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Abstract: The land surface model (LSM) is extensively utilized to simulate terrestrial processes be-
tween land surface and atmosphere in the Earth system. Hydrology simulation is the key component
of the model, which can directly reflect the capability of LSM. In this study, three offline LSM simu-
lations were conducted over China using the Community Land Model version 5.0 (CLM5) driven
by different meteorological forcing datasets, namely China Meteorological Forcing Dataset (CMFD),
Global Soil Wetness Project Phase 3 (GSWP3), and bias-adjusted ERA5 reanalysis (WFDE5), respec-
tively. Both gridded and in situ reference data, including evapotranspiration (ET), soil moisture (SM),
and runoff, were employed to evaluate the performance levels of three CLM5-based simulations
across China and its ten basins. In general, all simulations realistically replicate the magnitudes,
spatial patterns, and seasonal cycles of ET over China when compared with remote-sensing-based ET
observations. Among ten basins, Yellow River Basin (YRB) is the basin where simulations are the
best, supported by the higher KGE value of 0.79. However, substantial biases occur in Northwest
Rivers Basin (NWRB) with significant overestimation for CMFD and WFDE5 and underestimation
for GSWP3. In addition, both grid-based or site-based evaluations of SM indicate that systematic
wet biases exist in all three CLM5 simulations for shallower soil layer over nine basins of China.
Comparatively, the performance levels in simulating SM for deeper soil layer are slightly better.
Moreover, all three types of CLM5 simulate reasonable runoff spatial patterns, among which CMFD
can capture more detailed information, but GSWP3 presents more comparable change trends of runoff
when compared to the reference data. In summary, this study explored the capacity of CLM5 driven
by different meteorological forcing data, and the assessment results may provide important insights
for the future developments and applications of LSM.

Keywords: community land model; meteorological forcing; evapotranspiration; soil moisture;
runoff; China

1. Introduction

Land surface process plays a vital role in connecting the water cycle and energy process
at the interface between land and atmosphere [1–3]. For instance, evapotranspiration (ET)
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ensures a continuous water vapor supply to the atmosphere and affects the local climate
through precipitation [4–6]. Soil moisture (SM) controls the partitioning of net radiation into
sensible heat flux and latent heat flux at the soil surface [7,8]. Runoff collects residual water
from the precipitation and ET, maintaining the water balance on Earth and providing fresh
water for agricultural irrigation, industrial processes, and domestic consumption [4,9–11].
Consequently, acquiring more precise terrestrial information is essential for gaining a
deeper understanding of land surface process and evolution of terrestrial ecosystems.

In recent decades, numerous measurements and their associated approaches have
been proposed and developed to estimate the terrestrial variables. Therefore, various
land surface data products have been constructed and utilized in land surface and climate
studies [12]. For example, in situ measurements can provide the most accurate terrestrial
elements at point and local scales. However, directly measuring hydrological variables on a
larger scale is unrealistic due to the limited instrument coverage and highly heterogeneous
land surface condition [13,14]. Satellite-based remote sensing retrievals can be used to
derive hydrology variables on a larger spatial scale, but they only offer static estimations
instead of depicting the dynamic process. Additionally, the accuracy of data heavily
relies on retrieval algorithms and the quality of other relevant observations [15,16]. The
emergence of land surface model (LSM) provides powerful help towards the purpose.
LSM not only generates continuous spatiotemporal terrestrial data but also describes
the dynamic variations of the physical process. As a crucial component of the Earth
system model (ESM), LSM is a promising tool for simulating and understanding the
interactions between the land surface and atmosphere in the Earth system [17,18]. LMS is a
comprehensive numerical model including various biophysical and biochemical processes,
among which hydrological process is the most fundamental and key component [19–21].
The performance of hydrology simulation can directly determine the ability of LSM to a
certain extent. LSM has been widely used to provide estimates of terrestrial hydrological
elements on regional and global scales [22–25].

The Community Land Surface Model (CLM) is one of the most popular LSMs de-
veloped and maintained by National Center for Atmospheric Research (NCAR). Serving
as the land component of the Community Earth System Model (CESM), CLM has been
well-test and broadly utilized in hydrological and ecological processes studies [17,26].
CLM5, the latest version of CLM, has undergone significant upgrades in various aspects,
including terrestrial water, energy, carbon, and nitrogen cycle, based on its predeces-
sors. CLM5 demonstrates improved performance compared to earlier versions such as
CLM4.5 and CLM4.0, particularly in key hydrological processes, as evidenced by vali-
dation studies. For example, Lawrence et al. [17] reported general improvements and
modification from CLM4.5 to CLM5, revealing the superiority of CLM5 in multiple aspects.
Song et al. [27] modeled land surface processes in a mountainous rainforest in Costa Rica
and found that CLM5 alleviates some errors existing in CLM4.5 through more reliable
parameterization, when compared to observed canopy flux and micrometeorological data.
Cheng et al. [28] documented that CLM5 exhibits improved ability in capturing terres-
trial biogeochemical dynamic over the Contiguous United States (CONUS) due to the
parametric and structural updates.

Despite great efforts to improve the performance of CLM over the years, substantial
model biases still remain [14,29–31]. These biases are primarily influenced by uncertainties
in atmospheric forcing and land surface parameterization. Meteorological forcing serves
as the upper boundary condition for CLM and directly impacts the simulations of the
energy and water cycles in CLM. Recent advancements in meteorological measurements
and associated data fusion methods facilitate generating various atmospheric forcing
products. For instance, the Global Soil Wetness Project (GSWP) produced the first global
continuous gridded meteorological forcing dataset, with GSWP version 3 encompassing
a century-long comprehensive and extensive set of data [23]. Recently, Cucchi et al. [32]
developed the WFDE5 forcing data using the WATCH Forcing Data (WFD) methodology
applied to surface meteorological variables from the ERA5 reanalysis. Validation results
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demonstrated that WFDE5 exhibits lower mean absolute error and higher correlation
compared to previous reanalysis data for all elements. Wang et al. [33] found that global
reanalysis-based atmospheric forcings produced excessively low SM values in northwestern
China and excessively high SM values in northeastern China. By contrast, these biases
can be reduced by employing meteorological forcing obtained through the merging of
regional station-based and remote-sensed observations [33]. Therefore, significant efforts
have been devoted to developing regional meteorological forcing datasets using diverse
merging methodologies [34]. In CONUS, the North American Land Data Assimilation
System (NLDAS) provides a regional high-resolution spatiotemporal atmospheric dataset
that has been widely utilized to drive a hydrological model and land surface model [30,35].
In China, Shi et al. [36] developed the China Meteorological Administration Land Data
Assimilation System (CLDAS) atmospheric forcing dataset, which was used to drive Noah-
MP LSM over China [34]. The results indicated that CLDAS helps in improving Noah-MP-
based simulations in most areas over China and its eight river basins [34]. Additionally,
He et al. [37] established the China Meteorological Forcing Dataset (CMFD), which is a
high-spatial–temporal resolution gridded near-surface meteorological dataset for studies
of land surface processes in China. The dataset was constructed through the fusion of
satellite-based remote sensing products, reanalysis datasets and in situ observation data,
and has proven to be reliable for LSM simulation in China [38–40].

The above-mentioned meteorological forcing datasets have their own merits, and
several previous studies reported the simulation results of LSM driven by different at-
mospheric forcing datasets. Wang et al. [15] conducted CLM4.5 simulations using four
atmospheric forcing datasets globally, three of which include precipitation adjusted by
Global Precipitation Climatology Project (GPCP) monthly product. The estimations were
validated and evaluated using observation-based datasets. Liu et al. [41] explored the
impact of the CMFD and PRIN (the global forcing dataset developed by Princeton Uni-
versity) on two versions of CLM (CLM3.5 and CLM4.5) over China, and found that the
pair of CMFD + CLM4.5 outperformed other paired simulation experiments. Ma and
Wang [42] revealed the capability of CLM5 forced by CMFD in estimating ET, SM, and
snow cover fraction across mainland China using site-based observations. These studies
provided valuable references for the meteorological forcing development and the associated
model application. However, these modeling assessments either focused solely on previous
versions of CLM (e.g., CLM3.5 and CLM4.5) or CLM5 driven by single meteorological
forcing dataset. Systematical estimations of CLM5 forcing using different atmospheric
forcing datasets have not been conducted. Furthermore, some CLM-modeled hydrological
variables, such as runoff, have not been thoroughly investigated due to a lack of gridded
reference data.

In the current study, we conducted three types of model simulation experiments over
China, in which CLM5 was driven by CMFD, GSWP3, and WFDE5, respectively. We then
employed various grid-based estimations and station-based observations as the reference
data to evaluate the performance in ET, SM, and runoff simulations from different CLM5
configurations. The paper is structured as follows: Section 2 provides a brief description
of the land surface model and forcing data. Section 3 introduces the reference data and
methods used in this study. The model evaluation results are presented in Section 4.
Section 5 discusses some issues, and Section 6 provides the conclusions of this study.

2. Land Surface Model and Forcing Data
2.1. CLM5

The development of CLM has been a time-consuming and ongoing effort over the
past few decades. CLM5 is the latest version, which incorporates significant updates from
CLM4.5, particularly in land surface hydrology, plant hydraulics, and snow parameteri-
zation schemes [17]. CLM5 has been adopted as the land component of a subset of ESMs
participating in phase 6 of the Coupled Model Intercomparison Project (CMIP6), due to
its outstanding ability to simulate global energy, water, and carbon budgets. In CLM5, in
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order to accurately depict high heterogeneity of land surface, each grid cell is classified into
multiple sub-grid land units, and each land unit consists of multiple snow/soil columns
occupied with diverse plant functional types (PFTs). Land surface processes for each land
unit, column, and PFT are simulated independently, and each sub-grid unit retains its
own prognostic variables [17]. CLM5 runs based on specific surface data derived from
multiple sources. The leaf area index (LAI) for different PFTs was obtained from Moderate-
Resolution Imaging Spectroradiometer (MODIS) satellite data. Canopy top and bottom
heights were retrieved from Bonan [43]. Soil texture was calculated using the Interna-
tional Geosphere-Biosphere Programme (IGBP) soil dataset, which includes approximately
5000 soil mapping units. More detailed information can be found in Lawrence et al. [17].
In this study, CLM5 in its offline model is used.

2.2. Meteorological Forcing Data

Three different meteorological forcings are used in this study: CMFD, GSWP3, and
WFDE5. The CMFD was developed through fusion of numerous remote sensing products,
reanalysis datasets and in situ station observations [37]. The CMFD covers seven near-
surface meteorological elements at a temporal resolution of 3 h and a spatial resolution
of 0.1◦ × 0.1◦ for China from 1979 to 2018. Due to its high quality of continuous spatial–
temporal coverage, CMFD is widely used in hydrological models and LSMs [31,41,44].

The GSWP3 is a global gridded meteorological forcing dataset produced by the Insti-
tute of Industrial Science, University of Tokyo. It is based on the 20th Century Reanalysis
version 2, which was performed with National Centers for Environmental Prediction
(NCEP) model. The GSWP3 forcing dataset is a 3-hourly 0.5◦ forcing product covering the
period of 1901–2014. It serves as the default forcing dataset for CLM5 in offline mode [17,45].
Temperature, precipitation, wind, shortwave radiation and longwave radiation within
GSWP3 were bias-corrected using several other datasets, including Climate Research Unit
(CRU), Global Precipitation Climatology Centre (GPCC), and Surface Radiation Budget
datasets. GSWP3 has been broadly utilized in the hydro-energy-eco processes simulation
and investigation for a longer time span [46,47].

The WFDE5 provides bias-corrected reconstruction of near-surface variables. It is
designed to serve as a meteorological forcing dataset for land surface and hydrological
models developed by the European Centre for Medium-Range Weather Forecasts (ECMWF).
It was generated using the WFD methodology applied to ERA5 reanalysis dataset. The data
were adjusted based on an elevation correction method and corrected using a series of data
including CRU, CPCC and precipitation gauge observations. The WFDE5 dataset exhibits
lower mean absolute error and higher correlation than its predecessors through a series of
evaluation against globally distributed site-based observations for all elements [32]. The
WFDE5 was provided at the hourly time step and the 0.5◦ spatial resolution spanning from
1979 to 2019.

2.3. Experimental Setup

In this study, we carried out three types of CLM5 simulation experiments, in which
CMFD, GSWP3 and WFDE5 atmospheric forcing datasets were used to drive CLM5 in
its offline mode, and they were referred as CMFD, GSWP3 and WFDE5, respectively.
Considering that the inconsistences in the spatial resolution can introduce uncertainties,
we upscaled CMFD data to 0.5◦ × 0.5◦ grid cells using a simple arithmetic average to
match GSWP3 and WFDE5. Consequently, all three CLM5 simulations were ran at a spatial
resolution of 0.5◦ × 0.5◦. The model integration time step was set to 1800 s, and the monthly
outputs were recorded and used for evaluation. To achieve an equilibrium initial condition
and steady state, CLM5 simulations were performed in the overlap period of three forcing
datasets (1980–2014) with the first 5-year (1980–1984) run disregarded as spinup. Therefore,
only the simulation results from 1985 to 2014 were used in the following comparisons,
analyses and evaluations.
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In this study, CLM5 simulations were conducted using the prescribed satellite phenol-
ogy (SP) mode, in which the vegetation phenology parameters are from globally available
satellite data in the default CLM5 surface datasets. In SP mode, the vegetation states
(e.g., canopy bottom heights, top heights, LAI) are derived through daily linear inter-
polation between adjacent monthly values. More detailed information can be found in
Lawrence et al. [48].

3. Data and Method
3.1. Validation Data

In this study, a suite of comprehensive datasets, including remote-sensing-based
observations, in situ measurements and reanalysis datasets over China were utilized to
validate the CLM5 simulations. Specifically, we evaluated the impact of meteorological
forcing datasets on ET, SM and runoff. For the evaluation at different regional scales,
we divided mainland China into ten basins. They are Songhua River Basin (SHRB),
Liao River Basin (LRB), Hai River Basin (HaiRB), Huai River Basin (HuaiRB), Yellow
River Basin (YRB), Yangtze River Basin (YZRB), Pearl River Basin (PRB), Southeast Rivers
Basin (SERB), Southwest Rivers Basin (SWRB), and Northwest Rivers Basin (NWRB). The
spatial distribution of these basins is provided in Figure 1.

Figure 1. The ten basins map and the locations of ET and SM observation sites. The river basins consid-
ered in this study are Songhua River Basin (SHRB), Liao River Basin (LRB), Hai River Basin (HaiRB),
Huai River Basin (HuaiRB), Yellow River Basin (YRB), Yangtze River Basin (YZRB), Pearl River
Basin (PRB), Southeast Rivers Basin (SERB), Southwest Rivers Basin (SWRB) and Northwest Rivers
Basin (NWRB).

3.1.1. ET

a. GLEAM ET
Global Land Evaporation Amsterdam Model (GLEAM) evapotranspiration data are

used to evaluate the simulated ET in three types of CLM5 simulations. The GLEAM was
derived from reanalysis radiation and air temperature, a combination of gauge-based,
reanalysis and satellite-based precipitation, as well as satellite-based vegetation optical
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depth. It covers a 43-year period from 1980 to 2022. GLEAM maximizes the recovery of
information related to ET from the available stack of climatic and environmental obser-
vations [49,50]. In GLEAM, the Priestley and Taylor equation was adopted to calculate
potential evaporation (PET) based on observations of surface net radiation and near-surface
air temperature, which are achieved from remote sensing-based products. PET is converted
into actual evaporation by applying a multiplicative evaporative stress factor derived from
microwave observations of the vegetation optical depth. Moreover, the extensive usage
of microwave remote sensing products in GLEAM ensures the accuracy of ET estimation
under diverse weather conditions. Recent evaluations demonstrated that the GLEAM ET
product outperforms other remote-sensed ET products in estimating terrestrial evapotran-
spiration [51–54]. From the perspective of globe, Zhu et al. [52] comprehensively evaluated
the accuracy and uncertainty of five remote sensing-based global ET products (e.g., MOD16,
SSEBop, GLEAM, AVHRR, and BESS) at multiple scales against in situ observations from
94 worldwide flux tower, and the results show that GLEAM outperforms other products.
Yao et al. [53] also reported that the performance of GLEAM is the best among the three
actual ET products (GLEAM, NOAH, and CR), with high accuracy and low uncertainty in
China. The outstanding performance of GLEAM is probably attributed to its detailed and
comprehensive parameterization. As a consequence, GLEAM is commonly used as a bench-
mark for validating and assessing land surface models and hydrological models [14,28–30].
Currently, GLEAM incorporates the latest data on precipitation, soil moisture, vegetation
optical depth, radiation, and temperature. Due to the reliability and applicability, GLEAM
ET was selected as the gridded-based ET reference data in this study. The GLEAM datasets
are provided at a 0.25◦ × 0.25◦ grid cell with daily, monthly, and yearly temporal scales. In
this study, GLEAM version 3.6 ET data are adopted to evaluate the performance levels of
CLM5 driven by using three forcing datasets.

b. Eddy covariance measurements of ET
Considering the relatively accurate estimation of latent heat flux (ET in energy units)

provided by Eddy covariance (EC) measurements at specific sites, the EC-based ET observa-
tions of 8 flux towers from the ChinaFLUX were also adopted for validation. ChinaFLUX is
a vital observation and research network that utilized ET and chamber methods to quantify
the exchanges of water vapor and energy between terrestrial ecosystem and atmosphere.
It plays an important role in the network AsiaFlux [55–57]. Monthly observed data from
the 8 stations were used, and the heat flux data with unit of W/m2 were converted to
equivalent ET with unit of mm/mon using Equation (1).

ET = LE/λ (1)

where λ is the latent heat of vaporization assumed to be a constant of 2.45 MJ/kg [57]. The
spatial distribution of the 8 stations is shown in Figure 1 and the detailed information is
listed in Table 1.

Table 1. The information of the eight flux measurement sites from ChinaFLUX used in this study.
Precipitation (P), Temperature (T), and Aridity index (AI) denote the mean annual precipitation,
temperature, and aridity index, respectively.

Sites Elevation
(m) Ecosystem Type P

(mm/yr)
T

(◦C) AI

HB 3250 Alpine meadow 535 −1.7 1.29
NMG 1189 Temperate steppe 1493 −0.4 2.26

DX 4333 Alpine steppe-meadow 450 6.5 1.73
CBS 738 Temperate mixed forest 713 3.6 0.79
QYZ 102 Subtropical planted coniferous forest 1542 17.9 0.72
DHS 300 South subtropical evergreen broadleaved forest 1956 21.0 0.67

XSBN 750 Tropic seasonal rainforest 1493 21.8 0.80
YC 28 Temperate farmland 582 13.1 1.78
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3.1.2. SM

a. ITPLDAS SM
ITPLDAS is a soil moisture dataset for China obtained through assimilating the

observed brightness temperature from the Advanced Microwave Scanning Radiometer
for Earth Observing System (AMSR-E) into an LSM developed by Yang et al. [58,59].
The dataset used the automatically calibrating parameters land data assimilation sys-
tem (ITPLDAS, hereafter ITP). Its precision in estimating volumetric water content is
within ±5% compared to ground-measured value, as validated and assessed in the Ti-
betan Plateau [54,55]. This soil moisture product provides three layers (0–5 cm, 5–20 cm,
and 20–100 cm) of soil water content with a unit of m3/m3. All data are accessible at
0.25◦ spatial resolution and daily time scale, spanning from June 2002 to September 2011
over China. In this study, the daily SM data were converted into monthly and annual data
to evaluate the performance levels of CLM5-based SM simulations.

b. WS2019 SM
The in situ SM reference data used in this study are obtained from the WS2019 SM

product developed by Wang et al. [60]. These in situ SM observations were collected
by the Chinese Meteorological Administration (CMA) at over 1000 sites across China
from 1991 to 2013. The measurements were taken at five depths (10, 20, 50, 70, and
100 cm) using the gravimetric technique. Wang et al. [60] conducted strict quality control
measures to the raw SM measurements by using flied capacity and bulk density values
derived from observation-based soil texture derived soil texture datasets. Finally, more
than 35,000 volumetric monthly SM records from 732 stations covering five soil layers were
obtained. The data span from 1992 to 2013. Due to reliability and convenience, the SM
product has been broadly utilized in nature eco-environment and agriculture investigations
and assessments [61–63]. Figure 1 displays the geographic locations of these sites.

3.1.3. Runoff

a. CNRD Runoff
In this study, we employed the China Natural Runoff Dataset (CNRD) version 1.0

as the reference data to evaluate the three runoff simulations of CLM5. CNRD is a re-
cently developed, quality-controlled gridded runoff reconstruction dataset developed by
Gou et al. [47]. It offers daily, monthly, and annual 0.25◦ × 0.25◦ runoff estimates for the
period of 1961–2018 over China. The dataset was generated using the Variable Infiltration
Capacity (VIC) model trained by incorporating parameter sensitivity analysis, optimization,
and regionalization with numerous catchments gauge-based observations. CNRD holds
high potential for exploring long-term trends and spatial–temporal variations in water
resources across China. Additionally, it contributes to the development and improvement
of LSM [47,64]. To date, only the monthly runoff data are available.

b. CWRB Runoff
We also used the China’s Water Resources Bulletin (CWRB) runoff data for the period

of 2005–2014, collected and archived by the Ministry of Water Resources of China (MWRC),
as a runoff reference [11]. The bulletin provides a series of water resources statistics, includ-
ing precipitation, runoff, water supply, water use and consumption, and eco-environmental
water use. These statistics are derived from monitoring facilities located across ten river
basins in China. The runoff data in the bulletin are presented in a unit of m3, which was
converted to mm based on the basin area for comparison in this study.

3.2. Evaluation Method

We evaluated CLM5 by comparing simulated ET, runoff, and SM with the reference
data. Because of the inconsistency in the spatial resolution between the reference data and
CLM simulation outputs, the scale conversion is needed before comparison. For GLEAM,
ITP and CNRD products, they all have a finer resolution (0.25◦) than CLM simulation
results. We transformed them to the same spatial resolution of CLM results (0.5◦) using
grid box average method. As a result, a grid-to-grid comparison is performed at 0.5◦ spatial
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resolution. Moreover, for in situ observations, we performed a grid-to-site comparison,
wherein the grid-based simulation results of CLM5 are directly compared to the site-
based observations located in the corresponding grid at the same time scale (e.g., monthly,
seasonally, and/or yearly). If there is more than one station located in a grid, the average
value of the observations from these stations is adopted for comparison. Since the soil
layers of CLM5-simulated SM are not exactly consistent with the measurement layers of
the ITP SM and CMA sites, we applied weighted average method according to the soil
depths to interpolate the SM into different soil layers (10, 20, 50, 70, and 100 cm) [25].
The interpolation process involved Equation (2), where SMi denotes the SM after linearly
interpolating the simulation results to the ith observation layer; Mj represents the SM
simulation in the jth model layer; Tj,i represents the soil thickness of the intersection of
model soil layer j; and the observation layers i, b, and a denote the starting and ending
numbers of the model soil layers that intersect observation layer i.

SMi =
∑a

j=b
(

Mj·Tj,i
)

∑a
j=b Tj,i

(2)

Five metrics, including bias, relative bias (RB), root mean square error (RMSE), cor-
relation coefficient (Corr), and Kling–Gupta efficiency (KGE), were used to evaluate the
model performance. The calculations for these metrics are as follows:

Bias =
1
N

N

∑
i=1

(Si − Ri) (3)

RB =
1
N

N

∑
i=1

(
Si − Ri

Ri

)
(4)

RMSE =

√√√√ 1
N

N

∑
i=1

(Si − Ri)
2 (5)

Corr =
∑N

i=1
(
Si − S

)(
Ri − R

)√
∑N

i=1
(
Si − S

)2
∑i=N

i=1
(

Ri − R
)2

(6)

where N represents the total number of grid cells or sites; Si and Ri represent the simulated
and reference values, respectively; the subscript i denotes the sample number at the ith
position; and S and R denote the spatial or temporal mean of the modeled and reference
values, respectively.

KGE = 1 −
√
(Corr − 1)(β − 1)(γ − 1) (7)

where β and γ are defined as:

β =
S
R

(8)

γ =
σS/S
σR/R

(9)

where σS and σR denote the standard deviations of simulated and reference values, respec-
tively. The KGE is a comprehensive and objective statistical metric that provides diagnostic
insights into model performance by merging correlations, biases, and variability. A KGE
score larger than 0.5 indicates relatively good performance, the optimal score is 1. Moreover,
common trend analysis methods such as Mann–Kendall trend detection and Sen’s slope
method were also used in this study. Detailed information on these methods can be seen in
previous publications [65–67].
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4. Results

In the following sections, the intercomparisons of three atmospheric forcing datasets
were firstly conducted, and then the corresponding terrestrial simulations, namely CMFD,
GSWP3 and WFDE5, were evaluated across different spatial and temporal scales. The
evaluation focuses are ET, SM, and runoff.

4.1. Intercomparison of Meteorological Forcing Datasets

Table 2 presents the annual averages of meteorological elements from the three at-
mospheric forcing datasets during the period of 1985–2014. On a national scale, all three
datasets have comparable atmospheric elements averaged values, with the relative differ-
ence between the maximum and minimum values for each element being less than 10%.
The largest discrepancy lies in air temperature, ranging from 6.44 to 7.07 ◦C, while the
smallest difference is in humidity, with all values converging at 0.006 kg/kg. Moreover,
serving as the sources of water and energy supply for terrestrial processes, the spatial
distributions of precipitation and solar radiation are further investigated. Figure 2 illus-
trates the multi-year averaged precipitation obtained from CMFD, GSWP3, and WFDE5.
Overall, the average values of precipitation from three forcing datasets are very similar,
which are 601, 602, and 596 mm/yr, respectively. Spatially, all of them show consistent
spatial patterns, which decrease from the southeastern coastal areas to the northwestern
inland of China. The highest annual precipitation in southernmost China could be above
2000 mm/yr, while the lowest precipitation in the northwest of China is below 100 mm/yr.
Nevertheless, some discrepancies do exist. For instance, both CMFD and GSWP3 have
relatively higher precipitation in southwest China (e.g., Sichuan Province and Yunnan
Province), whereas these features are not presented in WFDE5. In addition, WFDE5 shows
more smoother spatial transitions from southeastern China (high-value areas) to northwest-
ern China (low-value areas), compared with CMFD and GSWP3. On the basin scale, the
highest inconsistency among these three atmospheric forcing datasets can be found in the
SWRB, where domain-averaged precipitation amounts are 754, 936, and 863 mm/yr for
CMFD, GSWP3, and WFDE5, respectively. By contrast, the highest consistency is located
in LRB, with domain-averaged precipitation amounts of 565, 569, and 567 mm/yr for
CMFD, GSWP3, and WFDE5, respectively. In terms of solar radiation, CMFD and GSWP3
have nearly identical annual averages, and both are less than that of WFDE5, as displayed
in Figure 3. Notably, all three forcing datasets show similar spatial patterns of solar radia-
tion, with the high-value center in western Tibetan Plateau and low-value center in central
YZRB (e.g., Sichuan Basin). However, WFDE5 shows larger amplitude of solar radiation
variation, compared with CMFD and GSWP3. For instance, the highest solar radiation
is located in SWRB, where the domain-averaged value of WFDE5 is 222 W/m2, which is
obviously larger than that of GSWP3 (205 W/m2) and CMFD (209 W/m2). These differ-
ences among different atmospheric forcing datasets could be propagated to land surface
processes by models, directly or indirectly affecting the hydrological process simulations to
some extent.

Table 2. Annual averages of meteorological elements from different meteorological forcing datasets
for the period of 1985–2014 over China.

Elements CMFD GSWP3 WFDE5

Precipitation (mm/yr) 601 602 596
Solar radiation (W/m2) 179.64 179.71 190.43

Downward longwave radiation (W/m2) 284.08 287.03 278.98
Air temperature (◦C) 6.44 7.07 7.01

Humidity (kg/kg) 0.006 0.006 0.006
Wind speed (m/s) 2.45 2.48 2.65

Surface pressure (kPa) 83.76 83.29 83.26
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Figure 2. The spatial distribution of multi-year averaged precipitation derived from (a) CMFD,
(b) GSWP3, and (c) WFDE5 during the period of 1985–2014. The numbers in the lower left corner
indicate the domain average.

Figure 3. The spatial distribution of multi-year averaged solar radiation derived from (a) CMFD,
(b) GSWP3, and (c) WFDE5 during the period of 1985–2014. The numbers in the lower left corner
indicate the domain average.

4.2. ET

Figure 4 displays the density scatter plot of the multiyear mean values (1985–2014)
of CLM5-based simulated ET (i.e., CMFD, GSWP3, and WFDE5) and GLEAM-based ET.
Generally, the scatter points are consistently distributed around the 1:1 line, indicating a
strong correlation between the modeled ET and reference ET. The Corr values for CMFD,
GSWP3, and WFDE5 are 0.94, 0.92, and 0.92, respectively, and all KGE values exceed 0.85.
To investigate the spatial patterns of ET, gridded multiyear average annual ET simulated
by CMFD, GSWP3, and WFDE5, and their RBs against GLEAM in China are presented
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in Figure 5. Overall, all three ET simulations capture the spatial patterns of ET reasonably
well, exhibiting a gradual decrease from southeast to northwest. In southeast China, the
highest annual ET values can reach above 800 mm/yr and even exceed 1200 mm/yr in
parts of the Hainan province, while in northwest China, the lowest ET values are below
100 mm/yr. In addition, the domain-averaged values of simulated ET are 331, 336, and
343 mm/yr for CMFD, GSWP3, and WFDE5, respectively, which are all close to GLEAM
ET values of 344 mm/yr. All three experiments show outstanding performance levels in
south, central north, and northeast China, while presenting diverse performance levels
in northwest China, as shown in Figure 5e–g. In most areas of northwest China, both
CMFD and WFDE5 significantly overestimate ET with the RB values larger than 50%,
while GSWP3 underestimates ET with an RB value less than −50%. To investigate the
difference among these experiments across different basins of China, the statistical metrics
for all the experiments against GLEAM ET over China and its ten basins were calculated
and are listed in Table 3. The statistical metrics vary with regions. All three types of
simulations perform well in resembling GLEAM ET in most basins. Specifically, the most
outstanding performance occurs in the YRB, with RB values of −0.4%, 2.7%, and 0.7%,
and KGE values of 0.82, 0.80, and 0.77 for CMFD, GSWP3, and WFDE5, respectively. In
contrast, the simulations fail to accurately capture ET spatial pattern in NWRB. The RB
values in this region are 55.8%, 5.5%, and 60.1%, with most areas deviating by more than
±50% from GELAM ET. These significant differences can be attributed to two reasons.
Firstly, the NWRB comprises diverse climate zones, including arid, semi-arid, semi-humid,
and humid climate zones. As a result, the factors affecting ET are considerably more
complex than other basins. Secondly, these biases may result from the forcing data. The
gridded meteorological elements in the three forcing datasets are either derived from
gauge-based observations or corrected by observations. However, the scarcity of station in
the NWRB hampers the guarantee of high-quality climate data. Despite overestimation
and underestimation existing at the regional scale in all three experiments, both CMFD and
GSWP3 show slightly better performance levels than WFDE5 in terms of KGE values over
ten basins.

Figure 4. The density scatter plots between GLEAM-based ET and simulated ET forced by (a) CMFD,
(b) GSWP3, and (c) WFDE5 across China for the 1985–2014 period. The black solid line is the 1:1 line,
and the black dashed line is the linear fit line. The statistical metrics including Bias, RMSE, Corr, and
KGE are domain-averaged values shown in the top-left corner.

The seasonal variations in ET over China and its ten basins were also analyzed. As
shown in Figure 6a, the ET in summer (June–July–August) is notably higher than in other
months due to sufficient precipitation and high temperature, which is captured by all three
CLM5-simulated ET and GLEAM ET. Nevertheless, discrepancies still exist between CLM5
simulations and GLEAM estimations in several basins. For example, all three types of
simulations overestimate ET during the warm season (May to August) in the LRB, HaiRB
and HuaiRB (Figure 6c–e), especially in HuaiRB, the simulated ET surpasses GLEAM
ET with an RB of approximately 40%. Conversely, CLM5 underestimates ET in YZRB
and PRB (Figure 6g,h) during the cold season (January–February–March) and in SERB
throughout the year (Figure 6i) compared to GLEAM data. Overall, the three CLM5-based
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simulations show comparable performance levels in the seasonal cycles of ET over most
basins, with WFDE5 presenting slightly better results than other experiments, displaying a
closer cycle pattern in relation to GLEAM ET.

Figure 5. Multi-year averaged ET derived from (a) GLEAM, (b) CMFD, (c) GSWP3, and (d) WFDE5,
and the RB between (e) CMFD and GLEAM, (f) GSWP3 and GLEAM, and (g) WFDE5 and GLEAM
for the period of 1985–2014. The numbers in the lower left corner indicate the domain average.

Table 3. Statistical metrics (Bias, RB, RMSE, Corr, and KGE) of averaged annual ET between simula-
tions (CMFD, GSWP3, and WFDE5) and GLEAM observations over China and its ten basins during
the period of 1985–2014.

Regions Simulations Bias (mm/yr) RB (%) RMSE (mm/yr) Corr KGE

China
CMFD −13.5 18.8 83.4 0.94 0.86
GSWP3 −8.3 3.6 88.4 0.92 0.91
WFDE5 −0.8 23.5 91.2 0.92 0.86

SHRB
CMFD −33.7 −4.2 72.7 0.35 0.29
GSWP3 −11.9 1.1 70.8 0.36 0.35
WFDE5 −36.3 −4.8 77.1 0.29 0.24

LRB
CMFD −24.7 −5.2 50.9 0.82 0.75
GSWP3 9.2 2.7 44.8 0.85 0.84
WFDE5 −13.3 −2.2 49.5 0.79 0.75
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Table 3. Cont.

Regions Simulations Bias (mm/yr) RB (%) RMSE (mm/yr) Corr KGE

HaiRB
CMFD 15.6 4.5 76.3 0.44 0.17
GSWP3 51.0 13.3 106.9 0.40 −0.05
WFDE5 34.6 9.4 104.3 0.33 −0.16

HuaiRB
CMFD 51.1 12.7 91.6 0.38 0.36
GSWP3 133.3 29.5 159.9 0.39 0.34
WFDE5 93.5 21.3 124.9 0.38 0.35

YRB
CMFD −10.8 −0.4 60.5 0.82 0.82
GSWP3 −0.9 2.7 63.7 0.80 0.80
WFDE5 −6.5 0.7 66.7 0.80 0.77

YZRB
CMFD −43.3 −5.0 102.4 0.78 0.71
GSWP3 −36.2 −3.6 103 0.76 0.72
WFDE5 −17.4 −0.6 100.4 0.75 0.74

PRB
CMFD −65.2 −7.4 117.1 0.55 0.54
GSWP3 −49.1 −5.6 120.2 0.58 0.46
WFDE5 −31.1 −2.6 106.6 0.50 0.50

SERB
CMFD −192.3 −23.0 220.5 −0.04 −0.12
GSWP3 −142.7 −16.8 172 0.24 0.14
WFDE5 −168.6 −20.0 197.3 0.09 0.00

SWRB
CMFD −24.7 4.2 98.5 0.96 0.79
GSWP3 −12.1 10.7 117.5 0.94 0.71
WFDE5 10.0 21.2 137.5 0.91 0.62

NWRB
CMFD 18.6 55.8 56.2 0.77 0.65
GSWP3 −1.9 5.5 57.8 0.78 0.75
WFDE5 19.5 60.1 65.2 0.70 0.60

To further quantitatively explore the performance levels in ET simulations of CLM5
driven by three forcing datasets, we also evaluated the ET results using eight stations’
observation data from ChinaFLUX. The monthly mean ET time series from simulations and
observations are illustrated in Figure 7, and statistical metrics are provided in Table S1. All
three CLM5-based simulations capture the fluctuation patterns of monthly averaged ET at
all sites, especially at CBS, QYZ, and DHS (Figure 7d–f). The averaged Corr value at these
sites can reach up to 0.93, 0.91, and 0.85, and the averaged KGE values can exceed 0.86, 0.81,
and 0.75 for CMFD, GSPW3, and WFDE5, respectively (Table S1). However, remarkable
underestimation of ET occurs at HB, NMG, and DX (Figure 7a–c), with averaged RB values
ranging from −67.8% to −24.8% for all types of simulations. This indicates that CLM5 fails
to accurately model the physical process associated with ET in arid areas. In contrast, a
systematic overestimation can be found at XSBN, with RB values of 35.8%, 39.0%, and 42.5%
for CMFD, GSWP3, and WFDE5, respectively. A possible reason for this overestimation can
be uncertainties in the LAI data within the model used in the computation of transpiration
(the predominant components of ET). The parameterization scheme of ET within CLM5
does not accurately represent the ET-related processes in such an environment characterized
by comprehensive multilayer canopies.

4.3. SM

In this section, we evaluated the SM of three CLM5-based simulation experiments
using gridded reference data (ITP SM) and gauge-based measurements (WS2019 SM).
Notably, the first nine soil layers (0–1.063 m) in CLM5 were adjusted to match the referenced
depths (0–5, 5–20, and 20–100 cm for ITP SM, and 0–10, 10–20, 40–50, 60–70, and 90–100 cm
for WS2019 SM). This alignment was achieved using the weight averaged of the soil layer
thicknesses [25], as described in Section 3.2. Because of the strong spatial heterogeneity
of SM, assessing the representativeness of station measurements was a challenging task.
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In this study, we employed the average of the simulated SM values over China and its
ten basins when compared with site-observed SM. In addition, we only selected grid cells
containing at least one observation station to ensure meaningful comparisons.

Figure 6. Seasonal cycles of ET from the GLEAM, CMFD, GSWP3, and WFDE5 over (a) China and its
ten basins (b) SHRB, (c) LRB, (d) HaiRB, (e) HuaiRB, (f) YRB, (g) YZRB, (h) PRB, (i) SERB, (j) SWRB,
and (k) NWRB during the period of 1985–2014.

Figure 8 illustrates the spatial distribution of multi-year (2003–2010) averaged SM
in the 0–5 cm soil layer for ITP SM, three CLM5-simulated SMs, and their differences.
Compared with the ITP SM, all three simulated SMs generally capture the spatial pattern
(increasing gradually from northwest to southeast) and dry/wet centers of the SM in
most areas over China (Figure 8a–c). However, some differences in spatial variations are
also evident. The domain-averaged SM values in the 0–5 cm layer over China for CMFD,
GSWP3, and WFDE5 are 0.233, 0.226, and 0.230 m3/m3, respectively, all remarkably higher
than ITP SM (0.164 m3/m3). This indicates that CLM5 substantially overestimates SM in
the shallow soil layer. The wet biases in the 0–5 cm SM mainly result from overestimations
occurring in specific regions, such as HuaiRB, HaiRB, YZRB, YRB, SWRB, and NWRB. In
particular, in HuaiRB, the RB values are 87.6%, 84.8%, and 86.8% for CMFD, GSWP3, and
WFDE5, and the KGE values are negative against ITP SM. It suggests the poor skill of CLM5
in SM modeling for the 0–5 cm over HuaiRB (Table 4). Comparably, the overestimations of
SM in CLM5 can also be documented in previous studies [28,42,68]. Nevertheless, CLM5
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underestimates SM in the 0–5 cm soil layer over SERB, southeast of YZRB and north of
SHRB. In addition, we also compared spatial patterns of SM simulations in the deeper soil
layers (e.g., 5–20 cm and 20–100 cm) with ITP-based SM (Figures S1 and S2). Different from
the results of 0–5 cm SM, both 5–20 cm and 20–100 cm SM present closer domain-averaged
SM to ITP SM values, although slight underestimations exist in parts of China. For instance,
the biases of 5–20 cm SM are only −0.014, −0.020, and −0.016 m3/m3 for CMFD, GSWP3,
and WFDE5 against ITP SM, respectively. Overall, the CLM5 performs better in deeper
soil layers with higher mean KGE values (0.54 for 5–20 cm SM, and 0.52 for 20–100 cm
SM, respectively) than that in shallower soil layer (0.43 for 0–5 cm SM) based on CMFD,
GSWP3, and WFDE5, relative to ITP-based SM over China (Tables 4, S1 and S2).

Figure 7. Comparison of monthly mean ET simulations from CMFD, GSWP3, and WFDE5 with ET
measurements from ChinaFLUX at the 8 stations (a) HB, (b) NMG, (c) DX, (d) CBS, (e) QYZ, (f) DHS,
(g) XSBN, and (h) YC distributed in China during the period of 2003–2010.
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Figure 8. The spatial distribution of multi-year averaged SM at the 0–5 cm depth for the (a) ITP,
(b) CMFD, (c) GSWP3, and (d) WFDE5, and (e) CMFD minus ITP, (f) GSWP3 minus ITP,
and (g) WFDE5 minus ITP during the period of 2003–2010. The numbers in the lower left corner
indicate the domain average.

Table 4. Statistical metrics (Bias, RB, RMSE, Corr, and KGE) of averaged annual SM for the 0–5 cm
soil layer between simulations (CMFD, GSWP3, and WFDE5) and ITP-based SM over China and its
ten basins for the period of 2003–2010.

Regions Simulations Bias (m3/m3) RB (%) RMSE (m3/m3) Corr KGE

China
CMFD 0.069 72.6 0.094 0.75 0.40
GSWP3 0.062 61.7 0.093 0.73 0.47
WFDE5 0.066 69.3 0.095 0.73 0.42

SHRB
CMFD 0.030 17.6 0.069 0.23 0.18
GSWP3 0.017 11.8 0.071 0.10 0.03
WFDE5 0.032 19.3 0.070 0.19 0.16

LRB
CMFD 0.047 30.5 0.070 0.61 0.42
GSWP3 0.040 27.3 0.068 0.55 0.40
WFDE5 0.051 33.1 0.075 0.54 0.37
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Table 4. Cont.

Regions Simulations Bias (m3/m3) RB (%) RMSE (m3/m3) Corr KGE

HaiRB
CMFD 0.097 62.9 0.123 −0.39 −0.49
GSWP3 0.095 62.3 0.124 −0.40 −0.51
WFDE5 0.092 60.5 0.123 −0.45 −0.55

HuaiRB
CMFD 0.161 87.6 0.166 0.07 −0.32
GSWP3 0.155 84.8 0.161 0.09 −0.28
WFDE5 0.159 86.8 0.165 0.05 −0.32

YRB
CMFD 0.091 61.8 0.103 0.54 0.25
GSWP3 0.094 63.5 0.107 0.53 0.22
WFDE5 0.081 56.4 0.098 0.37 0.17

YZRB
CMFD 0.066 35.5 0.097 0.53 0.29
GSWP3 0.072 38.8 0.103 0.47 0.22
WFDE5 0.068 36.7 0.100 0.48 0.26

PRB
CMFD 0.018 12.1 0.069 0.39 0.07
GSWP3 0.021 13.2 0.073 0.25 −0.03
WFDE5 0.013 10.6 0.069 0.35 0.02

SERB
CMFD −0.038 −5.7 0.087 −0.07 −0.21
GSWP3 −0.045 −7.5 0.091 −0.09 −0.24
WFDE5 −0.043 −6.8 0.089 −0.08 −0.22

SWRB
CMFD 0.102 87.7 0.112 0.68 0.07
GSWP3 0.115 98.1 0.129 0.50 −0.01
WFDE5 0.117 104.1 0.131 0.36 −0.17

NWRB
CMFD 0.072 124.0 0.086 0.48 −0.12
GSWP3 0.051 91.1 0.070 0.46 0.13
WFDE5 0.062 111.0 0.080 0.39 −0.05

We also assessed the performance levels of CMFD, GSWP3, and WFDE5 in estimating
SM using in situ SM observations (WS2019 SM). Figure 9 depicts the comparison of monthly
anomalies of in situ SM and CLM5-simulated SM in the 0–10 cm soil layer over China
and its ten basins during the period of 1992–2013. In general, all three CLM5 experiments
exhibit similar wet or dry fluctuations as site-based SM observations over China during
the period of 1992–2013 (Figure 9a), with Corr values of 0.84, 0.83, and 0.83 for CMFD,
GSWP3, and WFDE5, respectively. In terms of basins, the best performance is obtained
in HuaiRB, with the averaged Corr value greater than 0.82 and mean RMSE value less
than 0.200 m3/m3 derived from three CLM5 simulations. It indicates that the wet biases in
HuaiRB are systematic, supported by the higher correlation of SM anomalies but higher
RB values of SM. By contrast, the simulated SM in SERB shows the worst performance,
with a mean RMSE value of 0.076 m3/m3, and all Corr values being positive.

Moreover, the seasonal cycles of site-measured SM and CLM5-simulated SM in the
0–10 cm soil layer over China are displayed in Figure 10. Apparently, the systematic
wet biases occur in most basins of China. The domain-averaged in situ SM in China is
0.259 m3/m3, whereas all the simulated SM values exceed 0.310 m3/m3. For basins, SERB
shows the most considerable differences in seasonality and magnitudes (Figure 10i). The
peak value of the observed SM over SERB occurred in October, while the modeled SM
peaks in May. In addition, the domain-averaged SM measurements are 0.287 m3/m3, but
the SM simulations are 0.381, 0.379, and 0.380 m3/m3 for CMFD, GSWP3, and WFDE5
over SERB, respectively. Notably, the performance levels of CLM5 are also undesirable
over NWRB even though the values of SM in the 0–10 cm soil layer are lower. This may
result from the systematic bias in the model parameterization schemes. Additionally,
CLM5 mostly considers soil textures for hydraulic parameters and neglects biological
activities [28,69], leading to uncertainties and deficiencies in SM modeling. In comparison,
CLM5 is able to accurately simulate 0–10 cm SM seasonality as well as amplitude over
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PRB (Figure 10h). Moreover, we also compared the deeper soil layers (40–50 cm and
90–100 cm) SM simulation derived from the three CLM5 simulations with in situ SM
observations (Figures S3–S6). The results indicate that the performance levels of CLM5 in
simulating SM for deeper soil layers are better than for shallower soil layers, which are
consistent with the result obtained from ITP SM.

Figure 9. Monthly anomalies of WS2019 (in situ Obs) and CLM5-simulated (CMFD, GSWP3, and
WFDE5) SM at the 0–10 cm depth over (a) China and its ten basins (b) SHRB, (c) LRB, (d) HaiRB,
(e) HuaiRB, (f) YRB, (g) YZRB, (h) PRB, (i) SERB, (j) SWRB, and (k) NWRB during the period from
1992 to 2013.
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Figure 10. Seasonal cycles of site-based measured SM and CLM5-based simulated SM in the 0–10 cm
soil layer over (a) China and its ten river basins (b) SHRB, (c) LRB, (d) HaiRB, (e) HuaiRB, (f) YRB,
(g) YZRB, (h) PRB, (i) SERB, (j) SWRB, and (k) NWRB from 1992 to 2013.

4.4. Runoff

In this study, reanalysis-based CNRD and site-based CWRB runoff data were used
as reference data to assess the CLM5-simulated runoff forced by three meteorological
datasets. Figure 11 illustrates the spatial patterns of multi-year (1985–2014) averaged runoff
for the CNRD, CMDF, GSWP3, and WFDE5 over China, along with the trends of them
using Sen’s slope and Mann–Kendall test, respectively. All the simulated runoffs present
similar spatial distributions to CNRD-derived runoff, with KGE values of 0.80, 0.78, and
0.75 for CMFD, GSWP3, and WFDE5, respectively (Table 5). The high-value runoff centers
are produced by the monsoon climate across SERB, eastern PRB, and southeastern PRB,
whereas lower runoff values are observed across northwestern NWRB. CLM5 models lower
domain-averaged runoff values (257, 255, and 241 mm/yr for CMFD, GSWP3, and WFDE5,
respectively) than CNRD-based runoff (302 mm/yr). However, it should be noted that
several detailed features were not well captured by all three of the CLM5 simulations.
For instance, the snowmelt runoff produced by the special geographic environment of
northwestern China, where two basins (Junggar basin and Tarim basin) are sandwiched
between three mountains (Kunlun Mountains, Tianshan Mountain, and Altai Mountains),
should be relative higher runoff values. These features are partially captured by CMFD,
but overlooked in GSWP3 and WFDE5, possibly due to the use of the same meteorological
forcing data (CMFD) used in CNRD.
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Figure 11. The spatial patterns of multi-year averaged runoff for (a) CRND, (b) CMFD, (c) GSWP3,
and (d) WFDE5, and the β values derived from (e) CRND, (f) CMFD, (g) GSWP3, and (h) WFDE5
based on Sen’s slope method during the period of 1985–2014. The positive values (blue grids)
represent increasing trend of runoff, and negative values (red grids) represent decreasing trend
runoff. The grid cells with statistically significant (p < 0.05) trends are marked with black dots using
Mann–Kendall test. The numbers in the lower left corner indicate the domain average.

Table 5. Statistical metrics (Bias, RB, RMSE, Corr, and KGE) of averaged annual runoff between
simulations (CMFD, GSWP3, and WFDE5) and CNRD-derived runoff over China and its ten basins
during the period of 1985–2014.

Regions Simulations Bias (mm/yr) RB (%) RMSE (mm/yr) Corr KGE

China
CMFD −45.7 −85.6 192.2 0.88 0.80
GSWP3 −47.6 −99.4 155.4 0.92 0.78
WFDE5 −60.8 −90.1 211.7 0.86 0.75

SHRB
CMFD 15.6 17.2 65.3 0.75 0.72
GSWP3 −10.7 0.9 53.3 0.78 0.76
WFDE5 8.5 15.4 56.5 0.77 0.76

LRB
CMFD −14.7 −13.1 66.4 0.91 0.60
GSWP3 −39.1 −23.7 68.4 0.90 0.57
WFDE5 −19.0 −11.7 63.4 0.89 0.70
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Table 5. Cont.

Regions Simulations Bias (mm/yr) RB (%) RMSE (mm/yr) Corr KGE

HaiRB
CMFD −33.4 34.3 111.2 0.03 −0.06
GSWP3 −64.9 5.9 138.0 −0.11 −0.78
WFDE5 −73.8 5.6 142.8 −0.31 −0.93

HuaiRB
CMFD −85.7 −23.6 105.1 0.92 0.65
GSWP3 −161.3 −45.1 177.7 0.88 0.21
WFDE5 −138.7 −37.7 153.8 0.90 0.47

YRB
CMFD −24.8 −18.3 65.3 0.77 0.70
GSWP3 −33.6 −27.1 75.0 0.71 0.60
WFDE5 −60.4 −29.3 103.1 0.47 0.31

YZRB
CMFD −80.5 −12.2 159.4 0.91 0.79
GSWP3 −85.3 −12.6 159.1 0.91 0.81
WFDE5 −151.5 −23.9 212.3 0.88 0.70

PRB
CMFD −104.3 −7.3 203.0 0.87 0.77
GSWP3 −111.7 −6.6 237.8 0.80 0.68
WFDE5 −163.7 −13.8 235.3 0.88 0.76

SERB
CMFD 13.4 2.2 179.9 0.37 0.33
GSWP3 −31.9 −1.8 202.8 0.19 0.15
WFDE5 −61.8 −4.6 177.0 0.25 0.25

SWRB
CMFD −134.0 1.2 548.3 0.57 0.34
GSWP3 35.8 163.8 343.9 0.85 0.81
WFDE5 −58.6 142.4 550.2 0.53 0.27

NWRB
CMFD −27.6 −229.0 72.7 0.62 0.38
GSWP3 −45.0 −292.3 91.7 0.45 −0.55
WFDE5 −21.1 −261.0 109.6 0.37 −0.06

In order to investigate the change in modeled runoff during the past years, the trends
of runoff simulated by the three types of CLM5 and derived from CNRD are also displayed
in Figure 11e–h. We applied β values, calculated using Sen’s slope method, to estimate
the trend and magnitude of runoff and applied the Mann–Kendall test to determine the
significance level. Positive β values indicate increasing trends (red grids), while negative
values indicate decreasing trends (blue grids). Grid cells with statistically significant
(p < 0.05) trends are marked with black dots. Generally, increasing trends in runoff are
mainly observed in northern YZRB, central SERB, and central and southern PRB, while
decreasing trends are mainly distributed in southern SWRB, southwestern YZRB, and
western PRB in CNRD. Although all three CLM5 simulations capture a comparable spatial
pattern to CNRD, some differences exist among them. For example, CMFD presents more
fragmented spatial patterns and sudden transitions between increasing and decreasing
trends, while WFDE5 exhibits more smoother transitions in trend distribution compared
to CMFD and GSWP3, with lower increasing and decreasing amplitudes. In terms of
significance level, CNRD-derived runoff shows more significant changes in NWRB than
in other regions, and these spatial patterns are successfully simulated by all three CLM5
experiments. In generally, GSWP3 simulates a more similar spatial distribution of black
dots and a closer domain-averaged value of β to CNRD than CMFD and WFDE5.

We also assessed three CLM5-simulated runoffs employing the independent observa-
tions, CWRB-based runoff, for the period of 2005–2014. Figure 12 displays the annual time
series of basin domain-averaged runoff from CWRB, CMFD, GSWP3, and WFDE5. Overall,
the timing of dry and wet years in three CLM5 simulations closely matches that of CWRB,
with biases of −1.6, −7.2, and −28.4 mm/yr and RMSE values 37.5, 38.9, and 46.9 mm/yr
for CMFD, GSWP3, and WFDE5, respectively, in comparison to CWRB (Figure 12). How-
ever, the performance levels of CLM5 differ among basins, and the statistical metrics are
provided in Table S4. For instance, almost all three CLM5 simulations dramatically overes-
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timate the runoff over HaiRB, HuaiRB, and YRB, especially for CMFD, whose RB values
are 157.2%, 64.0%, and 82.8% against CWRB, respectively. Nevertheless, runoff values are
underestimated by all three CLM5 simulations in SWRB, where all the RB values are less
than −30%. The best performance of CLM5 occurs in YZRB, with corresponding KGE
values of 0.90, 0.90, and 0.78 for CMFD, GSWP3, and WFDE5, respectively (Table S4). In
contrast, the worst performance occurs in SWRB, where the KGE values of CMFD and
WFDE5 are negative. In general, GSWP3 presents a more reliable and robust performance in
runoff simulation over most basins of China when compared to CWRB referenced dataset.

Figure 12. The annual time series of domain-averaged runoff obtained from CWRB, CMFD, GSWP3,
and WFDE5 over (a) China and its ten basins (b) SHRB, (c) LRB, (d) HaiRB, (e) HuaiRB, (f) YRB,
(g) YZRB, (h) PRB, (i) SERB, (j) SWRB, and (k) NWRB during the period from 2005 to 2014. The
numbers represent the RMSE of CMFD, GSWP3, and WFDE5 against CWRB, respectively.

5. Discussion

This study employed three meteorological forcing datasets, namely CMFD, GSWP3,
and WFDE5, to drive CLM5 to simulate land surface process. Diverse grid-based and
gauge-based observations were taken as reference data to assess the performance levels of
different types of CLM5 in ET, SM, and runoff simulations. Although a number of useful
results have been obtained, there are still several issues worth discussing.

For ET simulations, all three types of CLM5 simulations can capture the general
ET spatial pattern over China, but they performed poorly in NWRB. Both CMFD and
WFDE5 show substantial overestimation, while GSWP3 presents obvious underestimation
when compared to GLEAM ET. Furthermore, the comparison with ChinaFLUX sites also
reveals that all three CLM5 simulations produce lower ET values than the site-based ET
observations at HB and DX (sites located in NWRB). Thus, the validation results using
independent reference data are consistent with each other. Actually, the poor performance
levels in ET simulation over northwestern China exist not only in CLM5, but also in other
LSMs. For instance, Sun et al. [70] evaluated the spatial patterns of ET estimates from
three LSMs, namely Noah, Catchment LSM, and VIC, based on ChinaFLUX site-based
observations. Their results also presented systematic negative biases at the HB and DX sites,
particularly at HB, where the relative error of the monthly ET can reach up to about −50%,
which is in agreement with the RB values derived in this study. Despite distinctions in the
model of ET, model structures and model parametrizations, generally, all LSMs apply the
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Penman–Monteith approach for potential ET (PET) computations, and then evaporation
and transpiration are transformed by scaling PET [71]. The specific scaling methods and
model parameterizations may differ in each LSM. The undesirable performance levels
in modeling ET over northwestern China within almost all LSMs indicate that the ET
processes are highly complex and susceptible, easily influenced by frequent regional climate
condition, vegetation degradation, and fragile ecological environment. Consequently, there
is significant potential for LSMs to improve the accuracy of ET simulation in northwestern
China. In addition, in this study, the simulated ET generally showed overestimation in
XSBN, which was also reported in previous studies [51,70]. Sun et al. [70] investigated the
spatial pattern of ET estimates from three land surface models over China, and they found
that Noah- and CLSM-modeled ET showed systematic positive biases at the XSBN site.
Similar overestimations were also demonstrated in Bai et al. [51]. Moreover, the general
overestimations are probably related to the satellited phenology (SP) mode of CLM5 in this
study. In SP mode, the vegetation features, including canopy height of bottom and top,
LAI, were obtained from daily linear interpolation between adjacent monthly values. The
XSBN is located in tropical forest with dense vegetation, and thus, reasonable LAI retrievals
may be challenging. In addition, the climatological LAI data were applied in SP mode only
with a seasonal cycle but without interannual variation, which may also exert a profound
impact on ET simulation in CLM5. For SM simulations, there are always systematic wet
biases for shallower soil layers when compared to both grid-based and site-based SM
measurements. This phenomenon has also been reported in previous studies. For example,
Liu et al. [41] conducted a series of simulation experiments with two versions of CLM
(CLM3.5 and CLM4.5) and two meteorological forcing datasets (PRIN and CMFD). They
found that almost all experiments simulated higher SM for the 0–10 cm soil layer than in
situ observations. They concluded that meteorological forcing is the most influential factor
governing SM. In CLM5, a dry surface layer was introduced in the evaporation resistance
parameterization, which seemed to alleviate the ET biases over arid and semi-arid regions.
However, this introduction increased total water storage, resulting in overestimation in SM
simulation by Deng et al. [68]. In this study, although three meteorological forcing datasets
were employed to drive CLM5, discrepancies among different types of simulations do not
appear distinct, which implies that meteorological forcing may not be the sole determinant
affecting SM. In reality, SM is highly sensitive to soil condition (e.g., soil texture, soil
hydraulic properties, soil structures, LAI, and land use categories). Among these factors, it
is difficult to identify which one plays a dominant role, as they all contribute in some way to
the uncertainty in modeling SM and may even compensate for each other. Additionally, the
soil hydraulic information used in LSM usually only considers soil texture but overlooks
the effect of soil structures, such as biopores and soil aggregates, created by biological
activities [69,72,73]. These differences could partly account for the mismatch between
simulated and observed SM. Therefore, continuous efforts are necessary to develop a more
comprehensive and accurate soil moisture parameterization.

For runoff simulations, we took runoff instead of streamflow as the evaluated hy-
drological variable. There are two reasons for this selection. First, the streamflow data
are almost unavailable in China. Second, the runoff routing parameterization schemes
in different land surface models are influenced by various topographic factors (e.g., flow
direction, channel length, topographic and river slopes). Comparatively, runoff, as the por-
tion of precipitation deducting ET and change in soil moisture, can be well estimated and
constructed by using a hydrological model. Therefore, the CNRD runoff was used as the
reference data to evaluate different types of CLM5 experiments, due to its high-quality and
continuous spatiotemporal characteristics. CNRD was generated using VIC model driven
by CMFD. Nevertheless, the differences between CNRD runoff and CLM5-simulated runoff
driven by CMFD also exists (Figure 11a,b). Specifically, VIC was able to simulate snowmelt
runoff occurring in northwestern NWRB (Junggar basin and Tarim basin) and southeastern
NWRB (Qaidam Basin), while CLM5 appears to struggle with capturing these processes.
Runoff exerts an important influence on other water budget fluxes (e.g., ET and SM), as
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runoff partitioning and surface energy partitioning inherently interact closely with each
other. It is essential to note that the hydrological parameters in the model significantly
affect runoff modeling. In the past decade, various approaches have been proposed to
improve the parameters calibration, which provide valuable insights for future research
to calibrate relevant hydrological parameters (e.g., maximum fractional saturated area,
decay factor representing the distribution of surface runoff and sub-surface runoff) and
enhance runoff simulations of LSM [74,75]. Therefore, extra attention should be given to
develop a reliable runoff calibration scheme to improve the performance of CLM5 in runoff
simulation [76–78].

Regarding the results derived from three types of CLM5 experiments, the discrepancies
among different simulations do exist, which probably result from the distinctions in mete-
orological components (e.g., precipitation, solar shortwave, air temperature). Moreover,
there is no consensus on which dataset is the best for simulating hydrological processes
over China, because each forcing dataset has its own advantages and disadvantages. Thus,
merging different climate products with various error correction and uncertainty analysis
to obtain more accurate meteorological datasets may be a feasible alternative. In the case
of precipitation, diverse precipitation products can be further integrated via data fusion,
which can fully synthesize multi-source information and take advantage of their respective
strengths to improve the quality of precipitation [79,80]. In addition, artificial intelligence
algorithms may also be an effective way to achieve the data fusion well, with the booming
development of computer science technology.

In this study, several limitations should be noted. Firstly, in order to evaluate the
performance levels of the three types of CLM5 at same spatial resolution, we upscaled the
CMFD meteorological forcing dataset from 0.1◦ grid cells to 0.5◦ using a simple arithmetic
average to match GSWP3 and WFDE5. This treatment may introduce some uncertainties,
and the advantages of CMFD may not be fully realized. Nevertheless, CMFD still demon-
strates better performance in many regions. For example, CMFD exhibits the highest Corr
value of 0.94 for simulating ET over China against GLEAM ET, and the highest KEG value
is also observed for CMFD over YRB. Liu et al. [41] ran CLM3.5 with two atmospheric
forcing dataset, and reported that mean Corr values of ET improves from 0.86 (driven
by PRIN) to 0.89 (driven by CMFD) over China against reference ET data. Secondly, to
partially mitigate the uncertainties from single reference data, we employed both site-based
observations (ChinaFLUX for ET, WS2019 for SM) and grid-based estimations (GLEAM
for ET, ITPLDAS for SM) to evaluate the performance levels of CLM5. However, due to
the sparse gauge distribution, there may be fewer sites located in a certain grid cell and
the representation of site data may be limited, which may also introduce potential biases
and uncertainties to the results. Therefore, it is essential to develop higher-quality gridded
ET and SM benchmark products by blending multiple datasets. These endeavors would
be crucial for the assessment and improvement of LSMs in future studies. Thirdly, SM is
observed at fixed depths, but it is nonlinear in space. We adjusted the multiple soil layer
thicknesses of CLM5-simulated SM to agree with the observed soil layers using a weight-
average approach based on soil layer thicknesses to calculate SM. However, this adjustment
for SM is inherently inaccurate, and thus, biases and uncertainties may also exist.

6. Conclusions

This study conducted three offline LSM simulations over China using CLM5 driven by
different meteorological forcing datasets, namely CMFD, GSWP3, and WFDE5, respectively.
We then used various grid-based estimations and gauge-based observations as the reference
data to assess the performance levels of these three CLM5 experiments in hydrological
variables, such as ET, SM, and runoff, across China and its ten basins. The main conclusions
are summarized as follows:

Firstly, all three types of CLM5 reasonably simulate ET values and spatial patterns
over China, exhibiting higher Corr values (all are greater than 0.92) and KGE values (all are
greater than 0.85) against GLEAM ET. As for basins, the best performance is observed in



Remote Sens. 2024, 16, 550 25 of 29

Yellow River Basin (YRB), while the worst performance occurs in northwest rivers basin
(NWRB) of China. Substantial biases exist in most areas of NWRB, with either overestima-
tions or underestimations, which are mainly stemming from complex climate conditions
and low-quality atmospheric forcing data. These undesirable performance levels are also
evident when compared with ChinaFLUX site-based ET data, particularly at stations lo-
cated in NWRB. In general, CMFD and GSWP show slightly better performance levels than
WFDE5 in terms of the KGE values in ten basins. Secondly, although both CLM5-simulated
SM and ITP-derived SM show a gradually increasing trend from northwest to southeast
China, there are still visible discrepancies between the two. Specifically, systematic wet
biases are prevalent in CLM5 simulations for shallower soil layers (the top 0–10 cm) across
most areas of China when compared to grid-based SM estimations as well as site-based SM
measurements. Comparatively, all CLM5 performance levels in SM simulations for deeper
soil layers are better, with reduced RMSE values and improved KGE values varying with
regions. Thirdly, all three types of CLM5 demonstrate reasonable runoff spatial patterns.
CMFD effectively captures more detailed information, such as snowmelt runoff over north-
western China, while GSWP3 simulates more comparable spatial distributions of runoff
change trends to CNRD runoff. Yangtze River Basin (YZRB) shows the best performance
with KGE values exceeding 0.78, while Northwest Rivers Basin (NWRB) exhibits the worst
performance, with negative KGE values when taking in situ runoff as reference. Overall,
GSWP3 shows a more reliable skill in runoff simulation over most areas of China.

The choice of atmospheric forcing data is crucial, but not the sole determinant to LSM
performance, as it heavily depends on model parameterizations and structures. Ongo-
ing efforts should be made to the physically based model development, particularly in
regions with complex conditions, such as northwestern China. The biases and limitations
mentioned in this study provide motivations and directions for model improvements in
the future. Meanwhile, the higher-quality and grid-based reference data also should be
developed to achieve more comprehensive and robust validations and evaluations of LSM.
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minus ITP, (f) GSWP3 minus ITP, and (g) WFDE5 minus ITP during the period of 2003–2010. The
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and CLM5-simulated (CMFD, GSWP3 and WFDE5) SM at the 40–50 cm depth over China and
its ten sub-basins during the period from 1992 to 2013; Figure S4: Seasonal cycles of site-based
measured SM and CLM5-based simulated SM in the 40–50 cm soil layer over (a) China and its ten
river basins (b) SHRB, (c) LRB, (d) HaiRB, (e) HuaiRB, (f) YRB, (g) YZRB, (h) PRB, (i) SERB, (j) SWRB,
and (k) NWRB from 1992 to 2013; Figure S5: Same as Figure S3, but for SM in the 90–100 cm soil
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metrics (Bias, RB, RMSE, Corr, and KGE) of averaged annual ET between simulations (CMFD,
GSWP3, and WFDE5) and ChinaFLUX observed ET at eight sites during the period of 2003–2010;
Table S2: Statistical metrics (Bias, RB, RMSE, Corr, and KGE) of averaged annual SM for the 5–20 cm
soil layer between simulations (CMFD, GSWP3, and WFDE5) and ITP-based SM over China and its
ten sub-basins for the period of 2003–2010; Table S3: Same as Table S2, but for soil moisture in the
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runoff between simulations (CMFD, GSWP3, and WFDE5) and CWRB-based measurements over
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