A High-Precision Target Geolocation Algorithm for a Spaceborne Bistatic Interferometric Synthetic Aperture Radar System Based on an Improved Range–Doppler Model
Abstract
:1. Introduction
2. Interferometric Baseline Calibration
2.1. Geometry Model of BiInSAR Baseline Configuration
2.2. Projection Principle of BiInSAR Baseline
3. The IRD Model and Analysis of Influencing Factors
3.1. Introduction to the Proposed IRD Model
3.2. Influencing Factors of Geolocation Accuracy
4. Methodology
4.1. ICESat-2 Data Filtering Method
4.2. Baseline Calibration Method
4.3. IRD Geolocation Method
4.4. Low-Coupling Parallel Calculation Method
5. Experimental Design and Analysis of Results
5.1. Group 1: Digital Simulation Experiment
5.2. Group 2: Real SAR Data Experiment
5.3. Algorithm Efficiency Improvement
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Prats-Iraola, P.; Pinheiro, M.; Rodriguez-Cassola, M.; Scheiber, R.; Lopez-Dekker, P. Bistatic SAR image formation and interferometric processing for the stereoid Earth explorer 10 candidate mission. In Proceedings of the IGARSS 2019–2019 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Yokohama, Japan, 28 July–2 August 2019; pp. 106–109. [Google Scholar]
- Sun, Z.; Wu, J.; Pei, J.; Li, Z.; Huang, Y.; Yang, J. Inclined geosynchronous spaceborne–airborne bistatic SAR: Performance analysis and mission design. IEEE Trans. Geosci. Remote Sens. 2016, 54, 343–357. [Google Scholar] [CrossRef]
- Wang, R. First bistatic demonstration of digital beamforming in elevation with TerraSAR-X as an illuminator. IEEE Trans. Geosci. Remote Sens. 2016, 54, 842–849. [Google Scholar] [CrossRef]
- Liu, F.; Fan, X.; Zhang, T.; Liu, Q. GNSS-based SAR interferometry for 3-D deformation retrieval: Algorithms and feasibility study. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5736–5748. [Google Scholar] [CrossRef]
- Tian, F.; Lu, Z.; Wang, Y.; Suo, Z.; Li, Z.; Guo, H. Fast Geolocation Solution and Accuracy Analysis for Bistatic InSAR Configuration of Geostationary Transmitter With LEO Receivers. Geosci. Remote Sens. Lett. 2022, 19, 4014305. [Google Scholar] [CrossRef]
- Krieger, G.; Moreira, A.; Fiedler, H.; Hajnsek, I.; Werner, M.; Younis, M.; Zink, M. TanDEM-X: A satellite formation for high-resolution SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3317–3341. [Google Scholar] [CrossRef]
- Lou, L.; Liu, Z.; Zhang, H. TH-2 satellite engineering design and implementation. Acta Geod. Cartogr. Sin. 2020, 49, 1252–1264. [Google Scholar]
- Martone, M.; Braeutigam, B.; Rizzoli, P. Coherence evaluation of TanDEM-X interferometric data. ISPRS J. Photogramm. Remote Sens. 2012, 73, 21–29. [Google Scholar] [CrossRef]
- Wang, R.; Lv, X.; Chai, H.; Zhang, L. A Three-Dimensional Block Adjustment Method for Spaceborne InSAR Based on the Range-Doppler-Phase Model. Remote Sens. 2023, 15, 1046. [Google Scholar] [CrossRef]
- Fritz, T.; Rossi, C.; Yague-Martinez, N.; Rodriguez-Gonzalez, F.; Lachaise, M.; Breit, H. Interferometric processing of TanDEM-X data. In Proceedings of the 2011 IEEE International Geoscience and Remote Sensing Symposium, Vancouver, BC, Canada, 24–29 July 2011; pp. 2428–2431. [Google Scholar]
- Zhang, H.; Gu, D.; Ju, B.; Shao, K.; Yi, B.; Duan, X.; Huang, Z. Precise Orbit Determination and Maneuver Assessment for TH-2 Satellites Using Spaceborne GPS and BDS2 Observations. Remote Sens. 2021, 13, 5002. [Google Scholar] [CrossRef]
- Mou, J.; Wang, Y.; Hong, J.; Wang, Y.; Wang, A. Baseline Calibration of L-Band Spaceborne Bistatic SAR TwinSAR-L for DEM Generation. Remote Sens. 2023, 15, 3024. [Google Scholar] [CrossRef]
- Mou, J.; Wang, Y.; Hong, J.; Wang, Y.; Wang, A.; Sun, S.; Liu, G. First Assessment of Bistatic Geometric Calibration and Geolocation Accuracy of Innovative Spaceborne Synthetic Aperture Radar LuTan-1. Remote Sens. 2023, 15, 5280. [Google Scholar] [CrossRef]
- Mou, J.; Wang, Y.; Hong, J.; Wang, Y.; Wang, A. Geometric Calibration of Spaceborne Bistatic SAR LT-1 for Generation of High-Accuracy DEM. In Proceedings of the 2023 8th International Conference on Signal and Image Processing (ICSIP), Wuxi, China, 8–10 July 2023; pp. 914–918. [Google Scholar]
- Ding, J.; Zhang, Z.; Xing, M.; Bao, Z. A New Look at the Bistatic-to-Monostatic Conversion for Tandem SAR Image Formation. IEEE Trans. Geosci. Remote Sens. 2008, 5, 392–395. [Google Scholar] [CrossRef]
- Raines, E.; Park, J.; Johnson, J.T.; Burkholder, R.J. A Comparison of Bistatic and Monostatic Radar Images of 1-D Perfectly Conducting Rough Surfaces. Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Zhou, X.-k.; Chen, J.; Wang, P.-b.; Zeng, H.-c.; Fang, Y.; Men, Z.-r.; Liu, W. An Efficient Imaging Algorithm for GNSS-R Bi-Static SAR. Remote Sens. 2019, 11, 2945. [Google Scholar] [CrossRef]
- Zhang, H.; Tang, J.; Wang, R.; Deng, Y.; Wang, W.; Li, N. An Accelerated Backprojection Algorithm for Monostatic and Bistatic SAR Processing. Remote Sens. 2018, 10, 140. [Google Scholar] [CrossRef]
- Li, T.; Chen, K.-S.; Jin, M. Analysis and Simulation on Imaging Performance of Backward and Forward Bistatic Synthetic Aperture Radar. Remote Sens. 2018, 10, 1676. [Google Scholar] [CrossRef]
- Wu, J.; Xu, Y.; Zhong, X.; Sun, Z.; Yang, J. A Three-Dimensional Localization Method for Multistatic SAR Based on Numerical Range-Doppler Algorithm and Entropy Minimization. Remote Sens. 2017, 9, 470. [Google Scholar] [CrossRef]
- Li, J.; Yang, Q.; Li, Z.; Wu, J.; Xia, W.; Yang, J. A Blind Localization Method Based on Monostatic Equivalent for Bistatic SAR. In Proceedings of the IGARSS 2022–2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022; pp. 1836–1839. [Google Scholar]
- Wang, Y.; Lu, Z.; Tian, F.; Suo, Z.; Li, Z.; Zhu, Y. Spaceborne Bistatic InSAR Geolocation with Geostationary Transmitter. In Proceedings of the 2019 IEEE International Conference on Signal, Information and Data Processing (ICSIDP), Chongqing, China, 11–13 December 2019; pp. 1–4. [Google Scholar]
- Gao, C.; Li, Y.; Yang, J.; Zhang, Y. A Location Recall Strategy for Improving Efficiency of User-Generated Short Text Geolocalization. IEEE Trans. Comput. 2022, 9, 1419–1431. [Google Scholar] [CrossRef]
- Sansosti, E.; Berardino, P.; Manunta, M.; Serafino, F.; Fornaro, G. Geometrical SAR image registration. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2861–2870. [Google Scholar] [CrossRef]
- Xu, H.; Kang, C. Equivalence Analysis of Accuracy of Geolocation Models for Spaceborne InSAR. IEEE Trans. Geosci. Remote Sens. 2010, 48, 480–490. [Google Scholar]
- Gisinger, C.; Balss, U.; Pail, R.; Zhu, X.X.; Montazeri, S.; Gernhardt, S.; Eineder, M. Precise Three-Dimensional Stereo Localization of Corner Reflectors and Persistent Scatterers with TerraSAR-X. IEEE Trans. Geosci. Remote Sens. 2015, 53, 1782–1802. [Google Scholar] [CrossRef]
- Gruber, A.; Wessel, B.; Huber, M.; Roth, A. Operational TanDEM-X DEM calibration and first validation results. ISPRS J. Photogramm. Remote Sens. 2012, 73, 39–49. [Google Scholar] [CrossRef]
- Fornaro, G.; D’Agostino, N.; Giuliani, R.; Noviello, C.; Reale, D.; Verde, S. Assimilation of GPS-Derived Atmospheric Propagation Delay in DInSAR Data Processing. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 784–799. [Google Scholar] [CrossRef]
- Pepe, A. The Correction of Phase Unwrapping Errors in Sequences of Multi-Temporal Differential SAR Interferograms. In Proceedings of the IGARSc2020–2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 26 September–2 October 2020. 2015, 8, 784–799. [Google Scholar]
- Wang, K.; Liu, J.; Su, H.; El-Mowafy, A.; Yang, X. Real-Time LEO Satellite Orbits Based on Batch Least-Squares Orbit Determination with Short-Term Orbit Prediction. Remote Sens. 2023, 15, 133. [Google Scholar] [CrossRef]
- Liu, Q.; Zeng, Q.; Zhang, Z. Evaluation of InSAR Tropospheric Correction by Using Efficient WRF Simulation with ERA5 for Initialization. Remote Sens. 2023, 15, 273. [Google Scholar] [CrossRef]
- González, J.H.; Antony, J.M.W.; Bachmann, M.; Krieger, G.; Zink, M.; Schrank, D.; Schwerdt, M. Bistatic system and baseline calibration in TanDEM-X to ensure the global digital elevation model quality. ISPRS J. Photogramm. Remote Sens. 2012, 73, 3–11. [Google Scholar] [CrossRef]
Satellite Parameter | Value |
---|---|
Semi-major axis | 6913.140 km |
Orbital altitude | 535.00 km |
Inclination | 97.54° |
Eccentricity | 0 |
Off-nadir angle | 41.19° |
Radar frequency | 9.2 GHz |
Transmitted bandwidth | 150 MHz |
Sampling rate | 180 MHz |
Pulse repetition frequency | 6,763 Hz |
Transmitter velocity | 7681.69 m/s |
Antenna size (azimuth × range) | 5 m × 3 m |
Parameter Type | Parameter Name | Measurement Error Value |
---|---|---|
Radar parameters | Satellite timing error | 0.0015 s |
APC position vector measurement error | 0.5 m | |
APC velocity vector measurement error | 0.01 m/s | |
Signal processing parameters | Parallel baseline error | 0.002 m |
Perpendicular baseline error | 0.002 m | |
Atmospheric delay estimation error | 0.2–0.8 m | |
Interferometric phase unwrapping error | 3° |
Conditions | Number of Error Types | Parameter Calibration | RMSE of Target Geolocation |
---|---|---|---|
Ideal | Zero | - | 0.001 m |
Bad | One | No | 2.45 m |
Worse | Two or more | No | 3.21 m |
Good | One | Yes | 0.08 m |
Good | Two or more | Yes | 0.11 m |
Parameter Name | Parameter Value |
---|---|
Satellite name | TH2-01A, TH2-01B |
Orbital height | 580 Km |
Incidence angle | 42.1° |
Nearest range | 600 Km |
Resolution | 3 m |
Perpendicular baseline length | 280 m |
Height of ambiguity | 21 m |
Average coherence | 0.91 |
Information on Test Data | Data Processing Times | ||
---|---|---|---|
Test Data ID | Test Data Size | EMP Algorithm | IRD Algorithm |
TH2-01BA-InSAR-20190926 | 21,096 × 23,584 pixels | 12.3 min | 5.8 min |
TH2-01AB-InSAR-20191015 | 23,716 × 23,596 pixels | 14.25 min | 6.65 min |
TDM1-SAR-BIST-SM-20180223 | 13,206 × 28,796 pixels | 9.3 min | 4.13 min |
TDM1-SAR-BIST-SM-20130101 | 17,374 × 28,204 pixels | 11.2 min | 5.3 min |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xing, C.; Li, Z.; Tang, F.; Tian, F.; Suo, Z. A High-Precision Target Geolocation Algorithm for a Spaceborne Bistatic Interferometric Synthetic Aperture Radar System Based on an Improved Range–Doppler Model. Remote Sens. 2024, 16, 532. https://doi.org/10.3390/rs16030532
Xing C, Li Z, Tang F, Tian F, Suo Z. A High-Precision Target Geolocation Algorithm for a Spaceborne Bistatic Interferometric Synthetic Aperture Radar System Based on an Improved Range–Doppler Model. Remote Sensing. 2024; 16(3):532. https://doi.org/10.3390/rs16030532
Chicago/Turabian StyleXing, Chao, Zhenfang Li, Fanyi Tang, Feng Tian, and Zhiyong Suo. 2024. "A High-Precision Target Geolocation Algorithm for a Spaceborne Bistatic Interferometric Synthetic Aperture Radar System Based on an Improved Range–Doppler Model" Remote Sensing 16, no. 3: 532. https://doi.org/10.3390/rs16030532
APA StyleXing, C., Li, Z., Tang, F., Tian, F., & Suo, Z. (2024). A High-Precision Target Geolocation Algorithm for a Spaceborne Bistatic Interferometric Synthetic Aperture Radar System Based on an Improved Range–Doppler Model. Remote Sensing, 16(3), 532. https://doi.org/10.3390/rs16030532