Analysis of Pre-Seismic Ionospheric Disturbances Prior to 2020 Croatian Earthquakes
Abstract
:1. Introduction
2. VLF Transmitter Signal Variations before Croatian EQ Occurrences
2.1. Features of Croatian Earthquakes on 22 March and 29 December 2020
2.2. INFREP VLF and LF European Network
2.3. Methodology Applied to VLF/LF Signal Analysis
3. Anomalies as Derived from Terminator Time Investigations
3.1. Anomalies Associated to the EQ of 22 March 2020
3.2. Anomalies Associated with the EQ of 29 December 2020
3.3. Expected Locations of Preseismic Areas
3.3.1. Expected Locations of Event-1 Preseismic Areas
3.3.2. Expected Locations of Event-2 Preseismic Areas
3.4. Cross-Correlations of Transmitter Signal Anomalies
4. Discussion
4.1. Presumed Preseismic Areas inside Dobrovolsky Preparation Zone
4.2. Spatial Dynamic of the Presumed Preseismic Areas
4.3. Anomaly Days Derived from Cross-Correlations of Terminator Time Shifts
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hayakawa, M. Earthquake Prediction with Radio Techniques; John Wiley and Sons: Singapore, 2015; 296p. [Google Scholar]
- Davies, K. Ionospheric Radio, 3rd ed.; Institution of Engineering and Technology: London, UK, 2008; 603p. [Google Scholar]
- Boithias, L. Radio Wave Propagation; North Oxford Academic Publishers Ltd.: London, UK, 1987; 331p. [Google Scholar]
- Rapoport, Y.; Grimalsky, V.; Fedun, V.; Agapitov, O.; Bonnell, J.; Grytsai, A.; Milinevsky, G.; Liashchuk, A.; Rozhnoi, A.; Solovieva, M.; et al. Model of the propagation of very low-frequency beams in the Earth-ionosphere waveguide: Principles of the tensor impedance method in multi-layered gyrotropic waveguides. Ann. Geophys. 2020, 38, 207–230. [Google Scholar] [CrossRef]
- Hayakawa, M.; Molchanov, O.A.; Ondoh, T.; Kawai, E. The precursory signature effect of the Kobe earthquake on VLF subionospheric signals. J. Comm. Res. Lab. 1996, 43, 169–180. [Google Scholar]
- Molchanov, O.A.; Hayakawa, M.; Ondoh, T.; Kawai, E. Precursory effects in the subionospheric VLF signals for the Kobe earthquake. Phys. Earth Planet. Inter. 1998, 105, 239–248. [Google Scholar] [CrossRef]
- Molchanov, O.A.; Hayakawa, M. Subionospheric VLF signal perturbations possibly related to earthquakes. J. Geophys. Res. Space Phys. 1998, 103, 17489–17504. [Google Scholar] [CrossRef]
- Chakrabarti, S.K.; Saha, M.; Khan, R.; Mandal, S.; Acharyya, K.; Saha, R. Possible Detection of Ionospheric Disturbances during Sumatra-Andaman Islands. Indian J. Radio Space Phys. 2005, 34, 314–317. [Google Scholar]
- Ray, S.; Chakrabarti, S.K. A study of the behavior of the terminator time shifts using multiple VLF propagation paths during the Pakistan earthquake (M = 7.2) of 18 January 2011. Nat. Hazards Earth Syst. Sci. 2013, 13, 1501–1506. [Google Scholar] [CrossRef]
- Sasmal, S.; Chakrabarti, S.K.; Ray, S. Unusual behavior of VLF signals observed from Sitapur during the Earthquake at Honshu Japan on 11 March, 2011. Indian J. Phys. 2014, 88, 103–119. [Google Scholar] [CrossRef]
- Ghosh, S.; Chakraborty, S.; Sasmal, S.; Basak, T.; Chakrabarti, S.K.; Samanta, A. Comparative study of the possible lower ionospheric anomalies in very low frequency (VLF) signal during Honshu, 2011 and Nepal, 2015 earthquakes. Geomat. Nat. Hazards Risk 2019, 10, 1596–1612. [Google Scholar] [CrossRef]
- Yoshida, M.; Yamauchi, T.; Horie, T.; Hayakawa, M. On the generation mechanism of terminator times in subionospheric VLF/LF propagation and its possible application to seismogenic effects. Nat. Hazards Earth Syst. Sci. 2008, 8, 129–134. [Google Scholar] [CrossRef]
- Molchanov, O.A.; Hayakawa, M.; Miyak, K. VLF /LF sounding of the lower ionosphere to study the role of atmospheric oscillations in the lithosphere-ionosphere coupling. Adv. Polar Upper Atmos. Res. 2001, 15, 146–158. [Google Scholar]
- Molchanov, O.; Fedorov, E.; Schekotov, A.; Gordeev, E.; Chebrov, V.; Surkov, V.; Rozhnoi, A.; Andreevsky, S.; Iudin, D.; Yunga, S.; et al. Lithosphere-atmosphere-ionosphere coupling as governing mechanism for preseismic short-term events in atmosphere and ionosphere. Nat. Hazards Earth Syst. Sci. 2004, 4, 757–767. [Google Scholar] [CrossRef]
- Pulinets, S.A.; Boyarchuk, K. Ionospheric Precursors of Earthquakes; Springer: Berlin/Heidelberg, Germany, 2004; 315p. [Google Scholar]
- Rozhnoi, A.; Solovieva, M.S.; Molchanov, O.A.; Hayakawa, M. Middle latitude LF (40 kHz) phase variations associated with earthquakes for quiet and disturbed geomagnetic conditions. Phys. Chem. Earth 2004, 29, 589–598. [Google Scholar] [CrossRef]
- Yang, S.S.; Asano, T.; Hayakawa, M. Abnormal gravity wave activity in the stratosphere prior to the 2026 Kumamoto earthquakes. J. Geophys. Res. Space Phys. 2019, 124, 1410–1425. [Google Scholar] [CrossRef]
- Yang, S.S.; Hayakawa, M. Gravity wave activity in the stratosphere before the 2011 Tohoku earthquake as the mechanism of lithosphere-atmosphere-ionosphere coupling. Entropy 2020, 22, 110. [Google Scholar] [CrossRef]
- Rapoport, Y.; Reshetnyk, V.; Grytsai, A.; Grimalsky, V.; Liashchuk, O.; Fedorenko, A.; Hayakawa, M.; Krankowski, A.; Błaszkiewicz, L.; Flisek, P. Spectral Analysis and Information Entropy Approaches to Data of VLF Disturbances in the Waveguide Earth-Ionosphere. Sensors 2022, 22, 8191. [Google Scholar] [CrossRef]
- Pulinets, S.A.; Ouzounov, D.P.; Karelin, A.V.; Davidenko, D.V. Physical bases of the generation of short-term earthquake precursors: A complex model of ionization-induced geophysical processes in the lithosphere–atmosphere–ionosphere–magnetosphere system. Geomagn. Aeron. 2015, 55, 540–558. [Google Scholar] [CrossRef]
- Pulinets, S.; Ouzounov, D.; Karelin, A.; Davidenko, D. Lithosphere–Atmosphere–Ionosphere–Magnetosphere coupling—A concept for pre-earthquake signals generation. In Pre-Earthquakes Processes: A Multidisciplinary Approach to Earthquake Prediction Studies; Ouzounov, D., Pulinets, S., Kafatos, M.C., Taylor, P., Eds.; Geophysical Monograph Series; Wiley: New York, NY, USA, 2018; pp. 79–98. [Google Scholar]
- Hayakawa, M.; Izutsu, J.; Schekotov, A.; Yang, S.-S.; Solovieva, M.; Budilova, E. Lithosphere–Atmosphere–Ionosphere Coupling Effects Based on Multiparameter Precursor Observations for February–March 2021 Earthquakes (M~7) in the Offshore of Tohoku Area of Japan. Geosciences 2021, 11, 481. [Google Scholar] [CrossRef]
- Parrot, M.; Tramutoli, V.; Liu, J.Y.; Pulinets, S.; Ouzounov, D.; Genzano, N.; Lisi, M.; Hattori, K.; Namgaladze, A. Atmospheric and ionospheric coupling phenomena associated with large earthquakes. Eur. Phys. J. Special Topics 2021, 230, 197–225. [Google Scholar] [CrossRef]
- Shah, M.; Abbas, A.; Arqim Adil, M.; Ashraf, U.; de Oliveira-Junio, J.F.; Arslan Tariq, M.; Ahmed, J.; Ehsan, M.; Ali, A. Possible seismo-ionospheric anomalies associated with Mw > 5.0 earthquakes during 2000–2020 from GNSS TEC. Adv. Space Res. 2022, 70, 179–187. [Google Scholar] [CrossRef]
- Arqim Adil, M.; Sentürk, E.; Shah, M.; Abbas Naqvi, N.; Saqib, M.; Rafeh Abbasi, A. Atmospheric and ionospheric disturbances associated with the M > 6 earthquakes in the East Asian sector: A case study of two consecutive earthquakes in Taiwan. J. Asian Earth Sci. 2021, 220, 104918. [Google Scholar] [CrossRef]
- Munawar, S.; Shahzad, R.; Ehsan, M.; Ghaffar, B.; Ullah, I.; Jamjareegulgarn, P.; Hassan, A.M. Seismo Ionospheric Anomalies around and over the Epicenters of Pakistan Earthquakes. Atmosphere 2023, 14, 601. [Google Scholar]
- Nayak, K.; Romero-Andrade, R.; Sharma, G.; Cabanillas Zavala, J.L.; Lopez Urias, C.; Trejo Soto, M.E.; Aggarwa, S.P. A combined approach using b-value and ionospheric GPS-TEC for large earthquake precursor detection: A case study for the Colima earthquake of 7.7 Mw, Mexico. Acta Geod. Geophys. 2023, 58, 515–538. [Google Scholar] [CrossRef]
- Biagi, P.F.; Colella, R.; Schiavulli, L.; Ermini, A.; Boudjada, M.; Eichelberger, H.; Schwingenschuh, K.; Katzis, K.; Contadakis, M.E.; Skeberis, C.; et al. The INFREP network: Present situation and recent results. Open J. Earthq. Res. 2019, 8, 154–196. [Google Scholar] [CrossRef]
- Biagi, P.F.; Maggipinto, T.; Righetti, F.; Loiacono, D.; Schiavulli, L.; Ligonzo, T.; Ermini, A.; Moldovan, I.A.; Moldovan, A.S.; Buyuksarac, A.; et al. The European VLF/LF Radio Network to Search for Earthquake Precursors: Setting Up and Natural/Man-Made Disturbances. Nat. Hazards Earth Syst. Sci. 2011, 11, 333–341. [Google Scholar] [CrossRef]
- Schwingenschuh, K.; Prattes, G.; Besser, B.P.; Mocnik, K.; Stachel, M.; Aydogar, Ö.; Jernej, I.; Boudjada, M.Y.; Stangl, G.; Rozhnoi, A.; et al. The Graz seismo-electromagnetic VLF facility. Nat. Hazards Earth Syst. Sci. 2011, 11, 1121–1127. [Google Scholar] [CrossRef]
- Davidson, M. Elements of Mathematical Astronomy; Hutchinson & Co., Ltd.: London, UK, 1962; 142p. [Google Scholar]
- Fuller, W.A. Introduction to Statistical Time Series; Wiley-Interscience publication: New York, NY, USA, 1995; 698p. [Google Scholar]
- Dobrovolsky, I.R.; Zubkov, S.I.; Myachkin, V.I. Estimation of the size of earthquake preparation zones. Pageoph 1979, 117, 1025–1044. [Google Scholar] [CrossRef]
- Galopeau, P.H.M.; Maxworth, A.; Boudjada, M.Y.; Eichelberger, H.U.; Meftah, M.; Biagi, P.F.; Schwingenschuh, K. A VLF/LF facility network for preseismic electromagnetic investigations. Geosci. Instrum. Method. Data Syst. 2023, 12, 231–237. [Google Scholar] [CrossRef]
- Hayakawa, M. VLF/LF radio sounding of ionospheric perturbations associated with earthquakes. Sensors 2007, 7, 1141–1158. [Google Scholar] [CrossRef]
- Chakrabarti, S.K.; Sasmal, S.; Ray, S. ICSP detections of anomalous VLF radio wave signals prior to major earthquakes. In Earthquake Prediction Studies: Seismo Electromagnetics; Hayakawa, M., Ed.; TERRAPUB: Tokyo, Japan, 2013; pp. 153–168. [Google Scholar]
- Zhang, X.; Wang, Y.; Boudjada, M.Y.; Liu, J.; Magnes, W.; Zhou, Y.; Du, X. Multi-experiment observations of ionospheric disturbances as precursory effects of the Indonesian Ms6.9 earthquake on August 05, 2018. Remote Sens. J. 2020, 12, 4050. [Google Scholar] [CrossRef]
- Boudjada, M.Y.; Eichelberger, H.U.; Al-Haddad, E.; Magnes, W.; Galopeau, P.H.M.; Zhang, X.; Pollinger, A.; Lammer, H. Case study of radio emission beam associated to very low frequency signal recorded onboard CSES satellite. Adv. Radio Sci. 2023, 20, 77–84. [Google Scholar] [CrossRef]
EQ Event | Anomaly in Transmitter | DOY | Shift1 min | Shift2 min | |
---|---|---|---|---|---|
Event-1 | Sunset | TBB | 073 | 51 | 05 |
22 March 2020 | Sunset | ICV | 073 | 01 | 24 |
Event-2 | Sunrise | ITS | 356 | 11 | 18 |
29 December 2020 | Sunset | 353 | 12 | 57 | |
Sunset | ICV | 357 | 65 | 20 | |
Sunset | 361 | 67 | 23 | ||
Sunset | 362 | 68 | 24 | ||
Sunset | RRO | 354 | 45 | 10 | |
Sunset | 355 | 50 | 14 | ||
Sunset | 356 | 47 | 11 | ||
Sunset | 361 | 52 | 17 | ||
Sunset | 363 | 50 | 13 |
EQ Event | Transmitter1 | Transmitter2 | Correlation Degree | Lag | Date | DOY | |
---|---|---|---|---|---|---|---|
Event-1 | Sunrise | TBB | ICV | 83% | 00 | 10/03 | 070 |
22 March 2020 | TBB | ITS | 87% | 00 | 10/03 | 070 | |
ICV | ITS | 92% | 00 | 10/03 | 070 | ||
RRO | TBB | 58% | 02 | 12/03 | 072 | ||
RRO | ICV | 47% | 00 | 10/03 | 070 | ||
RRO | ITS | 41% | 01 | 11/03 | 071 | ||
Sunset | TBB | ICV | 52% | 00 | 10/03 | 070 | |
TBB | ITS | 57% | 04 | 14/03 | 074 | ||
ICV | ITS | 65% | 04 | 14/03 | 074 | ||
RRO | TBB | 42% | 01 | 11/03 | 071 | ||
RRO | ICV | 24% | 03 | 13/03 | 073 | ||
RRO | ITS | 32% | 04 | 14/03 | 074 | ||
Event-2 | Sunrise | ICV | ITS | 45% | 02 | 18/12 | 353 |
29 December 2020 | RRO | ICV | 40% | 02 | 18/12 | 353 | |
RRO | ITS | 36% | 03 | 19/12 | 354 | ||
Sunset | ICV | ITS | 65% | 05 | 21/12 | 356 | |
RRO | ICV | 44% | 03 | 19/12 | 354 | ||
RRO | ITS | 67% | 02 | 18/12 | 353 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boudjada, M.Y.; Biagi, P.F.; Eichelberger, H.U.; Nico, G.; Galopeau, P.H.M.; Ermini, A.; Solovieva, M.; Hayakawa, M.; Lammer, H.; Voller, W.; et al. Analysis of Pre-Seismic Ionospheric Disturbances Prior to 2020 Croatian Earthquakes. Remote Sens. 2024, 16, 529. https://doi.org/10.3390/rs16030529
Boudjada MY, Biagi PF, Eichelberger HU, Nico G, Galopeau PHM, Ermini A, Solovieva M, Hayakawa M, Lammer H, Voller W, et al. Analysis of Pre-Seismic Ionospheric Disturbances Prior to 2020 Croatian Earthquakes. Remote Sensing. 2024; 16(3):529. https://doi.org/10.3390/rs16030529
Chicago/Turabian StyleBoudjada, Mohammed Y., Pier F. Biagi, Hans U. Eichelberger, Giovanni Nico, Patrick H. M. Galopeau, Anita Ermini, Maria Solovieva, Masashi Hayakawa, Helmut Lammer, Wolfgang Voller, and et al. 2024. "Analysis of Pre-Seismic Ionospheric Disturbances Prior to 2020 Croatian Earthquakes" Remote Sensing 16, no. 3: 529. https://doi.org/10.3390/rs16030529
APA StyleBoudjada, M. Y., Biagi, P. F., Eichelberger, H. U., Nico, G., Galopeau, P. H. M., Ermini, A., Solovieva, M., Hayakawa, M., Lammer, H., Voller, W., & Pitterle, M. (2024). Analysis of Pre-Seismic Ionospheric Disturbances Prior to 2020 Croatian Earthquakes. Remote Sensing, 16(3), 529. https://doi.org/10.3390/rs16030529