0009
Apr–Jun 0.0055 0.0186 0.0187 0.0883 0.0197 0.0015 0.0005
Jul–Sept 0.0265 0.0022 0.0031 0.0413 0.0058 0.0003 0.0025
Oct–Dec 0.0882 0.0116 0.0224 0.0559 0.0197 0.0006 0.0022

Averaged 0.0332 0.0120 0.0211 0.0886 0.0218 0.0010 0.0013

5. Discussion
5.1. The Limitations and Uncertainties Associated with the Datasets

This study chooses the European Space Agency Climate Change Initiative (ESA
CCI) surface soil moisture product as the original data from satellite instruments and
the DEM-based distributed rainfall-runoff model (DDRM) to provide profile soil mois-
ture data simulated from hydrological models. In order to improve the reliability of PSM
datasets acquired from DDRM, the model was calibrated by using the observed runoff from
2014–2016 and was verified by the observed runoff from 2017. However, there are still
limitations and uncertainties associated with the datasets. For DDRM-simulated PSM
datasets, the accuracy of the PSM is limited by the uncertainties of input data (precipitation
and evapotranspiration), the model structure, and model parameters. Some previous
papers have changed the input data, model parameters, and model structures to investigate
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the uncertainties of the hydrological model simulations, including streamflow and soil
moisture simulations [2,39,47,48]. In future studies, hydrological models with different
model styles and structures can be considered to produce different hydrologically modeled
PSM datasets for spatial heterogeneity investigations. Moreover, the spatial interpolation
method used for the input data may affect the spatial pattern of the model-simulated PSM.
In order to analyze the influence of the interpolation method, the model performance of
streamflow and soil moisture simulations using the Kriging method to interpolate the input
data was compared to the model performance using the IDW method, and the results
indicate that the influence of the spatial interpolation method on both the temporal and
spatial patterns of streamflow and soil moisture is low. This may be because hydrological
modeling has the ability to adjust itself through model calibration.

For the PSM datasets acquired from the ESA CCI product, the accuracy of the data
is limited by the uncertainties of raw satellite observations, retrieval algorithms, and
preprocessing methods used in the study. For instance, the resampling of ESA CCI data
from 25 km × 25 km to 1 km × 1 km introduces uncertainties in the spatial heterogeneity
of the data; the constant value of CT applied in the exponential filter to transform SSM
to PSM also introduces uncertainties since the CT values are affected by the topography,
climatic conditions, vegetation types, soil types, etc. [49]. Because of the lack of in situ
observations of profile soil moisture, only an indirect way (through model calibration and
comparison of PSM with each other) is used to show that the data acquired from ESA CCI
and DDRM contain some useful spatial information; there is no direct way to verify if the
spatial datasets used in the study are correct. In situ observation networks can be set up
and used as a third source, along with the validation criteria of profile soil moisture in
future studies.

5.2. The Pros and Cons Associated with the Methods

This study uses the spatial statistical analysis and the semi-variogram method to
identify the spatial heterogeneity of PSM acquired from different sources and uses the
geographic detector method to seek out their driving factors. There are papers that analyze
the driving factors of hydrological or meteorological factors by selecting the different
input data of simple statistical models or conceptual models [50,51]. In these papers, the
driving factors are determined according to the model structure, but the actual driving
factors may be more complex and implicit. In the study, the input data (precipitation and
evapotranspiration) of DDRM and the values of the model parameters can be changed to
see their influence on the spatial distribution of DDRM PSM, but there are only two driving
factors with explicit physical meanings that have been considered since the influential
factors and physical meanings of the model parameters are ambiguous. Moreover, changing
input data and model parameters would reduce the reliability of PSM simulations since it
reduces the model performance of streamflow simulations, which means the simulation of
the rainfall-runoff processes in DDRM would be less reliable. For ESA CCI PSM, the CT
values can be changed to see the influence on the spatial distribution of ESA CCI PSM, but it
is hard to distinguish the actual driving factors since there are many influential factors from
CT values. Thus, this study chooses to analyze the PSM datasets acquired from ESA CCI
and DDRM directly to see their spatial heterogeneity and corresponding driving factors
rather than select different options to produce different datasets to seek out their driving
factors.

The spatial statistical analysis and the semi-variogram method are both used to identify
the spatial heterogeneity of PSM in the study since their results can complement and verify
each other. When compared to the spatial heterogeneity of PSM, the limitation of the spatial
statistical analysis is that the results are qualitative, not quantitative, and the limitation of
the semi-variogram method is that the results are largely affected by scale effects. For the
geographic detector method, the choices of the candidate driving factors and the method
used to discretize the data both affect the results. In future studies, more candidate driving
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factors and different discretizing methods can be considered to investigate their influences
on the spatial heterogeneity of PSM.

6. Conclusions

In this study, the profile soil moisture (PSM) acquired based on European Space
Agency Climate Change Initiative (ESA CCI) soil moisture products and the DEM-based
distributed rainfall-runoff model (DDRM) are used to investigate the spatial heterogeneity
and the driving factors of PSM. Three catchments were chosen as the study area, including
two humid catchments, the Qu River (QR) catchment and Nanpan River (NR) catchment,
and one semi-arid catchment, the Yiluo River (YR) catchment. By considering the scale
dependence of spatial heterogeneity, the ESA CCI and DDRM profile saturation degree
(PSD) datasets that match in terms of spatial scale and physical properties were acquired
by first using satellite raw product preprocessing and hydrologically modeling; then,
the spatial heterogeneity and driving factors were identified by using spatial statistical
analysis, the semi-variogram method, and the geographic detector method. The results
were comparatively analyzed, and the conclusions are summarized here:

(1) ESA CCI and DDRM PSD are similar for seasonal changes and are overall consistent
and locally different in terms of spatial variations;

(2) Based on spatial statistical analysis, the spatial heterogeneity of PSD reduces after spa-
tial rescaling; in the same spatial scale, DDRM PSD shows higher spatial heterogeneity
than ESA CCI PSD, and the low-flow period shows higher spatial heterogeneity than
the high-flow period;

(3) Based on the semi-variogram method, both ESA CCI PSD and DDRM PSD show
strong spatial heterogeneity in different seasons, different spatial scales, and different
catchments, in which the proportion of C/(C0 + C) is higher than 0.75, and the spatial
data in the low-flow period mostly show larger spatial heterogeneity than that in
the high-flow period, in which the proportion is higher than 0.9; the PSD in the YR
catchment shows the largest spatial heterogeneity, and that in the QR catchment
shows relatively low spatial heterogeneity;

(4) The first three driving factors of the spatial heterogeneity of both ESA CCI and DDRM
profile soil moisture are DEM, precipitation, and soil type in most cases, contributing
more than 50% to spatial heterogeneity;

(5) Precipitation contributes most to ESA CCI PSD in the low-flow period when there is
no obvious high contribution of precipitation to DDRM PSD.

This study provides insights into the potential mechanisms and differences of satellite-
based and hydrologically modeled spatial profile soil moisture, which can help develop
the refined modeling and spatial management strategies of soil moisture in ecological,
agricultural, and hydrological fields. In future studies, spatial heterogeneity and the
potential influential mechanism of combined, remotely sensed, and hydrologically modeled
profile soil moisture can be investigated through data fusion or assimilation.
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