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Abstract: Cloud detection is an essential preprocessing step when using satellite-borne infrared
hyperspectral sounders for data assimilation and atmospheric retrieval. In this study, we propose a
cloud detection algorithm based solely on the sensitivity and detection characteristics of the FY-4A
Geostationary Interferometric Infrared Sounder (GIIRS), rather than relying on other instruments.
The algorithm consists of four steps: (1) combining observed radiation and clear radiance data
simulated by the Community Radiative Transfer Model (CRTM) to identify clear fields of view
(FOVs); (2) determining the number of clouds within adjacent 2 × 2 FOVs via a principal component
analysis of observed radiation; (3) identifying whether there are large observed radiance differences
between adjacent 2 × 2 FOVs to determine the mixture of clear skies and clouds; and (4) assigning
adjacent 2 × 2 FOVs as a cloud cluster following the three steps above to select an appropriate
classification threshold. The classification results within each cloud detection cluster were divided
into the following categories: clear, partly cloudy, or overcast. The proposed cloud detection algorithm
was tested using one month of GIIRS observations from May 2022 in this study. The cloud detection
and classification results were compared with the FY-4A Advanced Geostationary Radiation Imager
(AGRI)’s operational cloud mask products to evaluate their performance. The results showed that the
algorithm’s performance is significantly influenced by the surface type. Among all-day observations,
the highest recognition performance was achieved over the ocean, followed by land surfaces, with the
lowest performance observed over deep inland water. The proposed algorithm demonstrated better
clear sky recognition during the nighttime for ocean and land surfaces, while its performance was
higher for partly cloudy and overcast conditions during the day. However, for inland water surfaces,
the algorithm consistently exhibited a lower cloud recognition performance during both the day and
night. Moreover, in contrast to the GIIRS’s Level 2 cloud mask (CLM) product, the proposed algorithm
was able to identify partly cloudy conditions. The algorithm’s classification results departed slightly
from those of the AGRI’s cloud mask product in areas with clear sky/cloud boundaries and minimal
convective cloud coverage; this was attributed to the misclassification of clear sky as partly cloudy
under a low-resolution situation. AGRI’s CLM products, temporally and spatially collocated to the
GIIRS FOV, served as the reference value. The proportion of FOVs consistently classified as partly
cloudy to the total number of partly cloudy FOVs was 40.6%. In comparison with the GIIRS’s L2
product, the proposed algorithm improved the identification performance by around 10%.

Keywords: FY-4A/GIIRS; cloud detection; cloud mask algorithm; product comparison

1. Introduction

The use of satellite information has improved numerical weather prediction results
and increased forecasts’ reliability [1,2]. As a result, the contribution of satellite data to
numerical forecasting systems has steadily grown. Statistics from the European Centre
for Medium-Range Weather Forecasts (ECMWF) show that 91.41% of data input to the
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assimilation system come from satellite observations [3]. Having analyzed and assessed
the impact of the initial decade of use of the TIROS Operational Vertical Sounder (TOVS)
on weather forecasting, the World Meteorological Organization (WMO) concluded that
significant improvements in weather forecasting capabilities could exclusively improve
the precision of global atmospheric vertical temperature and humidity profiles to equal
that of radio soundings [4]. Among the various types of satellite remote sensing data, high-
spectral infrared data have emerged as crucial for reducing forecast errors and enhancing
assimilation effects in all satellite observations [5].

Spaceborne infrared hyperspectral sounders, which boast a high detection capability,
a high spectral resolution, and spectral coverage of CO2 and H2O absorption bands, pre-
dominantly provide information on atmospheric temperature and humidity [6]. Their high
spectral resolution provides a high vertical resolution, allowing for fine-scale detection
of meteorological elements (especially temperature and humidity) throughout the atmo-
spheric troposphere. They are the most important satellite data source, reducing forecast
errors and improving assimilation effectiveness [5]. In particular, an infrared hyperspectral
sounder mounted on a geostationary mereological satellite platform facilitates continuous
observations of the covered area with a high temporal resolution. As small- and medium-
scale weather systems evolve relatively quickly, these high temporal resolution instruments
are important for detecting high-impact weather events that are strongly associated with
atmospheric thermodynamic instability, as well as convective systems that develop over a
short period of time [7]. Therefore, observations from geostationary hyperspectral infrared
sounders are crucial for weather monitoring and numerical prediction models [8].

FY-4A is a Chinese second-generation geostationary meteorological satellite, posi-
tioned at 104.7◦E over the equator. It has a more than 20-fold increased observation
efficiency and can perform 24 h Earth observations from high altitudes [9]. The Geosta-
tionary Interferometric Infrared Sounder (GIIRS) is the world’s first precision infrared
hyperspectral instrument specifically designed to measure the vertical structure of the
atmosphere in geostationary orbit via infrared interferometric spectroscopy. The GIIRS
covers the mid-wave infrared (1650–2250 cm−1) and longwave infrared (700–1130 cm−1)
bands at a spectral resolution of 0.625 cm−1. It comprises 1650 observation channels, with
689 channels in the longwave and 961 channels in the mid-wave band.

Atmospheric clouds exhibit a high forecast sensitivity [10], and their role in the radia-
tive balance of the Earth’s atmospheric system is determined by their optical properties [11].
Clouds consist of water droplets and ice crystals, both of which strongly absorb infrared
radiation, and can be approximated as black bodies [12]. If clouds are present in the field
of view, the infrared radiation emitted by the atmosphere below clouds cannot be distin-
guished from the radiance from clouds [13]. Cloud detection, which determines if there is
any cloud cover in each satellite instrument’s instantaneous field of view, is a fundamental
and essential step for atmospheric parameter retrieval and cloud microphysical property
retrieval. Cloud detection also plays a critical role in clear-sky and cloud-area satellite data
assimilation. Therefore, in practical applications of infrared data, it is often necessary to
first eliminate cloud-contaminated scenes [14].

The common methods for cloud detection can be grouped into four types: finding ‘clear
FOVs’ [15]; ‘clear channels’ [16]; ‘cloud clearing’ [17]; and ‘cloud product matching between
different instruments’ [18]. The ‘clear FOV’ approach aims to find completely cloud-free
fields of view (FOVs) by excluding observations from all channels within cloudy FOVs. For
example, Wang et al. selected optimal channels for the FY-4A GIIRS’s mid-wave infrared
band and used the minimum residual method to calculate the effective cloud cover for cloud
classification [19]. The ‘clear channel’ method does not completely eliminate clouds from
the satellite’s FOV. Instead, it assigns cloud-free channel heights to different channels based
on their varying sensitivities to clouds. This method, proposed by McNally et al. (2003),
is employed by the ECMWF for cloud detection using an Atmospheric Infrared Sounder
(AIRS) and an Infrared Atmospheric Sounding Interferometer (IASI) [20]. The ‘cloud
clearing’ method combines moderate-resolution spectroradiometer imaging data with
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AIRS FOV radiance data equivalent to a clear sky and was proposed by Li et al. Finally, as
an example of cloud product matching, Guan et al. (2007). performed spatial and temporal
matching of high-resolution Moderate-resolution Imaging Spectroradiometer (MODIS)
imager cloud detection products to AIRS’s FOVs for successful cloud detection [21]. In
addition, based on the clear channel method, Li et al. added Advanced Himawari Imager
(AHI) cloud mask products to select clear sky areas and remove high-level clouds. This
two-step cloud detection method serves as a complementary method for clear sky areas [22].

These cloud detection algorithms are mainly used on polar-orbiting satellites, which
have limitations in capturing rapidly developing weather systems due to their poor tem-
poral resolution. In contrast, geostationary satellites offer high spectral and temporal
resolutions. They can continuously monitor rapid and intense changes in water vapor
levels and temperatures during severe weather events when compared to infrared hyper-
spectral detection instruments on polar-orbiting satellites. At present, the GIIRS Level 2 (L2)
operational cloud mask (CLM) product relies on the Advanced Geostationary Radiation
Imager (AGRI) mounted on the same satellite [23]. The high-spatial-resolution imager
cloud mask product is spatially and temporally matched to the low-spatial-resolution
GIIRS’s FOV. Cloud detection in the GIIRS’s FOV is based on the proportion of AGRI
clear/cloud pixels within it. This method only processes clear-sky FOVs and eliminates
scenes contaminated by clouds, which wastes a large amount of observation data. Thus, it is
desirable to develop a cloud detection algorithm that is based solely on GIIRS observations
and does not rely on other instruments.

A cloud detection algorithm based solely on FY-4A GIIRS observations (advanced
infrared hyperspectral cloud detection, hereafter referred to as AIRCD) is proposed in
this paper according to the basic principles of cloud detection proposed by the Cross-
track Infrared and Microwave Sounding Suite Environmental Data Records (CrIMSS EDR)
algorithm [24]. The algorithm employs the following four steps to extract cloud information
and determine cloud coverage in the GIIRS’s FOV: (1) clear FOV identification, (2) cloud
amount estimation, (3) thermal contrasting, and (4) cloud classification.

2. Data and Radiative Transfer Model
2.1. Data

The data used in this research include FY-4A GIIRS observations, AGRI products, and
ERA5 reanalysis data; the details are as follows.

The GIIRS observes China and its surrounding areas (3–55◦N, 60–137◦E) every 2 h.
The FY-4A GIIRS’s coverage extends from north to south and comprises seven latitudinal
scan lines, each comprising 59 fields of regard (FORs). The FOVs for GIIRS’s observation
mode are arranged in a 32 × 4 array, where each FOV corresponds to a specific detector
and provides a spatial horizontal resolution of approximately 16 km. GIIRS Level 1 (L1)
radiance observations with a spatial resolution of 16 km and L2 CLM products at 1200–
1340 UTC on 13 May 2022 were used. GIIRS L1 and L2 datasets were obtained from the
Chinese National Satellite Meteorological Center (http://satellite.nsmc.org.cn, accessed on
8 October 2023).

The full-disk cloud mask products derived from the FY-4A AGRI with a 4 km reso-
lution at 1300–1315 UTC on 13 May 2022 were used as reference values to examine the
cloud detection results. The AGRI is the primary optical payload onboard FY-4A, providing
extensive coverage of Earth’s atmosphere every 15 min. The AGRI’s operational CLM
products with a high spatial resolution and reliability are generated in real time. The CLM
values were classified as 0 = cloud; 1 = probably cloud; 2 = probably clear; and 3 = clear.
The AGRI L2 data were also sourced from http://satellite.nsmc.org.cn, accessed on 8
October 2023.

The atmospheric state parameters from ERA5 were used as inputs in the fast radiative
transfer model to simulate satellite measurements. The ERA5 reanalysis dataset has a
horizontal resolution of 0.25 × 0.25◦, a temporal resolution of 1 h, and is vertically divided
into 37 levels extending from the surface to 0.01 hPa. Since the ERA5 data and GIIRS
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observations have different spatial and temporal resolutions, the ERA5 data needed to be
spatially interpolated to each GIIRS’s FOV before simulating the brightness temperature
via the radiative transfer model. The ERA5 values at the nearest four grid points were
selected for distance-weighted averaging. The maximum time matching difference is 1 h.
The ERA5 datasets were obtained from the Meteorological Archival and Retrieval System
(MARS, https://cds.climate.copernicus.eu, accessed on 8 October 2023).

2.2. Radiative Transfer Model

The Community Radiative Transfer Model (CRTM) was used to simulate satellite
observations. Developed by the Joint Center for Satellite Data Assimilation (JCSDA) in
the USA, the CRTM was designed to simulate satellite observations in the ultraviolet,
visible, infrared, and microwave bands. It comprises four modules: the forward, tangent,
adjoint, and K-matrix modules [25]. During forward module calculations, the CRTM
simulates the radiation received in the observation direction of the satellite instrument. The
input ERA5 atmospheric state parameters for the CRTM include atmospheric temperature
profiles, specific humidity profiles, ozone mixing ratio profiles, and surface parameters
such as wind speed at 10 m, temperature at 2 m, surface pressure, and surface temperature.
Additionally, the satellite’s scan angles, zenith angles, and azimuth angles need to be input.
These are then combined with the spectral response function of the satellite instrument’s
observation channel to simulate the brightness temperatures.

3. Cloud Detection Algorithm Based on GIIRS Observations

As mentioned in Section 2.1, for the cloud detection algorithm, adjacent 2 × 2 FOVs
were selected as samples according to the arrangement of the FY-4A GIIRS’s scanning
detectors. Each FOR contains 16 × 2 cloud detection clusters, as shown by the black circles
in Figure 1.
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The physical basis of cloud detection lies in the fact that when detecting the wave-
length in a specific infrared channel, the detected thermal energy of an object is mainly
related to its own temperature [26]. What sets clouds apart from other underlying surfaces
is that they have high reflectance and low brightness temperatures. During cloud detection
tasks, brightness temperature differences can be used to distinguish between clouds and a
clear sky. The principle is that a single scattering by clouds results in changes in spectral
information. Additionally, there is a nonlinear variation in the Planck function during
this process; in other words, it expresses the temperature difference between clouds and
different surface types. The absorption and emission of other factors are not considered
in this process. Changes in spectral information are often influenced by the microphys-
ical properties of the clouds. Therefore, infrared brightness temperature differences can
distinguish between clouds and clear skies [27].

The most significant infrared absorption bands for atmospheric CO2 are the 4.3 µm
and 15 µm bands. When clouds are present in the FOV, the attenuation of brightness
temperature is significantly greater in the shortwave infrared channel than in the longwave
infrared channel; this discrepancy arises from the strong scattering effect of ice particles
and can be effectively used for cloud detection. Therefore, we based the AIRCD algorithm
on the dual gas absorption bands of CO2 in the GIIRS, which are the longwave infrared
band at 709.5–746.0 cm−1 and the shortwave infrared band at 2190–2250 cm−1.

A flow chart of the cloud detection algorithm is shown in Figure 2. The process
is divided into four steps: clear FOV identification, cloud amount estimation, thermal
contrasting, and cloud classification. The classification results within each cloud detection
cluster are divided into the following categories: clear, partly cloudy, or overcast.
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3.1. Clear FOV Identification

We observed no significant differences in the overall observed radiance in each FOV
when the cloud detection cluster was in either overcast or clear sky conditions (i.e., the
scene was relatively homogeneous) [28]. Therefore, to determine whether a cloud detection
cluster consisting of 2 × 2 FOVs was clear, the number of clear FOVs within the cluster
was first calculated. The clear radiance of each FOV was simulated using the CRTM.
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The root-mean-square error of radiances (dyj) between the observed and simulated clear
radiations for all channels in the longwave infrared band of 709.5–746.0 cm−1 was calculated
as follows:

dyj =

√√√√√nchan
∑

i=1

(
Rij − Rclr

ij

)2

nchan
(1)

where Rij and Rclr
ij denote the radiances in FOV j and channel i for the observed and simu-

lated clear FOVs, respectively, and ‘nchan’ is the 59 channels in the 709.5–746.0 cm−1 band.
Ideally, if the FOV is clear, the radiance observed by the satellite should be the same as

the simulated clear radiance. However, the difference between the observed and simulated
radiance can be affected by instrument noise and the simulation error of the radiative
transfer model. Thus, the conditions used to determine a clear FOV were as follows:

σj =

√√√√√nchan
∑

i=1
Ne∆R(i, j)2

nchan
(2)

where Ne∆R(i, j) denotes the noise-equivalent radiance in FOV j and channel i and comes
from the GIIRS Level 1 dataset. σj was obtained by averaging the Ne∆R of all channels
within the 709.5–746.0 cm−1 band for each FOVj. If dyj < 10

√
2σj, the FOV is clear;

otherwise, it is overcast [24]. The number of clear FOVs within the cloud detection cluster
is denoted as Nclr in Equations (1) and (2).

3.2. Cloud Amount Estimation

In this step, a principal component analysis is used to determine the number of
cloudy FOVs within a cloud detection cluster and to initially distinguish between clear,
overcast, and partly cloudy conditions. For the four FOVs within the cloud detection
cluster, the GIIRS-observed radiance of all channels in the longwave infrared band ranges
from 709.5 cm−1 to 746.0 cm−1, forming a 4 × 59 matrix. A principal component analysis
was applied to this matrix to obtain the four orthogonal principal components and their
corresponding eigenvalues. Susskind et al., (2003) indicated that principal components
with larger eigenvalues are informative, whereas others are typically associated with
the observed noise [29]. The cloud amount is approximately equal to the number of
significant principal components within the cloud detection cluster that corresponds to the
cloud features.

First, we calculated the residual standard deviation (RSD) of the last few eigenvalues
and estimated the observed noise, σ:

RSDn =

[
1

nchan × (nfov − n)∑
nfov
j=n+1 λj

]1/2
(3)

σ =
1

1.5 × nfov∑nchan
i=1 ∑nfov

j=1 Ne∆R(i, j)2 (4)

where λj is the eigenvalue and nfov = 4, n ≤ nfov, where n takes values from one in
sequence. When RSDn ≤ σ, the number of significant principal components is n, and the
cloud amount Ncf1 = n − 1.

Second, the chi-square, χn
2, was calculated in turn from the observed radiance and

radiance for the first n principal component reconstructions, R̂ij(n):

χn
2 = ∑Chan

i=1 ∑FOV
j=1

[
Rij − R̂ij(n)

]2

Ne∆R(i, j)2 (5)
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The reconstructed radiance, R̂ij(n), was computed using the mat function with four
principal components and their corresponding eigenvalues. As the number of principal
components, n, used for radiance reconstruction increases, the minimum n that satis-
fies χn

2 < (nfov − n)× (nchan − n) corresponds to the significant principal components
related to the cloud. At this point, the reconstructed radiance, R̂ij(n), was already approxi-
mately representative of the original radiance, and the cloud amount Ncf2 = n − 1. After
comparing the values of Ncf1 and Ncf2 obtained in the above two steps, we used the larger
value as the cloud amount, Ncf, of the cloud detection cluster.

3.3. Thermal Contrasting

The difference in observed radiance between FOVs is more significant when partial
cloud contamination exists within the cloud detection cluster. In contrast, the observed
radiance between FOVs is similar under overcast or clear sky conditions. Thus, to further
distinguish partly cloudy conditions, a thermal contrast test is required.

The average observed radiances for the 709.5–746.0 cm−1 and 2190–2250 cm−1 chan-
nels of the four FOVs within the cloud detection cluster were sorted in descending order.
The FOV with the highest average radiance was labeled as the ‘warmest’ FOV, whereas
that with the lowest average radiance was labeled as the ‘coldest’ FOV. The absolute differ-
ence in observations between the ‘warmest’ and ‘coldest’ FOVs was then calculated and
compared with the GIIRS channel noise.

Tctest1i =
∣∣∣Rwarm

i − Rcold
i

∣∣∣ (6)

Tctest2i = 4.246 × σwarm
i (7)

In Equation (6), Tctest1i is the absolute difference between the observed radiance,
Rwarm

i , in channel i of the ‘warmest’ FOV and the observed radiance, Rcold
i , of the ‘coldest’

FOV in the regions of 709.5–746.0 cm−1 and 2190–2250 cm−1. In Equation (7), σwarm
i is

the noise variance in channel i of the ‘warmest’ FOV, and the coefficient 4.246 is from
reference [24]. We defined the number of channel thermal contrasts, Ntc, within each cloud
detection cluster. The initial value was zero; when Tctest1i > Tctest2i, Ntc increased by one.
By iterating through all channels of the GIIRS in the spectral regions of 709.5–746.0 cm−1

and 2190–2250 cm−1, the total number of channels with a radiance difference greater than
the instrument noise was obtained as Ntc.

3.4. Cloud Classification

Following the previous three steps, we used Nclr (the number of clear FOVs within
each cloud detection cluster), Ncf (the number of cloudy FOVs), and Ntc (the number of
channel thermal contrasts) to categorize the cloud detection clusters as clear, partly cloudy,
or overcast according to the process shown in Figure 3. If Ncf ≤ 1, this indicates that there
are very few clouds within this cluster, and then we further assess the value of Nclr. If
Nclr > 2, this means that most of the FOVs are clear, so the cluster is identified as clear sky;
otherwise, it is overcast. If Ncf > 1, this indicates the presence of clouds in this cluster, and
then Ntc and Ncf are used to continue the analysis. If Ntc < 4 and Ncf > 3, the cluster is
overcast; otherwise, it is partly cloudy.
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4. Results and Discussion

The AIRCD algorithm was applied to GIIRS radiance observations from 1200 UTC
to 1340 UTC on 13 May 2022, as an example. Figure 4 illustrates the crucial parameters
involved in the algorithm for the cloud detection cluster located at [43.09◦E, 94.12◦N].
Figure 4a shows the eigenvalues obtained after the principal component analysis. The
eigenvalues decreased rapidly as n increased, with larger eigenvalues indicating a stronger
correlation between the principal components and cloud features. Figure 4b shows the
calculated RSD values when the first n eigenvalues were considered. When n = 3, the RSD
value satisfies the condition of being less than the observation noise; consequently, Ncf1 = 2.
Figure 4c shows the calculated χn

2 values when considering the first n eigenvalues, with
the diagonal representing the set threshold. When n = 3, the threshold was satisfied; thus,
Ncf2 = 2. Taken together, these results indicate that Ncf = 2; thus, the cloud detection
cluster was classified as partly cloudy according to the threshold classification in Figure 2.

Figure 5a shows the GIIRS brightness temperature in the longwave infrared window
channel at 900 cm−1 observed between 1200 UTC and 1340 UTC on 13 May 2022. The
observed radiance in the infrared window channel is related to the target’s temperature;
colder-toned areas correspond to lower brightness temperatures, indicating higher cloud
heights and lower cloud-topped temperatures, whereas warmer-toned areas represent
higher brightness temperatures, typically associated with clear sky areas or low-level
clouds. Figure 5b shows the results obtained using the AIRCD algorithm. The green, red,
and blue areas indicate clear, partly cloudy, and overcast FOVs, respectively. The results
show that the identified cloudy FOVs (both partly cloudy and overcast) were consistent
with the cold-colored areas with lower brightness temperatures in Figure 5a.

To further evaluate the performance of the AIRCD algorithm, we employed the closest
AGRI’s real-time cloud detection product to the GIIRS observation time (Figure 5c). The
AGRI is an imager on the same satellite platform as the GIIRS that possesses highly
reliable CLM products with a high spatial resolution of 4 km, as well as visible, near-
infrared, and longwave infrared channels. The CLM products were categorized as clouds
(blue), clear (green), probably clear (yellow), and probably clouds (red). Figure 5d shows
the GIIRS’s L2 operational CLM product, with green areas representing clear skies and
blue areas indicating cloudy skies. A comparison of Figure 5b–d shows that the GIIRS’s
operational product identified fewer clear FOVs. The AIRCD algorithm identified clear sky
areas that were consistent with the AGRI’s cloud mask product and the warm brightness
temperature images in the window channel at 900 cm−1; however, the GIIRS’s operational
product identified more cloudy FOVs. The areas where the algorithmic products differed
significantly from the AGRI’s real-time cloud detection products were primarily along
the clear sky/cloud boundary and in convective cloud areas with a relatively low cloud
coverage. This was attributed to the fact that the GIIRS’s cloud detection cluster has a lower
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spatial resolution (approximately 32 km) than the AGRI’s 4 km FOV over the same area.
These differences were more evident when there was a lack of homogeneity within a large
FOV. For example, in the case of fine-scale cumulus clouds, many cloud-free areas within
the FOV were classified as partly cloudy at a coarse resolution. Consequently, the AIRCD
algorithm identified slightly more cloudy areas than the AGRI’s product with a higher
spatial resolution.
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2 values.

In the quantitative assessment process, considering its inconsistency between the
AGRI and the GIIRS, AGRI’s CLM product should not be used directly as a reference value
to quantify the AIRCD algorithm’s performance. Therefore, spatial matching between the
AGRI and the GIIRS is necessary before evaluating the AIRCD’s identification results. The
AGRI’s pixels were considered to fall within the GIIRS’s FOV if the distance between the
central latitude and longitude of the GIIRS and AGRI was less than a certain threshold
(Equation (8)), indicating spatial matching [30]. In Equation (8), R is the Earth’s radius
(6371 km) and ‘arccos’ is the inverse cosine transformation. If FOV deformations due to
changes in the satellite’s observation angle are not considered, the threshold should be
the radius of the GIIRS’s FOV, which is 8 km. However, as the satellite scanning angle
increases, the FOV gradually becomes elliptical and may approach an egg shape, making it
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difficult to define using mathematical equations. Therefore, a threshold of 9 km was used
in this study [31].

arccos[sin(latGIIRS)sin(latAGRI) + cos(latGIIRS)cos(latAGRI)cos(lonGIIRS − lonAGRI)]R ≤ 9 (8)
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The spatial collocations of the GIIRS and AGRI data are shown in Figure 6. The large
circle represents the GIIRS’s FOV that must be matched, whereas the small circles represent
the number of AGRI pixels within it. The spatial resolution of the GIIRS’s FOV (16 km)
was coarser than that of the AGRI (4 km). Approximately 4 × 4 AGRI pixels fall within one
GIIRS’s FOV, as illustrated in Figure 6.
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The AGRI’s cloud mask is categorized as clear, probably clear, probably cloud, and
cloud. The GIIRS’s cloud labels were categorized into three groups according to the
proportion of clear or cloud pixels within the GIIRS’s FOV: (1) clear, if over 80% of the
matched AGRI pixels were clear or probably clear; (2) overcast, if matched AGRI cloud
pixels made up 87.5% or more, or combined cloud and probably cloud pixels totaled
100% (with at least 75% cloud pixels); or (3) partly cloudy, when neither of the above two
situations applied.

According to the matching steps described above, by collocating the GIIRS’s FOVs
with the AGRI pixels, 49,536 pairs of samples were obtained over a two-hour observation
of China and its surrounding areas. An analysis of the monthly atmospheric circulation
and weather reports published by the National Satellite Meteorological Centre reveals that
severe convective weather primarily occurs in China from April to October every year [32].
This study was tested using one month of GIIRS observations from May 2022. Observations
were conducted ten times daily, covering China and its surrounding areas, with no data
available from 1600 UTC to 1900 UTC [33].

Given that cloud detection is a binary classification task, there are four potential
outcomes: True Positive (TP), which represents predictions that are true and match actual
positive samples; True Negative (TN), which means predictions that are true and match
actual negative samples; False Positive (FP), indicating predictions that are false but match
positive samples; False Negative (FN), meaning predictions that are false and match actual
negative samples. These four metrics have been used in this study to assess the cloud
classification results. Clear sky instances are considered positive samples, while partly
cloudy and overcast conditions are considered negative samples. Table 1 details the specific
application of the classification metrics in the AIRCD algorithm.

Table 1. Classification metrics of AIRCD classification and AGRI CLM.

Scenario AIRCD (Clear) AIRCD (Partly Cloudy and Overcast)

AGRI CLM (clear) TP FN
AGRI CLM (partly

cloudy and overcast) FP TN

Equations (9) and (10) are used to assess the performance of the cloud detection results
using the false alarm rate (FAR) [34] and hit rate (HR) [35].

FAR =
TN

FP + TN
(9)

HR =
TP

TP + FN
(10)

In this study, clear sky instances are considered positive samples. The FAR, often
referred to as specificity, represents the proportion of clear-sky FOVs classified as partly
cloudy or overcast by the AIRCD algorithm out of all the negative samples. HR, also known
as sensitivity, corresponds to the proportion of FOVs consistently classified as clear sky by
the AIRCD algorithm among all positive samples. It is generally accepted that an algorithm
is effective when the HR approaches one and the FAR approaches zero.

In the infrared spectral region, clouds have strong absorption and scattering charac-
teristics, impacting the detection performance of atmospheric profiles and the underlying
surfaces [36]. Therefore, the classification statistics are based on whether the solar zenith
angle of FY-4A/GIIRS exceeds 75 degrees, dividing the data into day, night, and all-day
periods and incorporating eight different surface types as provided by GIIRS L2 [37]. The
quantitative statistical results, presented in Table 2, evaluate the classification performance
of the AIRCD algorithm. To facilitate comparisons, both the FAR and HR results were
multiplied by 100.
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Table 2. Quantitative statistics showing the classification performance of the AIRCD algorithm.

Surface Type Day or Night Clear Partly Cloudy Overcast
HR FAR HR FAR HR FAR

Shallow Ocean
Night 77.4 10.0 40.4 14.2 81.6 8.8
Day 61.6 7.2 44.0 20.4 82.2 10.5

All day 69.9 8.7 42.1 17.0 81.9 9.6

Land
Night 70.2 15.3 36.2 18.6 73.4 11.8
Day 69.2 9.9 44.1 21.8 76.5 8.5

All day 69.7 13.1 39.4 20.1 74.6 10.1

Ocean Coastlines and
Lake Shorelines

Night 70.9 11.2 37.6 16.2 80.1 11.5
Day 60.2 6.2 45.4 23.3 81.2 10.8

All day 65.4 9.1 41.0 19.4 70.6 11.1

Shallow Inland Water
Night 61.6 18.3 34.8 23.5 67.5 12.4
Day 66.2 18.0 38.5 25.4 64.9 8.6

All day 64.0 18.2 36.3 24.4 66.5 10.5

Ephemeral (intermittent) Water
Night 65.2 25.2 29.1 22.1 66.6 13.3
Day 70.8 26.4 31.3 22.0 65.7 8.0

All day 68.2 25.6 30.0 22.1 66.3 10.7

Deep Inland Water
Night 35.7 39.2 25.0 39.0 36.2 13.8
Day 68.7 31.0 25.0 34.1 38.1 1.3

All day 56.0 36.9 25.0 36.7 36.7 6.8

Moderate or Continental Ocean
Night 73.9 8.7 41.0 13.9 84.2 9.3
Day 56.9 6.0 46.5 19.8 84.9 11.4

All day 65.9 7.5 43.6 16.6 84.5 10.3

Deep Ocean
Night 81.7 13.4 36.2 13.6 79.6 5.9
Day 65.5 9.3 48.6 20.4 80.5 7.2

All day 74.0 11.6 41.9 16.7 80.0 6.5

Regarding all-day observations, the AIRCD algorithm consistently exceeded a 68%
hit rate for clear sky classifications over various surface types, including the deep ocean,
shallow ocean, land, and ephemeral water. However, the lowest hit rate was 56% over
deep inland water. The false alarm rates for clear sky classifications such as shallow inland
water, ephemeral (intermittent) water, and deep inland water exceed 15%. The hit rates for
partly cloudy classifications over ephemeral (intermittent) water and deep inland water
are notably lower than for other surface types, falling below 30%. The false alarm rates for
partly cloudy classifications ranged between 15 and 25%, peaking at 36.7% for deep inland
water. Despite exhibiting a high identification performance in overcast areas, the AIRCD
algorithm’s hit rate dipped below 70% over shallow inland water, ephemeral (intermittent)
water, and deep inland water, with the lowest rate at 36.7% for deep inland water. The false
alarm rates for overcast classifications remained relatively stable, concentrated between
6 and 12%. Notably, the performance of all cloud classifications was most significantly
impacted by deep inland water for the all-day observations.

When distinguishing between daytime and nighttime periods, the clear sky hit rate
over the ocean and land was higher during the night. In contrast, for surface types charac-
terized by inland water, the algorithm exhibited more coincident clear sky classification
during the daytime compared to the night. Notably, the hit rate for clear sky observations
was similar over land for both day and night. Regarding ephemeral (intermittent) water,
the false alarm rate for clear sky classifications increased at night. The algorithm consis-
tently had a higher partly cloudy hit rate during the day for all surface types, a trend that
is paradoxically accompanied by an increased false alarm rate. The hit rate for overcast
classifications was more consistent during the day, with the exception of shallow inland
water and ephemeral (intermittent) water. As for the overcast false alarm rate, excluding
inland water, it increases during the day for the ocean and land.

The above results indicate that the AIRCD algorithm has more consistency in clear sky
classifications over ocean and land, with an increased hit rate and false alarm rate noted
during the nighttime. For partly cloudy classifications, both the hit rate and false alarm
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rate rise during the daytime. In contrast, the overcast classifications show a higher hit rate
during the day, coupled with an increased false alarm rate over the ocean and a decreased
rate over land. However, there is a decline in the classification hit rate when the surface is
inland water. This decrease could be attributed to the FOVs over such surfaces, including
shallow, ephemeral (intermittent), and deep inland water, comprising merely 0.86% of
the total samples, which highlights the unreliability of the statistical results. In addition,
the radiation of the inland water body is affected by various factors such as chlorophyll
concentrations, suspended matter, and colored substances in the water [38]. For the infrared
spectrum, pigments and suspended matter can affect the temperature of the inland water by
absorbing solar energy, possibly causing a slight increase in temperature, which indirectly
affects the observation of infrared radiation. Another reason is the uneven underlying
surface within the GIIRS observation. Due to the relatively smaller area of the inland
water body, there may also be land surface besides water within one FOV. These factors
collectively increase the complexity of cloud detection and classification over inland water.
Consequently, it is necessary to perform separate cloud detection calculations for surface
types categorized as inland water and discuss them separately to enhance the algorithm’s
identification and classification performance under these specific circumstances.

The AIRCD algorithm’s classification performance was evaluated for the GIIRS’s L2
CLM operational products through cross-comparison. By utilizing the spatial matching
method previously mentioned, the AGRI’s CLM pixels were matched to each FOV of the
GIIRS; cloud labels served as the reference value for comparison. To assess the cloud
detection results in May 2022, four evaluation methods were employed using all the FOVs
from ten complete observations each day. The daily statistics accounted for the following
conditions: FOVs where both the AIRCD algorithm and GIIRS L2 CLM had inconsistent
classifications (termed as ‘both missed’) and consistent classifications (termed as ‘both
hit’) as a percentage of the total samples. Furthermore, FOVs where the AIRCD algorithm
performed consistent classifications but the GIIRS L2 CLM did not (termed as ‘Only AIRCD
hit’) and vice versa (termed as ‘Only L2 CLM hit’) were also considered as a percentage
of the total samples. Figure 7 illustrates that the AIRCD algorithm and L2 CLM have a
40–60% consistency, with both missed rates hovering around 16–18%. Notably, the peak
and valley of ‘both hit’ occurred on May 9th and May 6th, respectively. The cloud coverage
(percentage of cloud FOVs to total samples after AGRI spatial matching to GIIRS) was
63.3% and 50.9%, respectively. These values correspond with the above-mentioned example,
where the classification performance of GIIRS L2 was higher when the cloud coverage
was higher. This indicates an over-identification of clouds in the L2 operational products.
The AIRCD algorithm demonstrates a recognition performance approximately 10% higher
than that of L2 CLM. The increased recognition performance highlights the consistency
of identification under clear sky conditions, which enhances the utilization of clear-sky
data. Furthermore, it also points to the consistency of identification under partly cloudy
conditions. The algorithm’s consistency with the partly cloudy labels accounted for 40.6%
of all partly cloudy labels, which subsequently, through the use of the cloud cleaning
algorithm, can be used to calculate the equivalent clear sky radiation in partly cloudy areas
to extract clear sky areas.
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5. Conclusions

To improve the applicability of satellite-based infrared hyperspectral observations and
minimize the reliance on cloud mask products from the same satellite platform imager,
we proposed the AIRCD algorithm based on GIIRS observations. The AIRCD algorithm
was tested using one month of GIIRS observations from May 2022. The classification
performance of our cloud detection algorithm was evaluated through comparisons with
the high-spatial-resolution AGRI real-time cloud mask product and GIIRS’s L2 operational
CLM. Based on this assessment, the following conclusions were drawn.

(1) The AIRCD algorithm avoids interference from solar radiation and can provide cloud
detection during the day and night. Nevertheless, the cloud detection results are
influenced by different surface types. For ocean or land surfaces, the hit rate of clear
sky observations was consistently above 65%. Moreover, the hit rates for partly cloudy
and overcast conditions were consistently above 39% and 70%, respectively. Con-
versely, when the surface type is inland water, the AIRCD algorithm’s performance
declines, with the lowest consistently for clear sky recognition over deep inland water.
The small sample size of inland waters and factors like suspended matter and uneven
surfaces can affect infrared detection. Therefore, it is necessary to differentiate the
surface types and discuss them separately when using the cloud detection algorithm.

(2) A cross-comparison of the GIIRS’s L2 CLM and the AIRCD algorithm’s classifica-
tion results for May 2022 showed that both hit rates ranged between 40 and 60%.
The missed rate for both the AIRCD algorithm and the L2 CLM was 16–18%. The
‘Only AIRCD hit’ metric demonstrated the improved classification performance of
the AIRCD algorithm compared to the L2 CLM product. Notably, the AIRCD algo-
rithm had enhanced recognition performance by approximately 10% compared to the
GIIRS’s L2 operational product.

(3) According to calculating the proportion of the misclassified FOVs to the truth values,
the errors attributed to the model, algorithm, and spatial matching were 4.3% and
1.4% for instances where the AGRI marked areas as overcast when the algorithm
classified them as clear and vice versa, respectively. Moreover, discrepancies exist in
the treatment of cloud scenes at the intersection of clear sky and clouds and in the
treatment of cumulus fractus between the GIIRS and the AGRI owing to the reduced
spatial resolution. These discrepancies result in errors of 8.7% and 7.9% for instances
when the AGRI marked areas as clear or overcast, respectively, when the algorithm
classified them as partly cloudy. Additionally, in thin cloud scenarios where the
thermal contrast between adjacent FOVs is weak, misjudgments may occur, with an
error of 3.4% for instances where the AGRI marked areas as partly cloudy when the
algorithm classified them as clear.
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In this paper, a cloud detection algorithm based on geostationary infrared satellite
observations was developed. The GIIRS’s L2 operational product tends to misclassify
clear-sky FOVs as cloudy; this phenomenon is somewhat mitigated by the proposed
algorithm. This algorithm does not rely on external data, reducing the complexity of
cloud detection and improving its execution efficiency. After comparing and analyzing
the AIRCD algorithm’s results, it was determined that surface type classification should
be added to the cloud detection process to enhance the classification performance. At the
same time, the algorithm’s performance will be evaluated using more data sources, such as
spatiotemporal observations from spaceborne active cloud radar. In addition, the AIRCD
algorithm only depends on real observations of GIIRS, thereby avoiding uncertainty caused
by background fields. We will attempt to apply this method to data assimilation systems to
assimilate observations from satellite infrared hyperspectral sounders.

Author Contributions: Conceptualization, L.G., J.M. and Y.L.; methodology, L.G.; software, J.M.;
validation, J.M.; formal analysis, L.G.; investigation, J.M. and Y.L.; resources, J.M.; data curation, J.M.;
writing—original draft preparation, J.M. and Y.L.; writing—review and editing, J.M.; visualization,
J.M.; supervision, L.G.; project administration, L.G.; funding acquisition, L.G. All authors have read
and agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China under
grant no. 41975028.

Data Availability Statement: The ERA5 reanalysis dataset was obtained from https://cds.climate.
copernicus.eu, accessed on 8 October 2023. The FY-4A data used in this study were sourced from the
official website of the National Satellite Meteorological Centre of China (http://satellite.nsmc.org.cn,
accessed on 8 October 2023).

Acknowledgments: The authors thank the editor and reviewers for their helpful comments regarding
this manuscript.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Shen, F.F.; Min, J.Z. Assimilating AMSU-a radiance data with the WRF hybrid En3DVAR system for track predictions of Typhoon

Megi (2010). Adv. Atmos. Sci. 2015, 32, 1231–1243. [CrossRef]
2. Shen, F.F.; Xu, D.M.; Li, H.; Min, J.Z.; Liu, R.X. Assimilation of GPM Microwave Imager Radiance data with the WRF hybrid

3DEnVar system for the prediction of Typhoon Chan-hom (2015). Atmos. Res. 2021, 251, 105422. [CrossRef]
3. Dong, P.M.; Xue, J.S.; Huang, B.; Wang, D.Y. Current status and development of satellite data assimilation applications in

numerical weather forecasting. Meteorol. Sci. Technol. 2008, 36, 1–7.
4. Qi, C.L. Calculation of Infrared Spectrometer Transmittance of FY-3A Meteorological Satellite and Simulation of Atmospheric

Parameters. Master’s Thesis, Chinese Academy of Meteorological Sciences, Beijing, China, 2004.
5. Liu, H. Research on the Application of Infrared Hyperspectral Clear Sky Channel Cloud Detection in Variable Assimilation.

Master’s Thesis, National University of Defense Technology, Changsha, China, 2014.
6. Xu, D.M.; Liu, Z.Q.; Huang, X.Y.; Min, J.Z.; Wang, H.L. Impact of assimilating IASI radiance observations on forecasts of two

tropical cyclones. Meteorol. Atmos. Phys. 2013, 122, 227. [CrossRef]
7. Li, J.; Li, J.; Otkin, J.; Schmit, T.J.; Liu, C.-Y. Warning Information in a Preconvection Environment from the Geostationary

Advanced Infrared Sounding SystemA Simulation Study Using the IHOP Case. J. Appl. Meteorol. Clim. 2011, 50, 776–783.
[CrossRef]

8. Xu, D.M.; Zhang, X.W.; Liu, Z.Q.; Shen, F.F. All-sky infrared radiance data assimilation of FY-4A AGRI with different physical
parameterizations for the prediction of an extremely heavy rainfall event. Atmos. Res. 2023, 293, 106898. [CrossRef]

9. Cai, P.Y. Research on Cloud Detection and Cloud Prediction Method Based on FY-4A Satellite. Master’s Thesis, Nanjing University
of Information Science and Technology, Nanjing, China, 2021.

10. McNally, A. A note on the occurrence of cloud in meteorologically sensitive areas and the implications for advanced infrared
sounders. Q. J. R. Meteorol. Soc. 2002, 128, 2551–2556. [CrossRef]

11. Lin, Y. Course of Atmospheric Soundingl; China Meteorological Press: Beijing, China, 1993.
12. Guo, X.J.; Jin, W.Q.; Gao, Z.Y.; Wang, X. Overview of infrared radiation models for cloud. Opt. Technol. 2003, 29, 341–343.
13. Gu, C.M.; Chen, C.; Guo, W.B. Influence of cloud detection from infrared satellite data on the numerical simulation of typhoons.

Infrared 2018, 39, 24–30.
14. Guan, L. Satellite Infrared Hyperspectral Information and Its Application in Cloud Detection, Clear Sky Revision and Atmospheric

Profile Inversion. Doctoral Thesis, Nanjing University of Information Science and Technology, Nanjing, China, 2005.

https://cds.climate.copernicus.eu
https://cds.climate.copernicus.eu
http://satellite.nsmc.org.cn
https://doi.org/10.1007/s00376-014-4239-4
https://doi.org/10.1016/j.atmosres.2020.105422
https://doi.org/10.1007/s00703-013-0295-z
https://doi.org/10.1175/2010JAMC2441.1
https://doi.org/10.1016/j.atmosres.2023.106898
https://doi.org/10.1256/qj.01.206


Remote Sens. 2024, 16, 481 16 of 16

15. English, S.J.; Eyre, J.R.; Smith, J.A. A cloud-detection scheme for use with satellite sounding radiances in the context of data
assimilation for numerical weather prediction. Q. J. R. Meteorol. Soc. 1999, 125, 2359–2378.

16. McNally, A.P.; Watts, P.D. A cloud detection algorithm for high-spectral-resolution infrared sounders. Q. J. R. Meteorol. Soc. 2003,
129, 3411–3423. [CrossRef]

17. Li, J.; Liu, C.Y.; Huang, H.L.; Schmit, T.J.; Wu, X.; Menzel, W.P.; Gurka, J.J. Optimal cloud-clearing for AIRS radiances using
MODIS. IEEE Trans. Geosci. Remote Sens. 2005, 43, 1266–1278.

18. Wang, G.; Zhang, H.; Yang, Y. Research progress of quality control for AIRS data. Adv. Earth Sci. 2017, 32, 139–150.
19. Wang, G.; Shao, L.Y.; Ding, W.D.; Chen, J.; Liu, N.; Xie, F. Optimal selection of wave channels in hyperspectral GIIRS and its

impact on cloud detection. Infrared 2021, 42, 36–42.
20. Deng, S.; Li, G.; Zhang, H. An objective determination method for threshold values of hyperspectral infrared cloud detection

schemes. Meteor. Mon. 2017, 43, 213–220.
21. Guan, L. Applications of Satellite-Based Infrared Hyperspectral Information; China Meteorological Press: Beijing, China, 2007.
22. Li, X.; Zou, X.; Zhuge, X.; Zeng, M.; Wang, N.; Tang, F. Improved Himawari-8/AHI radiance data assimilation with a double

cloud detection scheme. J. Geophys. Res. Atmos. 2020, 125, e2020JD032631. [CrossRef]
23. Min, M.; Wu, C.Q.; Li, C.; Liu, H.; Xu, N.; Wu, X.; Chen, L.; Wang, F.; Sun, F.; Qin, D.; et al. Developing the Science Product

Algorithm Testbed for Chinese Next-Generation Geostationary Meteorological Satellites: Fengyun-4 Series. J. Meteorol. Res. 2017,
31, 708–719. [CrossRef]

24. Predina, J.; Glumb, R.; Reemmer, K.; Cromp, M.; Dukes, T.; Gray, D.; Orr, D. Joint Polar Satellite System (JPSS) Cross Track Infrared
Sounder (CrIS) Sensor Data Records (SDR) Algorithm Theoretical Basic Document (ATBD); NASA: Greenbelt, MD, USA, 2014.

25. Han, Y.; Delst, P.V.; Liu, Q.; Weng, F.; Derber, J. User’s Guide to the JCSDA Community Radiative Transfer Model (Beta Version); Joint
Center for Satellite Data Assimilation: Camp Springs, MD, USA, 2005.

26. Lv, L.; Li, H.F.; Li, J.Z. Research on Cloud Detection and Classification in Meteorological Satellite Cloud Images. Agric. Disaster
Res. 2023, 13, 101–103.

27. Yang, S. Cloud Detection Algorithm for Himawari-8 Geostationary Satellite Imager AHI Based on Machine Learning. Master’s
Thesis, Nanjing University of Information Science and Technology, Nanjing, China, 2022.

28. Wu, W.; Liu, X.; Zhou, D.K.; Larar, A.M.; Liu, Q. The Application of PCRTM Physical Retrieval Methodology for IASI Cloudy
Scene Analysis. IEEE Trans. Geosci. Remote Sens. 2017, 55, 5042–5056. [CrossRef]

29. Susskind, J.; Barnet, C.; Blaisdell, J. Retrieval of atmospheric and surface parameters from AIRS/AMSU/HSB data in the presence
of clouds. IEEE Trans. Geosci. Remote Sens. 2003, 41, 390–409. [CrossRef]

30. Yu, P.P.; Shi, C.X.; Yang, L.; Shan, S. A new temperature channel selection method based on singular spectrum analysis for
retrieving atmospheric temperature profiles from FY-4A/GIIRS. Adv. Atmos. Sci. 2020, 37, 735–750. [CrossRef]

31. Zhang, Q. Application of Machine Learning Methods in Processing the Infrared Hyperspectral Data of FY-4. Master’s Thesis,
National University of Defense Technology, Changsha, China, 2020.

32. Han, X.Q.; Zhang, T. Atmospheric circulation and weather analysis for May 2022. Meteorology 2022, 48, 1070–1076.
33. Liu, J.J.; Xu, L.; Chen, W.; Wang, B.; Gong, X.; Deng, Z.; Li, Y. Bias Characteristics and Bias Correction of GIIRS Sounder onboard

FY-4A Satellite for Data Assimilation. Chin. J. Atmos. Sci. 2022, 46, 275–292. (In Chinese)
34. Mace, G.G.; Jakob, C.; Moran, K.P. Validation of hydrometeor occurrence predicted by the ECMWF Model using millimeter wave

radar data. Geophys. Res. Lett. 1998, 25, 1645–1648. [CrossRef]
35. Shang, H.; Husi, L.T.; Nakajima, T.Y.; Wang, Z.; Ma, R.; Wang, T.; Lei, Y.; Ji, D.; Li, S. Diurnal cycle and seasonal variation of cloud

cover over the Tibetan Plateau as determined from Himawari-8 new-generation geostationary satellite data. Sci. Rep. 2018, 8,
1105. [CrossRef] [PubMed]

36. Zhang, M.F. Cloud Detection Based on Deep Learning and Using S-NPP CRIS FSR Data. Master’s Thesis, University of Electronic
Science and Technology of China, Chengdu, China, 2022.

37. Guo, X.X.; Qu, J.H.; Ye, L.M.; Han, M.; Shi, M.J. A Naive Bayesian-based method for FY-4A/AGRI cloud detection. J. Appl.
Meteorol. 2023, 34, 282–294.

38. Liang, W.X.; Li, J.S.; Zhou, D.M.; Shen, Q.; Zhang, F.F. Evaluation of GF-1 WFV Characteristics in Monitoring Inland Water
Environment. Remote Sens. Technol. Appl. 2015, 30, 810–818.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1256/qj.02.208
https://doi.org/10.1029/2020JD032631
https://doi.org/10.1007/s13351-017-6161-z
https://doi.org/10.1109/TGRS.2017.2702006
https://doi.org/10.1109/TGRS.2002.808236
https://doi.org/10.1007/s00376-020-9249-9
https://doi.org/10.1029/98GL00845
https://doi.org/10.1038/s41598-018-19431-w
https://www.ncbi.nlm.nih.gov/pubmed/29348494

	Introduction 
	Data and Radiative Transfer Model 
	Data 
	Radiative Transfer Model 

	Cloud Detection Algorithm Based on GIIRS Observations 
	Clear FOV Identification 
	Cloud Amount Estimation 
	Thermal Contrasting 
	Cloud Classification 

	Results and Discussion 
	Conclusions 
	References

