Multi-View Data-Based Layover Information Compensation Method for SAR Image Mosaic
Abstract
:1. Introduction
- A MDLIC method is introduced to eliminate the distortions in the layover area and restore the information in SAR mosaic images.
- The method initiates from the essence of the layover phenomenon, which is not affected by speckle noise or pixel gray values, so that the layover area and the degree of layover can be detected quickly according to the sampling rate image.
- The proposed method is independent of terrain parameters and does not necessitate consideration of the overlapping relationships between multi-view data. This characteristic enhances the efficiency and utilization of multi-view data, contributing to the robustness and versatility of the MDLIC method.
2. Materials and Methods
2.1. Overview
2.2. Geometric and Radiometric Preprocessing of SAR Image
2.3. Geometric Distortions in SAR Image
2.4. Multi-View Information Compensation Model
2.4.1. Projection Extent in Object-Space
2.4.2. Generation of Sampling Rate Image
2.4.3. Layover Information Compensation Strategy
3. Experimental Results and Analysis
3.1. Experimental Dataset
3.2. Experimental Results and Visual Assessments
3.3. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dabbagh, A.E.; Al-Hinai, K.G.; Khan, M.A. Detection of sand-covered geologic features in the Arabian Peninsula using SIR-C/X-SAR data. Remote Sens. Environ. 1997, 59, 375–382. [Google Scholar] [CrossRef]
- Rosenqvist, A.; Shimada, M.; Ito, N.; Watanabe, M. ALOS PALSAR: A pathfinder mission for global-scale monitoring of the environment. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3307–3316. [Google Scholar] [CrossRef]
- Guo, H.; Wang, X.; Li, X.; Liu, G.; Zhang, L.; Yan, S. Yushu earthquake synergic analysis using multimodal SAR datasets. Chin. Sci. Bull. 2010, 55, 3499–3503. [Google Scholar] [CrossRef]
- Jianchao, F.; Deyi, W.; Jianhua, Z.; Derui, S.; Min, H.; Dawei, J. National sea area use dynamic monitoring based on GF-3 SAR imagery. J. Radars 2017, 6, 456–472. [Google Scholar]
- Gella, G.W.; Bijker, W.; Belgiu, M. Mapping crop types in complex farming areas using SAR imagery with dynamic time warping. ISPRS J. Photogramm. Remote Sens. 2021, 175, 171–183. [Google Scholar] [CrossRef]
- Zhang, G.; Cui, H.; Wang, T.; Li, Z.; Jiang, B.; Li, X.; Wang, H.; Zhu, Y. Random cross-observation intensity consistency method for large-scale SAR images mosaics: An example of Gaofen-3 SAR images covering China. ISPRS J. Photogramm. Remote Sens. 2019, 156, 215–234. [Google Scholar] [CrossRef]
- Li, X.; Feng, R.; Guan, X.; Shen, H.; Zhang, L. Remote sensing image mosaicking: Achievements and challenges. IEEE Geosci. Remote Sens. Mag. 2019, 7, 8–22. [Google Scholar] [CrossRef]
- Wang, H.; Cheng, Q.; Wang, T.; Zhang, G.; Wang, Y.; Li, X.; Jiang, B. Layover compensation method for regional spaceborne SAR imagery without GCPs. IEEE Trans. Geosci. Remote Sens. 2021, 59, 8367–8381. [Google Scholar] [CrossRef]
- Gatelli, F.; Guamieri, A.M.; Parizzi, F.; Pasquali, P.; Prati, C.; Rocca, F. The wavenumber shift in SAR interferometry. IEEE Trans. Geosci. Remote Sens. 1994, 32, 855–865. [Google Scholar] [CrossRef]
- Soergel, U.; Schulz, K.; Thoennessen, U. Enhancement of interferometric SAR data using segmented intensity information in urban areas. In Proceedings of the IGARSS 2000, IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment, Proceedings (Cat. No. 00CH37120). Honolulu, HI, USA, 24–28 July 2000; Volume 7, pp. 3216–3218. [Google Scholar]
- Ren, Y.; Zou, H.; Qin, X.; Ji, K. A method for layover and shadow detecting in InSAR. J. Cent. S. Univ. 2013, 44, 396–400. [Google Scholar]
- Du, X.; Yang, Q.; Cai, B.; Liang, D.N. A new method on shadow and layover detection of InSAR. In Proceedings of the 2017 Sixth Asia-Pacific Conference on Antennas and Propagation (APCAP), Xi’an, China, 16–19 October 2017; pp. 1–3. [Google Scholar]
- Tongtong, Z.; Honglei, Y.; Dongming, L.; Yongjie, L.; Junnan, L. Identification of layover and shadows regions in SAR images: Taking Badong as an example. Bull. Surv. Mapp. 2019, 11, 85. [Google Scholar]
- Wu, L.; Wang, H.; Li, Y.; Guo, Z.; Li, N. A novel method for layover detection in mountainous areas with SAR images. Remote Sens. 2021, 13, 4882. [Google Scholar] [CrossRef]
- Schmidt, N.; Janoth, J.; Raggam, J.; Gutjahr, K.; Wimmer, A. TerraSAR-X value added image products. In Proceedings of the 2007 IEEE International Geoscience and Remote Sensing Symposium, Barcelona, Spain, 23–28 July 2007; pp. 3938–3941. [Google Scholar]
- Wan, Z.; Xu, M.; Xia, Z.; Zhang, F.; Gong, H. The dual-aspect geometric correction method based on DEM for high-resolution SAR images. Remote Sens. Land Resour. 2010, 25, 12–15. [Google Scholar]
- Wan, Z.; Shao, Y.; Xie, C.; Zhang, F. The dual-aspect geometric correction method based on DEM using Radarsat-2 data. J. Infrared Millim. Waves 2011, 30, 167–172. [Google Scholar] [CrossRef]
- Wang, G.; Shao, Y.; Wan, Z.; Zhang, F. Optimal incidence angle pair selection for dual-aspect compensation in high resolution SAR data. Remote Sens. Land Resour. 2012, 4, 48–54. [Google Scholar]
- Liu, J.; Qiu, X.; Zhang, B.; Wang, F.; Liu, L. The dual-aspect geometric terrain correction Method Using GF-3 Satellite Data. In Proceedings of the IGARSS 2019–2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 3448–3451. [Google Scholar]
- Grodechi, J.; Dial, G. Block adjustment of high-resolution satellite images described by rational polynomials. Photogramm. Eng. Remote Sens. 2003, 69, 59–68. [Google Scholar] [CrossRef]
- Guindon, B.; Adair, M. Analytic formulation of spaceborne SAR image geocoding and “value-added” product generation procedures using digital elevation data. Can. J. Remote Sens. 1992, 18, 2–12. [Google Scholar] [CrossRef]
- Chen, E. Research on Orthorectification Correction Method for Satellite-Borne Synthetic Aperture Radar Images. Ph.D. Thesis, Chinese Academy of Forestry, Beijing, China, 2004. [Google Scholar]
- Wei, J. SAR Ortho Image Generation in Sophisticated Area. Ph.D. Thesis, Liaoning Technical University, Liaoning, China, 2009. [Google Scholar]
- Han, X.; Cai, B.; Li, X. A New Method on Shadow and Layover Detection of InSAR. In Proceedings of the 3rd China Aviation Science and Technology Conference 2017 (Previous), Shanghai, China, 8–9 November 2017. [Google Scholar]
- Xiang, Y.; Jiao, N.; Liu, R.; Wang, F.; You, H.; Qiu, X.; Fu, K. A Geometry-Aware Registration Algorithm for Multiview High-Resolution SAR Images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5234818. [Google Scholar] [CrossRef]
- Freeman, A. SAR calibration: An overview. IEEE Trans. Geosci. Remote Sens. 1992, 30, 1107–1121. [Google Scholar] [CrossRef]
- Freeman, A.; Alves, M.; Chapman, B.; Cruz, J.; Kim, Y.; Shaffer, S.; Sun, J.; Turner, E.; Sarabandi, K. SIR-C data quality and calibration results. IEEE Trans. Geosci. Remote Sens. 1995, 33, 848–857. [Google Scholar] [CrossRef]
- Wang, L.; Han, B.; Yuan, X.; Lei, B.; Ding, C.; Yao, Y.; Chen, Q. A preliminary analysis of wind retrieval, based on GF-3 wave mode data. Sensors 2018, 18, 1604. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Wang, F.; Jiao, N.; Yu, W.; You, H.; Liu, F. Radiometric Principle-Based Radiometric Normalization Method for SAR Images Mosaic. IEEE Geosci. Remote Sens. Lett. 2022, 19, 4509905. [Google Scholar] [CrossRef]
- Kropatsch, W.G.; Strobl, D. The generation of SAR layover and shadow maps from digital elevation models. IEEE Trans. Geosci. Remote Sens. 1990, 28, 98–107. [Google Scholar] [CrossRef]
- Gelautz, M.; Frick, H.; Raggam, J.; Burgstaller, J.; Leberl, F. SAR image simulation and analysis of alpine terrain. ISPRS J. Photogramm. Remote Sens. 1998, 53, 17–38. [Google Scholar] [CrossRef]
- Colesanti, C.; Wasowski, J. Investigating landslides with space-borne Synthetic Aperture Radar (SAR) interferometry. Eng. Geol. 2006, 88, 173–199. [Google Scholar] [CrossRef]
- Cigna, F.; Bateson, L.B.; Jordan, C.J.; Dashwood, C. Simulating SAR geometric distortions and predicting Persistent Scatterer densities for ERS-1/2 and ENVISAT C-band SAR and InSAR applications: Nationwide feasibility assessment to monitor the landmass of Great Britain with SAR imagery. Remote Sens. Environ. 2014, 152, 441–466. [Google Scholar] [CrossRef]
- Chen, X.; Sun, Q.; Hu, J. Generation of complete SAR geometric distortion maps based on DEM and neighbor gradient algorithm. Appl. Sci. 2018, 8, 2206. [Google Scholar] [CrossRef]
- Deo, R.; Rossi, C.; Eineder, M.; Fritz, T.; Rao, Y.; Lachaise, M. Fusion of ascending and descending pass raw TanDEM-X DEM. In Proceedings of the 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 13–14 July 2014; pp. 21–24. [Google Scholar]
- Zhang, Q. System design and key technologies of the GF-3 satellite. Acta Geod. Cartogr. Sin. 2017, 46, 269. [Google Scholar]
- Castleman, K.R. Digital Image Processing; Prentice Hall Press: Saddle River, NJ, USA, 1996. [Google Scholar]
- Zhang, G.; Wang, S.; Chen, Z.; Zheng, Y.; Zhao, R.; Wang, T.; Zhu, Y.; Yuan, X.; Wu, W.; Chen, W. Development of China’s spaceborne SAR satellite, processing strategy, and application: Take Gaofen-3 series as an example. Geo Spat. Inf. Sci. 2022, 1–16. [Google Scholar] [CrossRef]
- Shi, X.; Fu, S.; Chen, J.; Wang, F.; Xu, F. Object-level semantic segmentation on the high-resolution Gaofen-3 FUSAR-map dataset. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 3107–3119. [Google Scholar] [CrossRef]
- Tadono, T.; Nagai, H.; Ishida, H.; Oda, F.; Naito, S.; Minakawa, K.; Iwamoto, H. Generation of the 30 m-mesh global digital surface model by ALOS PRISM. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41, 157–162. [Google Scholar] [CrossRef]
- Vanama, V.; Musthafa, M.; Khati, U.; Gowtham, R.; Singh, G.; Rao, Y. Inundation mapping of Kerala flood event in 2018 using ALOS-2 and temporal Sentinel-1 SAR images. Curr. Sci. 2021, 120, 915–925. [Google Scholar] [CrossRef]
Dataset | Orbit (Direction) | OrbitID | Imaging Mode | Nominal Resolution | Incidence Angle | Imaging Date |
---|---|---|---|---|---|---|
1 | ASC | 019813 | UFS | 3 m | 32.57° | 15 May 2020 |
ASC | 019813 | UFS | 3 m | 32.57° | 15 May 2020 | |
ASC | 029845 | UFS | 3 m | 31.57° | 11 April 2022 | |
ASC | 029845 | UFS | 3 m | 31.57° | 11 April 2022 | |
ASC | 024237 | UFS | 3 m | 24.96° | 18 March 2021 | |
ASC | 024237 | UFS | 3 m | 24.96° | 18 March 2021 | |
ASC | 031170 | UFS | 3 m | 21.27° | 12 July 2022 | |
ASC | 031170 | UFS | 3 m | 21.27° | 12 July 2022 | |
DEC | 017037 | UFS | 3 m | 30.54 | 4 November 2019 | |
DEC | 017037 | UFS | 3 m | 30.54° | 4 November 2019 | |
DEC | 022399 | UFS | 3 m | 23.76° | 10 November 2020 | |
DEC | 022399 | UFS | 3 m | 23.76° | 10 November 2020 | |
DEC | 023725 | UFS | 3 m | 31.57° | 10 February 2021 | |
DEC | 023725 | UFS | 3 m | 31.57° | 10 February 2021 | |
2 | ASC | 022637 | UFS | 3 m | 31.57° | 27 November 2020 |
ASC | 022637 | UFS | 3 m | 31.57° | 27 November 2020 | |
ASC | 026990 | UFS | 3 m | 34.49° | 25 September 2021 | |
ASC | 026990 | UFS | 3 m | 34.49° | 25 September 2021 | |
ASC | 030997 | UFS | 3 m | 32.57° | 30 June 2022 | |
ASC | 030997 | UFS | 3 m | 32.57° | 30 June 2022 | |
DEC | 017456 | UFS | 3 m | 28.40° | 3 December 2019 | |
DEC | 017456 | UFS | 3 m | 28.40° | 3 December 2019 | |
DEC | 017210 | UFS | 3 m | 24.96° | 16 November 2019 | |
DEC | 017210 | UFS | 3 m | 24.96° | 16 November 2019 | |
DEC | 023970 | UFS | 3 m | 31.57° | 27 February 2021 | |
DEC | 023970 | UFS | 3 m | 31.57° | 27 February 2021 | |
3 | ASC | 030479 | UFS | 3 m | 30.54° | 25 May 2022 |
ASC | 031661 | UFS | 3 m | 38.81° | 15 August 2022 | |
ASC | 027808 | UFS | 3 m | 31.57° | 28 March 2022 | |
DEC | 027808 | UFS | 3 m | 19.99° | 20 November 2021 | |
DEC | 027808 | UFS | 3 m | 19.99° | 20 November 2021 | |
DEC | 027285 | UFS | 3 m | 34.49° | 15 October 2021 |
Non-Layover (Result) | Layover (Result) | |
---|---|---|
Non-layover (True) | True Negative (TN) | False Positive (FP) |
Layover (True) | False Negative (FN) | True Positive (TP) |
Dataset | Indicator | Ref. [24] Method | Ref. [8] Method | Proposed Method |
---|---|---|---|---|
1 | Mean | 95.35 | 103.58 | 102.30 |
Std | 113.74 | 139.72 | 137.59 | |
Layover pixels | 32,142,854 | 37,103,771 | 119,057,743 | |
TN | 496,015,280 | 512,703,490 | 491,201,894 | |
TP | 9,110,946 | 30,760,073 | 91,212,449 | |
FN | 84,272,170 | 62,623,043 | 2,170,667 | |
FP | 23,031,908 | 6,343,698 | 27,845,294 | |
NLP | 85.48% | 89.12% | 99.56% | |
LP | 28.35% | 82.90% | 76.61% | |
CSI | 7.83% | 30.85% | 75.24% | |
OA | 82.48% | 88.74% | 95.09% | |
2 | Mean | 42.43 | 45.26 | 44.68 |
Std | 57.59 | 73.09 | 72.93 | |
Layover pixels | 20,310,410 | 12,301,361 | 26,539,520 | |
TN | 503,340,284 | 518,276,633 | 517,273,328 | |
TP | 4,410,273 | 11,337,573 | 24,572,427 | |
FN | 20,228,625 | 13,301,325 | 66,471 | |
FP | 15,900,137 | 963,788 | 1,967,093 | |
NLP | 96.14% | 97.50% | 99.98% | |
LP | 21.71% | 92.17% | 92.59% | |
CSI | 10.88% | 44.29% | 92.35% | |
OA | 93.36% | 97.38% | 99.62% | |
3 | Mean | 93.82 | 95.99 | 94.80 |
Std | 120.60 | 135.36 | 135.63 | |
Layover pixels | 6,738,977 | 6,830,917 | 46,875,098 | |
TN | 269,271,163 | 271,988,665 | 263,931,258 | |
TP | 2,262,882 | 5,072,324 | 37,059,098 | |
FN | 1,967,093 | 32,567,194 | 580,420 | |
FP | 4,476,095 | 1,758,593 | 9,816,000 | |
NLP | 88.39% | 89.31% | 99.78% | |
LP | 33.58% | 74.26% | 79.05% | |
CSI | 5.38% | 12.88% | 78.09% | |
OA | 87.20% | 88.98% | 96.66% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, R.; Wang, F.; Jiao, N.; You, H.; Hu, Y.; Zhou, G.; Chen, Y. Multi-View Data-Based Layover Information Compensation Method for SAR Image Mosaic. Remote Sens. 2024, 16, 564. https://doi.org/10.3390/rs16030564
Liu R, Wang F, Jiao N, You H, Hu Y, Zhou G, Chen Y. Multi-View Data-Based Layover Information Compensation Method for SAR Image Mosaic. Remote Sensing. 2024; 16(3):564. https://doi.org/10.3390/rs16030564
Chicago/Turabian StyleLiu, Rui, Feng Wang, Niangang Jiao, Hongjian You, Yuxin Hu, Guangyao Zhou, and Yao Chen. 2024. "Multi-View Data-Based Layover Information Compensation Method for SAR Image Mosaic" Remote Sensing 16, no. 3: 564. https://doi.org/10.3390/rs16030564
APA StyleLiu, R., Wang, F., Jiao, N., You, H., Hu, Y., Zhou, G., & Chen, Y. (2024). Multi-View Data-Based Layover Information Compensation Method for SAR Image Mosaic. Remote Sensing, 16(3), 564. https://doi.org/10.3390/rs16030564