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Abstract: Evaluating classification accuracy is a key component of the training and validation stages
of thematic map production, and the choice of metric has profound implications for both the success of
the training process and the reliability of the final accuracy assessment. We explore key considerations
in selecting and interpreting loss and assessment metrics in the context of data imbalance, which
arises when the classes have unequal proportions within the dataset or landscape being mapped. The
challenges involved in calculating single, integrated measures that summarize classification success,
especially for datasets with considerable data imbalance, have led to much confusion in the literature.
This confusion arises from a range of issues, including a lack of clarity over the redundancy of some
accuracy measures, the importance of calculating final accuracy from population-based statistics,
the effects of class imbalance on accuracy statistics, and the differing roles of accuracy measures
when used for training and final evaluation. In order to characterize classification success at the class
level, users typically generate averages from the class-based measures. These averages are sometimes
generated at the macro-level, by taking averages of the individual-class statistics, or at the micro-level,
by aggregating values within a confusion matrix, and then, calculating the statistic. We show that
the micro-averaged producer’s accuracy (recall), user’s accuracy (precision), and F1-score, as well as
weighted macro-averaged statistics where the class prevalences are used as weights, are all equivalent
to each other and to the overall accuracy, and thus, are redundant and should be avoided. Our
experiment, using a variety of loss metrics for training, suggests that the choice of loss metric is not as
complex as it might appear to be, despite the range of choices available, which include cross-entropy
(CE), weighted CE, and micro- and macro-Dice. The highest, or close to highest, accuracies in our
experiments were obtained by using CE loss for models trained with balanced data, and for models
trained with imbalanced data, the highest accuracies were obtained by using weighted CE loss. We
recommend that, since weighted CE loss used with balanced training is equivalent to CE, weighted
CE loss is a good all-round choice. Although Dice loss is commonly suggested as an alternative to CE
loss when classes are imbalanced, micro-averaged Dice is similar to overall accuracy, and thus, is
particularly poor for training with imbalanced data. Furthermore, although macro-Dice resulted in
models with high accuracy when the training used balanced data, when the training used imbalanced
data, the accuracies were lower than for weighted CE. In summary, the significance of this paper
lies in its provision of readers with an overview of accuracy and loss metric terminology, insight
regarding the redundancy of some measures, and guidance regarding best practices.

Keywords: deep learning; accuracy assessment; loss metrics; data imbalance; class-based statistics

1. Introduction

The methods used in the assessment of class labeling success are of profound im-
portance in designing the procedures for classification or thematic mapping projects [1,2],
though the topic is often given limited attention in the literature. The evaluation of class
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labeling success is carried out at two key points in a classification. For methods that
rely on the iterative backpropagation of errors and optimization algorithms, such as deep
learning-based methods, the choice of loss function, used to quantify whether or not each
iteration has reduced classification error, directly affects the resulting classification, since
the loss metric acts as the sole indicator for model performance during training and guides
parameter updates [3,4]. Second, the final evaluation of the accuracy of a classification is an
important attribute in defining the usefulness of the classification model, but if the accuracy
estimates themselves are biased, then the value of the model and its products is unclear. In
addition, if we wish to compare methods or datasets, biased accuracy measures will likely
result in incorrect evaluations [1].

The challenge with choosing accuracy assessment metrics is that we typically want a
single metric to facilitate simple yes–no decisions, as in evaluating successive classification
iterations with loss metrics, or to facilitate the ranking of classifications in experiments
comparing different methods or datasets. Overall accuracy (OA), defined as the probability
that a randomly selected sample is correctly classified, superficially seems to fit this need,
since it provides a single, integrated metric. However, it is well known that a classification
can entirely miss an extremely rare class, and yet have an OA close to 100%. This has
led many analysts to claim that OA is misleading in the case of imbalanced (i.e., non-
equal) class prevalence. However, this claim is not correct; as pointed out by Stehman and
Foody [5], OA is not wrong or misleading, and does not underweight rare classes. The
problem is instead that OA is the wrong choice for evaluating the success of discriminating
individual classes, as OA merely evaluates whether the label (irrespective of the class)
is correct. If the aim is to evaluate classification success on an individual-class basis, a
class-based metric is needed. However, using class-based metrics causes its own problems,
since defining the fundamental success of labeling at a class level requires, at a minimum
for each class, two non-redundant class-based metrics, namely the user’s accuracy (UA,
also known as precision) and producer’s accuracy (PA, also known as recall) [5,6]. Thus,
characterizing the accuracy of the individual classes for a three-class classification requires
a total of six separate accuracy measures (three UAs and three PAs).

Analysts have attempted to overcome the problem of multiple-class-based metrics by
averaging them in various ways. One approach is a simple arithmetic average of the class
statistics, known as macro-averaging. An alternative approach is to use micro-averaging, in
which the values for the individual classes are first aggregated within a confusion matrix,
and then, a single combined statistic is calculated [3,7,8] (the confusion matrix, micro- and
macro-averaging, as well as the various accuracy measures, such as UA and PA, are defined
and explained in more detail, in Section 2). In choosing a method for combining the class
statistics to produce an integrated measure, it is important to consider the implications of
these methods, as well as the anticipated use of the derived statistic. For example, are the
relative proportions of each class in the reference data meaningful (i.e., do they match the
class abundance in the landscape being classified), and is the aim of the classification to
produce high OA or to maximize the accuracy of each class or a particular subset of classes,
even at the potential expense of OA? These issues are rarely discussed in the literature,
adding to the difficulty of designing appropriate experimental methods.

In this paper, we provide a conceptual summary of the major loss metrics used in
training and the accuracy assessment metrics used in evaluating classification success,
with an emphasis on integrated summary metrics. The scope of this paper includes the
exploration of the concept of imbalanced classes, and the implications for both training and
classification evaluation. Through a series of experiments, we illustrate the different choices
of accuracy measurements and methods for integrating them. The significance of this
paper is that it provides guidance and outlines best practices, particularly for implementing
macro- and micro-averaging for calculating loss metrics and multiclass accuracy in the
context of imbalanced and balanced data.

The rest of this paper is organized into four parts. Following this introduction,
Section 2 provides background material regarding accuracy assessment metrics, the mul-
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ticlass averaging of class statistics, and loss metrics. Section 3 summarizes the data and
methods for the experiments. Section 4 uses the results of the experiments to explore issues
related to micro- and macro-averaging for accuracy assessment and loss metrics in the
context of class imbalance. The conclusions are presented in Section 5.

2. Background
2.1. Accuracy Assessment Metrics

More than three decades of research into the assessment of the accuracy of remote sens-
ing products has resulted in an extensive body of literature. Stehman and Czaplewski [9]
provide a comprehensive discussion of the basic components of a statistically rigorous
accuracy assessment of thematic maps, including sampling design, response design, and es-
timation and analysis protocols. They stress the importance of using probabilistic sampling
designs to ensure a rigorous statistical foundation for inference. Stehman [10] explains that
probability-based sampling methods ensure that each element in the map population (e.g.,
pixel or sampling unit) has a known and non-zero chance of being selected in the sample.
He also emphasizes the importance of consistent estimation to ensure that the estimates
derived from the sample apply to the parameters of the entire population under study
(e.g., every pixel in the mapped extent). Moreover, Stehman [11] highlights the impact of
sample size allocation when using stratified random sampling for accuracy assessment and
area estimation in the context of land-cover change mapping, with a focus on addressing
the competing estimation objectives for rare and common classes, a frequent issue in the
context of class imbalance.

A confusion matrix is a valuable tool for quantifying the performance of a classification
algorithm [1,2]. An example confusion matrix is provided in Table 1. By comparing the
independently determined labels, which define the columns of the table, and predicted
classes, which define the rows of the table, of data points or sampling units not included in
the training process (e.g., validation or testing data), it presents a comprehensive picture of
model performance. This matrix goes beyond merely summarizing the overall accuracy or
error, as it helps to quantify the specific types of errors. Analyzing the confusion matrix
enables users to discern which classes are accurately predicted, which are inaccurately
predicted, and which tend to be confused with each other [1,2]. Below, we discuss the
impact of class imbalance on the confusion matrix and derived metrics, and highlight
the utility of a population confusion matrix in which the relative proportion of samples
approximates those within the landscape being mapped.

Table 1. Confusion matrix conceptualization where three classes, A, B, and C, are differentiated. Pij
represents the proportion of samples classified as class i, but known to belong to class j. The + symbol
is used to represent summation; when the + symbol occurs in the first subscript position, the rows are
summed; when the + symbol is in the second subscript position, the columns are summed. Gray cells
represent correct classifications. UA = user’s accuracy (1 – commission error) and PA = producer’s
accuracy (1 – omission error).

Reference

A B C Row Total UA

Classification
A PAA PAB PAC PA+ PAA/PA+
B PBA PBB PBC PB+ PBB/PB+
C PCA PCB PCC PC+ PCC/PC+

Column
total P+A P+B P+C

PA PAA/P+A PBB/P+B PCC/P+C

OA is a commonly employed metric in traditional remote sensing accuracy assessment
for evaluating the performance of classification models. It is calculated as the proportion
of correctly classified testing samples among the total number of withheld samples [1,12].
Using the symbology from Table 1, OA = (PAA + PBB + PCC)/P++, where P++ represents
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summation over both the rows and columns, and thus, P++ = 1.0. Alongside OA, it is
common to calculate the class-level assessment metrics, PA and UA (see Section 1, above).
PA represents a 1 – omission error, while UA represents a 1 – commission error [1].

The Kappa statistic has traditionally been calculated alongside OA as a measure of
chance-adjusted agreement [13]. However, following decades of research highlighting its
limitations, including the fact that it does not assume the reference labels are necessarily
correct, the use of this metric is no longer regarded as useful in remote sensing accuracy
assessment [14,15]. Therefore, Kappa will not be discussed further here.

In binary classifications, when only two classes are differentiated, it is common to
label the class of interest as the positive case, and the background as the negative case,
as described in Table 2. True positives (TPs) and true negatives (TNs) are, respectively,
positive and negative case samples that are correctly mapped. On the other hand, false
positives (FPs) and false negatives (FNs) are samples that are incorrectly mapped to the
positive and negative classes, respectively (see Table 2).

Table 2. Conceptualization of binary confusion matrix and associated terminology. TP = true positive,
TN = true negative, FN = false negative, FP = false positive, and NPV = negative predictive value.
See Table 3 for equations for recall, precision, specificity, and NPV.

Reference Data

Positive Negative 1 – Commission Error

Classification
Result

Positive TP FP TP
TP + FP Precision

Negative FN TN TN
FN + TN NPV

TP
TP + FN

TN
FP + TN

1 – omission
error Recall Specificity

Table 3. Multiclass and binary metrics commonly calculated from the confusion matrix. TP = true
positive, TN = true negative, FN = false negative, FP = false positive.

Type of Classification Metric Equation Comments

Binary and multiclass
Overall

accuracy
(OA)

Count of correct samples
Count of total samples

or
TP + TN

TP + TN + FP + FN

Multiclass
User’s accuracy

(UA)
Count of correctly labeled samples in class
Total count of samples predicted to class

1 – commission error

Producer’s accuracy (PA) Count of correctly labeled samples in class
Total count of samples actually in class

1 – omission error

Binary

Recall TP
TP + FN

PA for positives
(1 – positive case omission

error)

Precision TP
TP + FP

UA for positives
(1 – positive case commission

error)

Specificity TN
TN + FP

PA for negatives
(1 – negative case omission

error)

Negative
predictive value (NPV)

TN
TN + FN

UA for negatives
(1 – negative case commission

error)

F1-score
(Dice score)

2 × Precision × Recall
Precision + Recall

or
2 × TP

2 × TP + FN + FP
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Each of the UAs and PAs of the positive and negative classes are typically given their
own names (Tables 2 and 3). Precision and negative predictive value (NPV) are equivalent
to UA for positive and negative cases, respectively, while recall (also sometimes known as
sensitivity) and specificity are, respectively, equivalent to PAs. As documented by Maxwell
et al. [6], there is some confusion in the names used for class accuracies based on the binary
model, and thus, it is important to always define the meaning of accuracy measures used
in a study. The F1-score is commonly employed as a single metric that combines precision
and recall, and is calculated as the harmonic mean of precision and recall. The F1-score
considers both errors of omission, as estimated with recall, and errors of commission,
as estimated with precision, relative to the positive case [12]. Table 3 summarizes these
metrics, how they are calculated, and the relationships between them.

2.2. Averaged Multiclass Accuracy Measures

The binary metrics discussed above, including precision, recall, and F1-score, and the
related loss metrics, which will be discussed in the next section, have been adapted for
use in multiclass classification problems. However, varying approaches to aggregating the
metrics across classes are used. For example, macro-averaged multiclass recall (Equation (1))
entails separately calculating recall for each class (j) across all classes (C), then summing the
metrics, and finally, dividing by the number of classes (N) to obtain an average recall. Since
all classes are averaged, each takes on equal weight in the calculation. Macro-averaged
multiclass precision is an equivalent measure, in which the individual precision values for
each class are combined in a simple arithmetic average (Equation (2)). Similarly, consistent
with the basic F1 statistic definition (Table 3), the macro-averaged F1 statistic is simply the
harmonic mean of the macro-averaged recall and macro-averaged precision.

Macro-averaged multiclass recall =
1
N ∑C

j=1

TPj

TPj + FNj
(1)

Macro-averaged multiclass precision =
1
N ∑C

j=1

TPj

TPj + FPj
(2)

Unfortunately, there is considerable confusion in the literature regarding terminology
used for macro-averaging. Macro-averaged recall, macro-averaged precision, and macro-
averaged F1 are also frequently referred to as, respectively, mean recall [16] (and sometimes,
even more confusingly, labeled as mean accuracy [17]), mean precision [16], and mean
F1 [18].

As an alternative to the equal weighting of classes, micro-averaged multiclass re-
call, precision, and F1 have been proposed as prevalence-dependent measures. In micro-
averaged recall (Equation (3)), the total count of TPs across all C classes is summed and
divided by the total count of all TPs and FNs across the C classes. The numerator in
Equation (3) is therefore the sum of the correct samples, and the denominator is the over-
all total of the sum of each column, i.e., the sum of the entire confusion matrix. Thus,
micro-averaged recall is equivalent to the definition of the OA statistic [8]. The associated
micro-averaged precision statistic (Equation (4)) can also be shown to be equivalent to OA,
and thus, micro-averaged recall and micro-averaged precision are identical. Furthermore,
since the harmonic mean of identical values is itself equal to those values, micro-averaged
recall, micro-averaged precision, and micro-averaged F1 are all identical and equal to
OA [8].

Micro-averaged multiclass recall =
∑C

j=1 TPj

∑C
j=1 TPj + ∑C

j=1 FNj
(3)

Micro-averaged multiclass precision =
∑C

j=1 TPj

∑C
j=1 TPj + ∑C

j=1 FPj
(4)
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It is also possible to calculate a weighted macro-averaged recall, precision, and F1-
score where the contribution of each class in the final average is controlled by a user-
defined weight (wj) (Equations (5) and (6)) [7,8]. This allows the user to specify the relative
weighting of each class in the aggregated metric, as opposed to traditional macro-averaging,
where all classes are equally weighted, or micro-averaging, in which the values in the
confusion matrix are aggregated prior to calculating the accuracy metric, and thus, the
relative proportion of each class in the testing or validation dataset is preserved [3,7,8].
An important caveat is that when the class prevalences are used as the weights, weighted
macro-averaged class metrics are also equivalent to OA.

Weighted macro-averaged multiclass recall =
1

∑C
j=1 wj

∑C
j=1 (w j

TPj

TPj + FNj
) (5)

Weighted macro-averaged multiclass precision =
1

∑C
j=1 wj

∑C
j=1 (w j

TPj

TPj + FPj
) (6)

2.3. Loss Metrics

When using backpropagation and mini-batch stochastic gradient descent (SGD) and
its derivatives to iteratively update trainable parameters in CNN-based deep learning
models, the loss metric serves as the sole measure of error to guide the learning process. As
a result, the choice of an appropriate loss metric is of great importance [3,4,19,20]. The level
of class imbalance potentially has a large impact on the suitability of a classification loss
metric [3], as will be discussed below.

Binary cross-entropy (BCE) loss is the predominant loss metric used in binary classi-
fication tasks, while cross-entropy (CE) loss is common for multiclass classification tasks.
The equations for these loss metrics are provided in Table 4. BCE and CE are examples
of distribution-based-loss measures [4]. BCE loss is minimized when all n case samples,
coded as yi, with values of 1 when positive and 0 when negative, are predicted to have a
positive class probability (p̂i) approaching 1 for the former and 0 for the latter. CE loss also
makes use of predicted class probabilities (pij) and is minimized when the class probability
for each sample (i) within each class (j) approaches 1 for the correct class and 0 for all other
classes. Classes with more samples will have a larger weight or impact in the calculation; as
a result, CE loss is sensitive to class imbalance. In response, a weighted cross-entropy loss
metric is sometimes used to specify the relative weights, wj, of each class in the calculation.
The values of wj are commonly based on the inverse of the abundance of the class in the
training dataset in order to attempt to offset the impact of sample size. It is possible to
increase the impact of difficult to classify samples by including a γ parameter. This is
known as focal loss [3].

Table 4. Commonly used loss metrics for binary and multiclass classification.

Loss Equation

Binary cross-entropy (BCE) loss − 1
n

n
∑

i=1
[yi · log( p̂i) + (1 − yi) · log(1 − p̂i)]

Cross-entropy (CE) loss − 1
n

n
∑

i=1

C
∑

j=1
yij · log

(
p̂ij

)
Weighted CE loss − 1

n

n
∑

i=1

C
∑

j=1
wj · yij · log

(
p̂ij

)

There are alternatives to BCE and CE loss and their derivatives. For example, there
are several loss metrics that are derived from the Dice metric (an alternative name for the
F1-score; see Table 3), and which are all region-based losses [4]. Since Dice is a measure of
accuracy, the value of (1 – Dice) is used as the loss (i.e., error) metric [21–23]. Furthermore,
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in order to make the loss metric differentiable, class probabilities are generally used,
as opposed to hard labels. Equations (7) and (8) present a generalization of Dice loss
for multiclass classification. Equation (7) represents a micro-averaged version, while
Equation (8) provides a macro-averaged version. As with the F1-score, these loss metrics
consider omission and commission errors relative to the positive case.

For Dice loss calculated using micro-averaging (Equation (7)), the predicted class
probabilities relative to the correct class for the TPs (p̂TP) are summed and multiplied by
two, and then, divided by the sum of p̂TP multiplied by two, FN class probabilities relative
to the predicted class (p̂FN), and FP class probabilities relative to the predicted class (p̂FP).
A smoothing factor (ε) is commonly added to both the numerator and the denominator for
computational stability and to exclude divide-by-zero errors. The result is then subtracted
from 1 to convert from a measure of accuracy to an error metric. In Section 2.2, we explained
that micro-averaging is equivalent to OA. The same logic applies to micro-averaged Dice
loss, which is related to 1 – OA; however, it makes use of predicted class probabilities as
opposed to predicted class labels, so is not strictly equivalent to OA.

In contrast to micro-averaging, the macro-averaged version (Equation (8)) calculates
Dice loss separately for each class (j) of the C classes, and then, divides by the number of
classes (N) to obtain an averaged Dice loss in which each class is equally weighted. It is
also possible to calculate the weighted micro-averaged Dice loss where the user defines the
relative weight of each class in the overall average [7,8,21,22,24,25].

Micro-averaged Dice loss = 1 − (
(2 × Σ p̂TP) + ε

(2 × Σ p̂TP) + Σ p̂FN + Σ p̂FP + ε
) (7)

Macro-averaged Dice loss =
1
N ∑C

j=1 (1 − (
(2 × Σ p̂TP) + ε

(2 × Σ p̂TP) + Σ p̂FN + Σ p̂FP + ε
)) (8)

Similar to CE loss, a focal version of Dice loss can be calculated by adding a γ term to
control the relative impact of difficult-to-classify samples [25]. Tversky loss is a modification
of Dice loss that adds α and β terms to control the relative weights of false positive and false
negative errors. These loss measures were developed in response to the concern that highly
imbalanced training data tend to result in a classification biased towards high precision and
low recall for rare classes [26]. Therefore, by setting β > α (typical values are 0.7 and 0.3),
FN is given increased weight in the loss function, and the resulting classification typically
has an increased recall for rare classes, though this is likely at some cost to precision [26,27].

3. Methods
3.1. Data

To illustrate the issues involved in selecting accuracy and loss metrics, we used the
EuroSat dataset [28] (Figure 1), which is a large and diverse dataset of satellite images that
can be used to train and evaluate land use and land cover classification models. These
data were generated for use in scene labeling or scene classification problems, where the
entire image extent is labeled as a single class, in contrast to semantic segmentation, where
each individual pixel is labeled. The dataset consists of 27,000 64-by-64-pixel (representing
640 by 640 m) image chips, each of which is labeled as one of ten land cover classes: “annual
crop”, “forest”, “herbaceous vegetation”, “highway”, “industrial”, “pasture”, “permanent
crop”, “residential”, “river”, or “sea/lake” [28]. The images were captured over European
countries by the Sentinel-2 satellite, which is operated by the European Space Agency
(ESA), using the Multispectral Instrument (MSI) sensor. Of the 13 Sentinel-2 spectral
bands (Table 5), three bands (B1, B9, and B10) are designed for atmospheric correction or
quality control, and therefore, were excluded from our classification experiments. This left
10 bands, all of which were used as the input variables [29].
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Figure 1. Example image chips from EuroSat dataset. Chips are displayed as false color composites,
with the NIR, red, and green bands displayed, respectively, as red, green, and blue. Each chip is 64 by
64 pixels in size with a spatial resolution of 10 m.

Table 5. Sentinel-2 (MSI) bands. RE = red edge, NIR = near infrared, SWIR = shortwave infrared.
Wavelength units are in nanometers (nm). Y indicates bands used in the experiment.

Band B1 B2 B3 B4 B5 B6 B7 B8 B8a B9 B10 B11 B12

Central
wavelength

(nm)
443 490 560 665 705 740 783 842 865 940 1375 1610 2190

Description Ultra
blue Blue Green Red RE1 RE2 RE3 NIR NIR

(narrow)
Water
vapor

Cirrus
cloud

SWIR
1

SWIR
2

Used in our
experiment Y Y Y Y Y Y Y Y Y Y

The non-overlapping training, validation, and testing partitions defined by the data
originators were used in this study. In order to generate a balanced training set, we used
stratified random sampling without replacement to sample 1400 images from each class
available in the original dataset, for a total of 14,000 samples (Table 6). With ten classes,
the balanced dataset has a class prevalence of 10% for every class. We also generated an
imbalanced training set, with half of the classes (“annual crop”, “herbaceous vegetation”,
“industrial”, “residential”, and “sea/lake”) randomly selected and assigned a reduced
number of samples, 140, for an overall total of 7700 samples. In the imbalanced dataset,
the class prevalences are 18.18% for each of the five common classes, and 1.82% for each
of the five rare classes. This process was replicated for the validation datasets. We se-
lected 400 samples from each class, or 4000 samples in total, for the balanced set. For the
imbalanced validation dataset, we randomly selected a subset of 40 samples from the
same five classes that were subsampled in the training set, resulting in an imbalanced
validation set with 2200 samples. The test set used the original dataset class proportions
and was not subsampled. Instead, after all samples were predicted and a sample error
matrix was generated, we adjusted the proportions in the sample error matrix to represent
population confusion matrices. Two separate test set population confusion matrices were
generated: a balanced confusion matrix with equal prevalences for all the classes, and an
imbalanced confusion matrix with class prevalence equivalent to the imbalanced training
and validation sets.



Remote Sens. 2024, 16, 533 9 of 22

Table 6. Number of samples in each class for the balanced and imbalanced training and validation
sets. The testing set proportions used the samples in the original dataset, and the results were used to
estimate balanced and imbalanced error matrices.

Training Validation Testing

Balanced Imbalanced Balanced Imbalanced Both

Annual crop 1400 140 400 40 300
Forest 1400 1400 400 400 300

Herb veg 1400 140 400 40 300
Highway 1400 1400 400 400 250
Industrial 1400 140 400 40 250

Pasture 1400 1400 400 400 200
Perm crop 1400 1400 400 400 250
Residential 1400 140 400 40 300

River 1400 1400 400 400 250
Sea/Lake 1400 140 400 40 359

Total 14,000 7700 4000 2200 2509

3.2. Classification Experiments
3.2.1. CNN Scene Classification

A series of experiments were performed using CNNs with the research objective of
exploring the consequences of different averaging techniques within the context of scene
classification using datasets with balanced and imbalanced classes. CNNs were defined
and trained using the PyTorch library [30] in the Python language [31]. We designed the
model to incorporate CNN design features that have been extensively used in the literature,
rather than implementing state-of-the-art architectures that may be more rarely used, in
order to ensure that our findings are relevant for typical CNN implementations. The CNN
used a series of four 2D convolution, 2D batch normalization [32,33], rectified linear unit
(ReLU) activation, and 2D max pooling layers followed by a series of two fully connected,
1D batch normalization, and ReLU activation layers. The final layer consisted of a fully
connected layer that returned a logit for each of the ten classes. All 2D convolution layers
used a kernel size of 3 × 3 with a stride of 1 and padding to retain the original array
sizes in the spatial dimensions. The 2D max pooling used a kernel size of 2 × 2 and a
stride of 2 to decrease the size of the array in the spatial dimensions by half. For the 2D
convolution layers, 10, 20, 30, and 40 feature maps were generated, respectively. For the
first two fully connected layers, 256 and 512 nodes or neurons were produced, respectively.
Data augmentations and batch normalization were implemented to counteract overfitting
and facilitate optimal convergence during training. For the data augmentations, we applied
random horizontal and vertical flips using the albumentations Python library [34].

Each image in the training set had a 30% probability of undergoing these transformations.
This probability setting ensured that each image had a substantial chance of being flipped
either horizontally or vertically, thereby introducing necessary variability into the dataset.
Such variability is particularly crucial when addressing issues of class imbalance in the data.

Our experiments were conducted using an NVIDIA GeForce RTX 3070 Ti GPU with
16 GB of GDDR5 memory. This GPU was paired with an Intel Core i9 processor and 16 GB
of DDR5 RAM. This hardware configuration, combining a robust GPU with a powerful CPU
and ample RAM, facilitated smooth and rapid processing of our CNN models. It allowed
us to expedite iterations through various model architectures and parameter adjustments,
essential for the success of our experimental setup.

Baseline experiments were executed using a range of loss functions. We used CE loss
and Dice loss employing both macro- and micro-averaging techniques on the balanced and
imbalanced datasets. We also trained a model using the imbalanced dataset and weighted
CE loss in which the class weights were defined based on the inverse of their abundance
in the training set. We did not train a model using the balanced dataset and weighted CE
loss, since, with our weighting scheme, this would produce equal weights for the classes,
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and thus, would be equivalent to using non-weighted CE loss. At the end of each training
epoch, both the balanced and imbalanced validation data were predicted.

The training loop was executed for a maximum of 50 epochs using an AdamW opti-
mizer with a default learning rate of 0.001. Instead of using the model state after 50 epochs,
we selected the model that provided the best performance with the validation data, as
measured using the validation loss. When using a balanced training set, the epoch that
provided the best performance for the balanced validation dataset was selected. In contrast,
and when using an imbalanced training set, the best epoch was selected based on the
imbalanced validation dataset loss. During the training process, we used a large training
and validation mini-batch size of 700 samples to ensure that minority class samples were
included in each mini-batch. This required using multiple GPUs to train the model.

Accuracy assessment metrics were calculated from the prediction results obtained
for the testing data. We used the R language and data science environment, and the
yardstick [35], caret [36], rfUtilities [37], and diffeR [38] packages. We calculated the PAs
(i.e., recalls) and UAs (i.e., precisions) for each of the ten classes. We also calculated
OA and the class-aggregated recall, precision, and F1-score using both the macro- and
micro-averaging methods.

3.2.2. Experiments Exploring the Effect of Changing Class Prevalences

We undertook an experiment with the research objective of exploring the impact of
changing the relative proportions of each class in the testing set on the resulting assessment
metrics. To accomplish this task, we used the sample2pop function provided in the diffeR
R package [38]. The intended use of this function is to adjust the class proportions in a
confusion matrix generated using stratified random sampling, where the strata are derived
from the map itself. The output of the function is an estimate of the population confusion
matrix, with row totals proportional to the area of each mapped class. In our case, however,
we assumed the actual class prevalences were known, and thus, we wished to have instead
column totals proportional to the class prevalences. We therefore transposed our confusion
matrix prior to running the program, and afterwards, transposed the results back again. We
used this function to generate 1000 random adjustments of the confusion matrix presented
in Table 7 below with varying class proportions. This was accomplished by randomly
selecting ten values that sum to 1.0 from a uniform distribution and adjusting the error
matrix relative to these specified class proportions. From each generated confusion matrix,
we then calculated all class PAs and UAs; the OA; and the class-aggregated PA (i.e., class-
aggregated recall), UA (i.e., class-aggregated precision), and F1-score using both the macro-
and micro- averaging methods.

Table 7. Example confusion matrix for classification of an imbalanced dataset using an imbalanced
training set and cross-entropy loss. The table is an estimate of the population confusion matrix, and
thus, the numbers in the table represent the percentage of the imbalanced data classified as class i,
but known to belong to class j.

Reference

Annual
Crop Forest Herb

Veg Highway Industrial Pasture Perm
Crop Residential River Sea/

Lake
Row
Total UA

C
la

ss
ifi

ca
ti

on

Annual crop 15.45 0.00 0.30 0.00 0.00 0.00 0.04 0.00 0.00 0.00 15.79 0.979
Forest 0.24 1.79 0.12 0.00 0.00 0.02 0.00 0.00 0.00 0.00 2.18 0.825

Herb veg 0.06 0.00 13.09 0.01 0.07 0.03 0.01 0.06 0.00 0.00 13.33 0.982
Highway 0.30 0.00 0.91 1.75 4.73 0.01 0.01 1.58 0.04 0.00 9.33 0.188
Industrial 0.00 0.00 0.00 0.00 12.51 0.00 0.00 0.24 0.00 0.00 12.75 0.981

Pasture 0.61 0.02 0.85 0.00 0.00 1.76 0.01 0.00 0.01 0.00 3.27 0.539
Perm crop 1.52 0.00 2.67 0.03 0.00 0.00 1.72 0.30 0.00 0.00 6.24 0.276
Residential 0.00 0.00 0.00 0.01 0.65 0.00 0.01 16.00 0.00 0.00 16.68 0.959

River 0.00 0.00 0.24 0.01 0.22 0.00 0.01 0.00 1.77 0.56 2.81 0.630
Sea/lake 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 17.62 17.62 1.000

Column total 18.18 1.82 18.18 1.82 18.18 1.82 1.82 18.18 1.82 18.18

PA 0.850 0.987 0.720 0.964 0.688 0.970 0.948 0.880 0.972 0.969



Remote Sens. 2024, 16, 533 11 of 22

4. Results, Discussion, and Recommendations
4.1. Micro- and Macro-Averaged Accuracy Assessment Metrics

Table 7 provides the accuracy assessment results for the CNN-based scene classification
model described above, trained using the imbalanced training set and standard CE loss, and
applied to the withheld testing data, with the confusion matrix adjusted to the imbalanced
class proportions. The numbers in the table represent the percentages of the assumed
imbalanced population. The OA for this classification is 0.835, and the class PAs and UAs,
included on the table margins, vary from 0.688 to 0.972 and from 0.188 to 1.000, respectively.

Table 8 provides the class-aggregated metrics calculated from Table 7. It is notable
that the micro-averaged multiclass metrics, micro-UA (i.e., micro-precision), micro-PA (i.e.,
micro-recall), and micro-F1-score, are identical to the OA value. This is because, as was
explained in Section 2.2 [8], micro-averaged multiclass metrics are directly equivalent to
OA. The differentiation between FP and FN that is central to a binary approach to accuracy
assessment (see Table 2) breaks down with the application of micro-averaging to multiclass
accuracy measures. For example, in Table 7, 0.04% of the imbalanced test dataset comprises
“permanent crop” reference samples incorrectly classified as “annual crop,” and represent
errors of omission or FNs from the perspective of the “permanent crop” class. However,
this same 0.04% of samples represent commission errors (FPs) relative to the prediction
of the “annual crop” class. Thus, every non-diagonal element is both an FN and an FP,
and therefore, summing TPs and FNs (recall; Equation (3)), or TPs and FPs (precision;
Equation (4)), results in the same overall total, equal to the sum of the matrix. Thus, micro-
averaged multiclass recall and precision both represent the division of the sum of TPs by
the confusion matrix total, i.e., OA. Similarly, since the F1-score is the harmonic mean of
precision and recall, and the harmonic mean of two identical numbers is also identical to
those two numbers, the micro-averaged F1-score is also equivalent to the micro-averaged
precision and micro-averaged recall, as well as OA. Grandini et al. [8] provide further
elaboration on the equivalency of the micro-averaged metrics and OA.

Table 8. Class-aggregated accuracy metrics for the classification reported in Table 8 (i.e., using an
imbalanced training set and a cross-entropy loss).

Micro Macro

OA UA
(Precision)

PA
(Recall) F1-Score UA

(Precision)
PA

(Recall) F1-Score

0.835 0.835 0.835 0.835 0.736 0.895 0.755

Since OA is a well-known and intuitive statistic, with well-understood properties, it is
not only unnecessary and redundant to use micro-averaged measures, but their use is likely
to add confusion. Perhaps more importantly, since OA is not a useful measure for assessing
class-level statistics, micro-averaged recall, micro-averaged precision, and micro-averaged
F1 are also not useful for that purpose.

In contrast to micro-averaged metrics, macro-averaged metrics are unique and not
equivalent to OA. Since each metric is calculated separately for each class, and then,
subsequently averaged, this is not equivalent to simply dividing the number of TPs by the
confusion matrix total.

4.2. Accuracy Assessment Metrics and Class Imbalance

Figure 2 summarizes the class-level UA and PA results for CE loss and a balanced
training set, with 1000 replicates of varying class proportions, generated using the diffeR
R package’s sample2pop function [38], which converts a sample confusion matrix to a
population matrix. In calculating the population confusion matrices, class-level PAs are not
impacted by changes in the relative class proportions in the reference dataset, since each
class’s PA is calculated only from samples in that particular reference class. In contrast,
class-level UAs are affected by changing class proportions in the reference classes, since a



Remote Sens. 2024, 16, 533 12 of 22

class’s UA is calculated from the samples labeled as that class, and the number of samples
from other classes incorrectly labeled as the class of interest is affected by the prevalence of
those classes. For example, in Table 8, there is some confusion between the “annual crop”
and “permanent crop” classes. If the relative proportion of “permanent crop” samples in
the population increases, this will likely reduce the UA for the “annual crop” class, since
there will be more opportunities for misclassification. In contrast, this will not affect the PA
for the “annual crop” class, since this metric depends only on the samples belonging to the
“annual crop” reference class.
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It is also important to note that, as has been pointed out by Foody [14], although PA
as a statistic is not prevalence-dependent, remote sensing classifiers themselves may be
prevalence-dependent. Furthermore, even if classifiers were not prevalence-dependent,
simply focusing on PAs and ignoring UAs would not provide a method for avoiding the
problem of class prevalence, since PAs alone are not useful in characterizing class-based
classification performance.

It is notable in Figure 2 that the range of UAs varies greatly by class. However, some
classes, such as “forest” and “sea/lake”, are consistently well mapped, with UAs close to
1.0. In contrast, the two classes with the lowest median UAs, “highway” and “permanent
crop”, have the largest interquartile range of UA values and the largest number of instances
of UAs less than 0.1. This illustrates the point that although UAs are affected by class
prevalence, the effect is smaller for classes with higher accuracies, tending to zero for classes
mapped with a UA of 1.0. Furthermore, it is worth emphasizing that in Figure 2b, the UA
for each class is generally lowest when that class’s prevalence is lowest.

Figure 3 shows the results for OA and the class-aggregated, macro-averaged metrics.
Since the micro-averaged metrics are equivalent to OA (see Section 4.1), they are not shown.
OA varies with changes in class proportions. This is expected, since the relative proportions
of samples will change the number of correct and misclassified samples in the table. For
example, Table 8 shows that the “sea/lake” class was generally well differentiated from
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the other classes. As a result, if a larger proportion of the testing samples were from the
“sea/lake” class, higher OA accuracy and related metrics would be expected. The macro-
averaged UA and F1-score are sensitive to class prevalence, while the macro-averaged PA
is not. This is because the individual-class PAs are not sensitive to class prevalence, and
therefore, their averages will also not be affected. On the other hand, since UAs are affected
by class prevalence, their averages will also be affected, as will their F1-scores, since they
rely in part on UAs.
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As noted above, accuracy assessment should take into account the relative class propor-
tions in the landscape being mapped, since class prevalence has an effect on classification
accuracy [2,5,10,39–43]. If simple random sampling is used to collect testing or validation
samples, then the resulting confusion matrix will be an unbiased estimate of the population
matrix, and therefore, can be used directly to estimate class accuracies. If some other
probability-based sampling method is used, such as class-stratified random sampling, an
approach which is often used when there are particularly rare classes, the resulting confu-
sion matrix will have different class proportions from the thematic map being assessed [44].
In this circumstance, either the sample confusion matrix should be adjusted to reflect the
population proportions, or the correction may be incorporated directly into the accuracy
estimator formulas [5].

The importance of using reference sample proportions that align with landscape pro-
portions for accuracy assessment provides a useful framework for selecting and interpreting
class-aggregated assessment metrics. If the confusion matrix is based on a number of sam-
ples that are deliberately chosen to be uniform in each class, and the confusion matrix is not
subsequently adjusted to represent population proportions, then the class-level UAs, class-
level F1-scores, and OA will be representative of the accuracies of a hypothetical map with
equal class prevalence. Since most real maps have at least one rare class, and rare classes
are more difficult to map, the value of simulating a hypothetical equal-prevalence map is
unclear. However, the class-level PAs will not vary with changes in class proportions [5].

Macro-averaging is based on a simple average after the statistics are calculated, and
therefore, macro-averaged measures give equal weighting to each class’s UA or PA that is
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combined with the integrated metric. Some analysts favor macro-averaged class statistics
precisely because rare classes are given equal weight to more common classes. However,
UAs and, thus, F1 statistics are sensitive to class proportions, and rare classes are inherently
more difficult to classify. Therefore, it is essential to use an estimate of the population
matrix for the calculations to ensure that rare classes are not treated over-optimistically in
the calculation of UAs and F1-scores.

Weighted macro-averaging methods are another way in which analysts sometimes
attempt to deal with imbalance. Typically, class weights used for aggregating PAs are
derived from the relative abundance of classes on the landscape, which can be estimated
based on the column totals in a population confusion matrix set up, as in Table 1. Similarly,
the class weights used for aggregating UAs are class prevalences in the classified map, and,
in turn, can be estimated using the row totals in the population error matrix. However,
when such an approach is used, these measures are equivalent to the micro-averaged
PA and UA, respectively, and thus, in turn, are equivalent to OA. Prevalence-weighted
macro-averaging is redundant, and therefore not a useful approach.

In summary, in calculating summary multi-class accuracy measures, macro-averaging
is the only approach that appears to provide a useful average class-based measure, since
micro-averaged measures are redundant with OA. Weighted macro-averaged measures
that use class prevalence as the weights are also redundant. Neither micro-averaged mea-
sures nor prevalence-weighted macro-averaged measures should be reported, since the
equivalent OA is a conceptually simpler term. Class prevalence affects the calculation of
UA and F1-scores, and therefore, accuracy measures should always be estimated from
the population confusion matrix. Although macro-averaged PA is not affected by class
prevalence, it has been suggested that remote sensing classifiers may be affected by preva-
lence [14]. Since there is so much confusion in the literature, we recommend that authors
clearly document their methods.

4.3. Impact of Class Imbalance on the Training Process

In Sections 4.1 and 4.2 above, we focused on assessing map accuracy. In this section,
we explore the impact of class imbalance in the context of choosing a loss metric. On one
level, determining the final map accuracy and loss metrics are very similar tasks, as both
deal with assessing classification performance. However, an important distinction is that
a key purpose of map accuracy assessment is usually communication of the uncertainty
in the classification results. In contrast, losses calculated during training are primarily
designed to guide the classifier towards an optimal model. Although not usually explicitly
articulated, an optimal model is generally conceptualized as one in which most classes are
classified well, which implies the need for a multiclass average of some sort. To explore
these issues, we trained models using both a balanced and an imbalanced training set,
and with the CE, macro-averaged Dice, and micro-averaged Dice losses. We also trained a
model using weighted CE, where the class weights were defined based on the inverse of
their abundance in the imbalanced training dataset. Since using weighted CE loss and our
weighting scheme with a balanced dataset would be equivalent to unweighted CE with a
balanced dataset, this combination was not tested; as a result, a total of seven models were
trained.

Figure 4 shows the loss for the training, balanced validation set, and imbalanced
validation set across the 50 training epochs, while Figure 5 shows the overall accuracy,
and Figure 6 shows the macro-averaged F1-score. These results generally suggest that
the choice of loss metric is less important when a balanced training set is used, as the CE
and dice losses provided similar performance. However, the choice of loss function had
a larger impact when the training set was imbalanced. For the imbalanced training data,
loss metrics indicated a slower improvement between successive epochs compared to the
balanced data training, and there was a notably larger divergence between the training loss
metric and the associated validation loss. Furthermore, models trained using CE as the loss
metric generally required a greater number of epochs to stabilize compared to using the
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alternative Dice loss metrics, although after 50 epochs, the metrics indicated comparatively
high accuracy for the CE training.
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For models trained with balanced data, micro-Dice appears to be a potentially ap-
propriate loss metric, resulting in models with high accuracy values, as indicated by the
validation data. However, for the imbalanced data, the use of micro-Dice loss for training
resulted in consistently low macro-F1 trends (Figure 6), despite the moderate-to-high over-
all accuracy values (Figure 5). These figures illustrate the problem with micro-Dice as a
loss measure. Since micro-Dice is similar to OA, except that class probabilities are used in
the calculation as opposed to class labels, it is particularly unsuitable for imbalanced data.

The aggregated assessment metrics obtained when using the resulting models to
predict the withheld testing data are provided in Table 9. Generally, regardless of the loss
metric used, training and testing using the balanced datasets yielded higher model accuracy
than training and testing using imbalanced data. This was true for all accuracy measures,
including OA and the class-averaged measures of macro-F1, macro-UA, and macro-PA.
This is not surprising, since imbalanced datasets are inherently more difficult to train than
balanced datasets. However, the difference between the accuracy measures of the balanced
training and testing, compared to the imbalanced training and testing, was smaller for CE
and macro-Dice compared to micro-Dice. In addition, micro-Dice performed particularly
poorly with imbalanced training and testing, resulting in the lowest accuracy measures
observed. This emphasizes that micro-Dice, since it is similar to OA, is not effective as a
loss measure for training with imbalanced data.

When class prevalences differed between training and testing (e.g., balanced training
and imbalanced testing, a common approach, or the less common imbalanced training and
balanced testing), models trained with CE and weighted CE generally resulted in high
accuracies. Macro-Dice loss produced the highest accuracies for balanced training and
imbalanced testing. However, imbalanced training followed by testing with balanced data
resulted in low accuracies for macro-Dice and very low accuracies for micro-Dice.
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Table 9. Comparison of assessment metrics for models trained using different loss functions and with
balanced or imbalanced training sets.

Loss Metric Training Set Test
Prevalences OA Macro-F1 Macro-UA

(Precision)
Macro-PA
(Recall)

CE

Balanced Balanced 0.959 0.958 0.959 0.959
Balanced Imbalanced 0.970 0.929 0.907 0.958

Imbalanced Balanced 0.895 0.895 0.911 0.895
Imbalanced Imbalanced 0.835 0.755 0.736 0.894

Weighted CE Imbalanced Balanced 0.912 0.912 0.916 0.912
Imbalanced Imbalanced 0.890 0.804 0.765 0.911

Micro-Dice
(OA)

Balanced Balanced 0.954 0.954 0.955 0.954
Balanced Imbalanced 0.956 0.913 0.883 0.954

Imbalanced Balanced 0.581 0.466 0.452 0.581
Imbalanced Imbalanced 0.261 0.264 0.251 0.581

Macro-Dice

Balanced Balanced 0.956 0.956 0.957 0.956
Balanced Imbalanced 0.971 0.927 0.904 0.956

Imbalanced Balanced 0.873 0.872 0.894 0.873
Imbalanced Imbalanced 0.805 0.712 0.697 0.872

To summarize Table 9, the optimum training strategy in our experiments was to
use balanced training data, irrespective of whether the modeled population (and the
prevalences in the testing data) was balanced or imbalanced. Balanced training data not
only led to higher accuracies, but the differences in accuracies between the loss metrics
were small, making the choice of loss metric less important. However, in many situations,
it is not possible to build balanced training data, and thus, training has to be carried out
with imbalanced training data. With imbalanced training, using weighted CE as the loss
metric generally produced the highest accuracy. Conveniently, weighted CE for balanced
training is equivalent to CE, and thus, weighted CE provides the best overall choice for a
loss metric, whether the data are balanced or imbalanced.

Figure 7 shows the UAs and PAs calculated for the withheld testing data for each class
when using each loss metric, and balanced and imbalanced training sets to train the model,
and balanced and imbalanced test sets to assess the model. Of note is that for training with
the micro-Dice loss, the UAs and PAs for the five rare classes were generally low, indicating
that the model learned to ignore these less abundant classes since they had a small impact
on the loss metric. These findings highlight the conclusion that micro-averaged Dice loss
is inappropriate when classes are highly imbalanced, because micro-averaged Dice is
equivalent to OA. The class imbalance had less of an impact when using CE, weighted CE,
or macro-averaged Dice loss, although the UAs and PAs for the less abundant classes were
nevertheless still lower than when the balanced training dataset was used. We attribute this
in part to the reduced sample size for these classes, which could result in the complexity of
these classes not being represented in the training set. In other words, the low sample size
may be confounding the class imbalance issue.

In summary, our experiments suggest that choosing a loss metric may not be as
complex as has been thought. Dice loss is often suggested as an alternative to CE loss when
classes are imbalanced [3,23], and the fact that there are choices between the micro- and
macro- averaging of Dice would seem to make choosing between them difficult. However,
since micro-averaged Dice loss is similar to 1 – OA and is sensitive to class imbalance, it
can be ruled out as a choice. Therefore, if an integrated Dice loss measure is used, this
only leaves macro-averaged Dice loss, but macro-Dice only performed well with balanced
training, suggesting that it is not particularly robust in the presence of class imbalance.
Therefore, we conclude that CE loss with class weightings offers the best overall choice for
a loss metric. When the training data classes were imbalanced, weighted CE resulted in
models with the highest accuracy, and when the training data were balanced, weighted
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CE was equivalent to CE without weighting, the loss metric that resulted in the highest
accuracy for balanced training.
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Our results are also informative for other commonly used classification loss metrics
that offer augmentations of CE or Dice loss. As noted above, Tversky loss offers an
augmentation of Dice loss that allows the user to specify relative weightings for FP and FN
errors using α and β parameters, respectively [25–27]. Although this metric is commonly
used for binary classification problems, especially when the positive class is rare, it can
be modified for multiclass problems. Equation (9) provides a micro-averaged multiclass
version of the metric, while Equation (10) provides a macro-averaged multiclass version.
Since the micro-averaged version does not differentiate between classes, but instead, uses
the total counts of TP, FN, and FP samples and associated probabilities to calculate the loss,
different α and β terms cannot be specified for each class. When micro-averaging is used,
FP samples relative to one class become FN samples relative to other classes; as a result, the
value and meaning of adding α and β terms is unclear in the context of micro-averaging.
However, when using a macro-averaged version, the user could specify different α and β

terms for each class to allow for differing class-level relative weightings of FP and FN errors.
It is also possible to calculate the class-weighted macro-averaged Tversky loss. As a result,
the user has control over relative class weightings in the final metric along with the relative
weightings of FP and FN errors for each class separately. Although this allows for a high
degree of refinement and customization, the tradeoff is increased complexity in configuring
the metric. Based on our findings relating to Dice loss, we argue that a macro-averaged
version of multiclass Tversky loss can be considered if classes are imbalanced; however, a
micro-averaged version would not be appropriate. In regard to focal versions of the losses,
such as focal CE loss [45] and focal Tversky loss [27], in which the primary goal is to control
the relative impact of difficult-to-predict samples based on their prediction confidence,
we argue that the results highlighted above for the associated non-focal versions hold for
the augmented, focal versions. For example, if classes are imbalanced, a focal version of
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weighted CE or macro-averaged multiclass Tversky loss is preferable to focal CE or focal
micro-averaged multiclass Tversky loss.

Micro-Averaged Multiclass Tversky Loss = 1 − (
Σ p̂TP + ε

Σ p̂TP + αΣ p̂FP + βΣ p̂FN + ε
) (9)

Macro-Averaged Multiclass Tversky Loss =
1
N ∑C

j=1 1 − (
Σ p̂TP + ε

Σ p̂TP + αΣ p̂FP + βΣ p̂FN + ε
) (10)

It is important, however, to note that these findings may not hold for all problems
or use cases. The performance of these different metrics may be case-specific, so the user
may need to experiment with multiple loss metrics. Furthermore, different metrics may be
appropriate for different stages of the analysis. For example, during the training phase, the
primary concern is to produce an effective model. How to define its effectiveness is left up
to the user, and questions of how the loss metrics relate to map accuracy may be of only
minimal interest. At this initial stage, the emphasis may be on providing sufficient samples
to train the model and ensure that all classes meet some basic minimum classification
accuracy. On the other hand, during the final accuracy assessment stage, the metrics should
have intuitive meaning, and most importantly, quantify real properties of the map itself,
rather than of a hypothetical map. This requires that the accuracy be calculated from an
estimate of the population confusion matrix.

It is also important to consider these findings within the broader context of research
into class imbalance and classification. In their review paper, Ghosh et al. [46] point out
that the class imbalance problem is tightly connected to dataset size issues and concept
complexity (which, in turn, includes class separability). In our results, this is illustrated
by the consistently high classification accuracies of the sea/lake class, irrespective of the
loss metric used, despite its rarity in the imbalanced training data (Figure 7). The distinct
spectral and spatial properties of water presumably compensate for any problems due
to the limited number of training samples. On the other hand, the spectrally variable
industrial and highway classes both suffer from large declines in PA (recall), when trained
with the imbalanced data, despite the fact that, of the two classes, only industrial is a rare
class in the imbalanced dataset (Figure 7).

Ghosh et al. [46] also identify three categories of approaches for dealing with class
imbalance in the deep learning literature: those that are applied through pre-processing of
the input data, post-processing of the predictions, and special purpose algorithms (see also
Johnson and Khoshgoftaar [47]). For example, at the algorithmic level, Ding et al. [48] found
that a very deep architecture, with greater than 10 layers in the CNN, increased accuracy
for the classification of imbalanced classes. Addressing imbalance through the selection
of an appropriate loss metric is also an algorithmic approach [46]. Loss metrics represents
a particularly attractive way of addressing imbalance because it is a conceptually simple
approach, directly affects the decision boundary, and places very little, if any, additional
burden on the classifier.

5. Conclusions

When training and assessing classification models with imbalanced classes in the
training set and/or within the landscape being mapped, it is important to consider the
appropriate use and interpretation of accuracy assessment metrics. In this paper, we focused
on choosing between and interpreting class-aggregated accuracy assessment metrics and
multiclass loss metrics. Here, we conclude with best practices and recommendations.

All final summary accuracy assessment statistics, including both the statistics of
individual classes and averages over the classes, should be calculated from a population
confusion matrix. An important feature of the population matrix is that it incorporates
the class prevalences, which are a fundamental feature of the classification. For example,
if OA is calculated from a confusion matrix that does not take into account landscape
proportions, or appropriate corrections are not made in the analysis, the reported OA will
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be biased, since it is sensitive to relative class proportions. PA (recall) is usually listed as a
metric insensitive to class prevalence, with the implication that it can be calculated from
the sample confusion matrix. However, the classifier itself, rather than the statistic, may
be prevalence-dependent [14]. Thus, all accuracy statistics, including OA, UA (precision),
PA (recall), F1-score, and their macro-averages, should be calculated from population
confusion matrices.

Macro-averaged assessment metrics provide a summary of how well classes are
differentiated on average. When class-level UA and PA are aggregated using the micro-
averaging method, they are equivalent to OA. Since these metrics are redundant, they
should not be reported, as doing so is only likely to add confusion. Weighted macro-
averaging, where the weights are the class prevalences, is also equal to OA, and thus,
should also be avoided.

Loss metrics, though they are a measure of classification success, serve a purpose
that differs from that of final map accuracy assessment. Loss metrics guide the model
development, and thus, affect the accuracy of the final product. The communication of
map uncertainty is generally not relevant for loss metrics, and thus, it is not necessary to
calculate the loss from estimates of the population. Our examples demonstrate that, since
users typically wish to maximize class accuracy across all classes, balanced training data
are preferable to imbalanced data, irrespective of whether the actual dataset to be classified
is imbalanced or not. In practice, however, generating a balanced training dataset may not
be possible, and thus, consideration of how loss metrics are affected by class imbalance is
important.

In our experiments, the CE loss metric with weighting proportional to class prevalences
in the training data generally resulted in models with the highest accuracy statistics. This
was true for models trained with both balanced training data (in which case, the loss metric
is equivalent to CE without weighting) and also for imbalanced training data. This is an
important finding, since as noted above, developing balanced training data is challenging
for many applications. Dice loss has been suggested as an alternative to CE loss when
classes are imbalanced. However, the type of averaging of Dice losses is important. Macro-
Dice is a simple average of the individual F1-statistics, thus weighting all classes equally.
Macro-Dice loss resulted in accuracies similar to, but consistently slightly lower than,
the accuracies obtained with the CE loss without weighting. Micro-averaged dice loss is
similar to 1 – OA, except that class probabilities as opposed to class labels are used in the
calculation. Because OA, by definition, gives low weight to rare classes, the use of the
micro-averaged Dice loss resulted in low accuracies when the model was trained with
imbalanced data. However, when the model was trained with balanced training data, the
accuracies were very similar to those obtained with macro-Dice. In our data, there was no
apparent benefit to using Dice loss instead of weighted CE.

Our experiments provide valuable insight regarding how different loss measures
work in practice. Nevertheless, it is important to note that the best or most appropriate
loss metric may be case-specific, and therefore, our results may not be applicable to every
situation. As a result, the analyst may need to experiment with multiple loss metrics to
determine which one is most appropriate for a specific use case.
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