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Abstract: Landslide susceptibility assessment (LSA) is an essential tool for landslide hazard warning.
The selection of earthquake-related factors is pivotal for seismic LSA. In this study, Newmark
displacement (Dn) is employed as the earthquake-related factor, providing a detailed representation of
seismic characteristics. On the algorithmic side, a dual-channel convolutional neural network (CNN)
model is built, and the last classification layer is replaced with two machine learning (ML) models to
facilitate the extraction of deeper features related to landslide development. This research focuses
on Beichuan County in Sichuan Province, China. Fifteen landslide predisposing factors, including
hydrological, geomorphic, geological, vegetation cover, anthropogenic, and earthquake-related
features, were extensively collected. The results demonstrate some specific issues. Dn outperforms
conventional earthquake-related factors such as peak ground acceleration (PGA) and Arias intensity
(Ia) in capturing seismic influence on landslide development. Under the same conditions, the OA
improved by 5.55% and AUC improved by 0.055 compared to the PGA; the OA improved by 3.2% and
AUC improved by 0.0327 compared to the Ia. The improved CNN outperforms ML models. Under
the same conditions, the OA improved by 4.69% and AUC improved by 0.0467 compared to RF; the
OA improved by 4.47% and AUC improved by 0.0447 compared to SVM. Additionally, historical
landslides validate the reasonableness of the landslide susceptibility maps. The proposed method
exhibits a high rate of overlap with the historical landslide inventory. The proportion of historical
landslides in the very high and high susceptibility zones exceeds 87%. The method not only enhances
accuracy but also produces a more fine-grained susceptibility map, providing a reliable basis for early
warning of seismic landslides.

Keywords: landslide; landslide susceptibility assessment; convolutional neural network (CNN);
Newmark; earthquake

1. Introduction

The 2008 Wenchuan earthquake in China induced a large number of landslides, and
it has always been a typical area for the study of seismic landslides. Seismic landslides
are characterized by sudden onset, high-speed sliding, and long slip distances, making it
difficult to meet the requirements for rapid early warning [1].

Seismic landslide susceptibility assessment (LSA) is a prominent research direction of
earthquake-induced landslides. Numerous studies have demonstrated that the develop-
ment of landslides is influenced by various factors, including topography, geomorphology,
and hydrology [2,3]. Undeniably, the development of seismic landslides is not only related
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to environmental conditions but is also influenced by seismic activities. Therefore, selecting
appropriate earthquake-related factors to express seismic characteristics is very important.
Peak ground acceleration (PGA) [4–6] and Arias intensity (Ia) [7–9] are most widely used
to capture the relationships between seismic landslides and earthquakes. However, the
seismic features they characterize are relatively superficial. The Newmark model was first
proposed by Newmark in 1965 [10]; it is a classical mechanical model in the field of seismic
landslide hazard analysis. It effectively incorporates geological mechanics, physical princi-
ples, and seismic influences in its assessment of landslide trigger mechanisms. Accordingly,
Newmark displacement (Dn) provides more detailed information in representing seismic
characteristics. The model has been widely used to predict seismic landslides [11–13].
Regretfully, almost all these studies have solely utilized Dn to express the probability of
landslides and do not consider the effects of other environmental factors such as hydrologi-
cal factors, human activities, and geomorphological factors. There is a lack of studies that
use Dn as an earthquake-related factor in LSA.

Studies of LSA have employed various statistical methods. Statistical modeling is
employed to infer the probability of landslide occurrence based on historical landslide
inventory maps. Classical statistical methods such as the frequency ratio, information
quantity method, and weight of evidence method are easy to apply [14–16]. Nowadays,
machine learning (ML) is widely used in LSA due to its good performance in nonlinear
feature extraction. Prominent ML algorithms, such as random forest (RF) [17,18]), support
vector machine (SVM) [19,20], and logistic regression (LR) [21,22] have been extensively
employed. A comparison of different machine learning models, including LR, decision
tree (DT), and RF, for evaluating landslide susceptibility in Lin’an, southeastern China was
conducted [23]. The study highlighted that RF makes the most accurate predictions of
landslides. Liu et al. adopted three models, including LR, SVM, and RF, to study the quality
performance of the susceptibility distribution rule of earthquake-induced landslides [18].
The result shows that RF has a better performance quality in the susceptibility assessment of
landslides induced by earthquakes. Despite that, some scholars suggest that these methods
still have certain limitations, including suboptimal extraction of intricate nonlinear features
and limited capacity for expressing spatial patterns [24].

In recent years, deep learning (DL) has gained significant popularity due to its ex-
ceptional capability in extracting nonlinear features between objects. The CNN is one of
the most mature DL frameworks. A few scholars have applied CNNs to LSA so far. Chen
et al. proposed an ensemble model based on a channel-expanded pretrained CNN and
compared it with traditional ML [25]. The results show that the CNN can predict landslide
occurrence with high reliability. Jiang et al. [26] compared the effectiveness of a CNN
and conventional ML methods in LSA. The result of the CNN has higher accuracy and a
stronger concentration, making it important for disaster prevention and mitigation. The
potential of CNNs in landslide prediction is evident. Consequently, there is an urgent need
to make adjustments to CNNs to improve their utility in LSA.

A few scholars have explored ways to combine the Newmark model and statistical
analysis methods. For instance, the Newmark model was employed to establish a sample
selection strategy by generating negative samples in very low displacement and low
displacement areas [27]. However, the point of this work was to propose a Newmark-based
sampling approach for seismic landslides. Among numerous studies, one scholar utilized
Dn as an earthquake-related factor in LSA [28]. Nevertheless, it is limited by choosing only
three additional factors related to landslides along with Dn. Other environmental factors
that significantly impact landslide development are neglected. Moreover, the algorithm
employed, LR, has a poor ability to extract features. Furthermore, there is no comparison
with traditional earthquake-related factors. Few scholars can effectively combine the
Newmark model (mechanical model) with the statistical model, and the field remains to
be explored.

In conclusion, there is an urgent need to develop a new seismic LSA method that
can comprehensively integrate the influence of environmental and earthquake-related
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factors on landslide development. In this study, the improved CNN is combined with the
Newmark model to construct two hybrid models, namely, N_RF_CNN and N_SVM_CNN.
Beichuan County was selected as the study area, wherein 15 landslide predisposing factors
were chosen. In order to prove the superiority of Dn in expressing seismic features, we
compare it with two traditional earthquake-related factors, PGA and Ia. In addition, to
prove the superiority of the CNN in mining the deep features of the various predisposing
factors, we compare the improved CNN model with two ML methods, RF and SVM.

2. Proposed Methods

The methodology adopted involves the following steps (Figure 1): Specifically, various
landslide predisposing factors were collected and preprocessed. Simultaneously, the New-
mark model was used to calculate the Dn. After that, all the landslide predisposing factors
were input into the DL model to generate an LSA. Finally, the models were evaluated
through overall accuracy (OA), area under curve (AUC), and mean absolute error (MAE).
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Figure 1. Flowchart of methodology.

2.1. Newmark Model Theory

The theoretical basis of the Newmark model is the limit equilibrium theory. Accord-
ing to the theory, when the acceleration applied to the sliding block exceeds the critical
acceleration (ac) in its limiting equilibrium state, the slider slides down the slope. Theo-
retically, Dn is estimated by conducting double integration of the earthquake acceleration
time history components above the critical acceleration. The Dn can reflect the probability
of landslide instability and can be taken as an earthquake-related factor. However, due
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to the huge amount of computation and often unavailable data, the simplified Newmark
model is now commonly used to predict Dn. Newmark model mainly includes three steps
(Figure 2): static factor of safety (Fs) calculation, critical acceleration (ac) calculation, and
Dn calculation.
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2.1.1. Static Factor of Safety (Fs) Calculation

The geological map of the study area was collected (Figure 3). Based on the standard
for engineering classification of rock mass and previous experience [29,30], the rock–soil
mass in the study area has been classified into four groups ranging from hard to soft. The
equation of Fs is given below:

FS =
c

γtsinθ
+

tanφ

tanθ
− mγwtanφ

γtanθ
(1)

where c is cohesion, φ is the friction angle, m is the proportion of failure mass that is
saturated, t is the thickness of the failure rock block, θ is the slope angle, γ is the unit weight
of material, and γw is the unit weight of water. Table 1 shows the specific parameters.
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Table 1. Classification of lithologies and parameters.

Group 1 Group 2 Group 3 Group 4

c′/KPa 100 80 50 40
γ (KN/m3) 26 25 22 15

φ/(◦) 25 15 12 10

2.1.2. Critical Acceleration (ac) Calculation

Critical acceleration (ac) represents the potential of slope instability, determined by the
inherent properties of the slope. ac is expressed as follows:

ac = (Fs − 1)}sinθ (2)

where g is the acceleration of gravity; θ is the dipping angle of the slide surface.

2.1.3. Newmark Displacement (Dn) Calculation

Because of its universal applicability, we chose the Newmark logarithm regression
equation established by Jibson [31]. The Dn equation as shown in Equation (3) was adopted.
The Dn map is shown in Figure 4.

logDn = 1.521logIa − 1.993logac − 1.546 ± 0.375 (3)

where Ia is a ground motion parameter obtained by integrating the square of the ground
motion acceleration record over time, which is an important indicator, and can effectively
capture the potential damage of earthquakes [32]. Ia encompasses the amplitude, spectral,
and time-holding characteristics of the earthquake, and it can characterize the whole
range of ground shaking properties. Particularly, it reflects the energy of broadband
seismic signals, capturing the influence of the entire duration of the earthquake. It can
usually be obtained through instrumental records. Nevertheless, during the Wenchuan
earthquake, detailed ground motion data could not be collected due to the limited number
of seismic stations and the destruction of some stations. Fortunately, we obtained Ia using
the attenuation equation fitted to the Wenchuan ground motion records by Wang et al. [33]:

log(Ia) = −2.96log
(

D f + 42
)
+ 6.39 (4)
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2.2. Dual-Channel CNN

Seismic landslide predisposing factors contain a mass of geological, hydrological,
human-related, and other geographic spatial features, along with deep semantic informa-
tion. To achieve multiple factor inputs, the number of channels is set to 15. To make full
use of spatial features and deep semantic information, a dual-channel model based on the
traditional CNN method was constructed, and the structure is shown in Figure 1. The
image data cropped from the sample point as the center are used as the training sample.
After many trials and adjustments, images with a size of 57 × 57 are finally determined
as the model inputs. The network consists of two branches: the detail branch (DB) and
the semantic branch (SB). In the DB, spatial detail information is extracted through a
limited number of convolutions. In the SB, a fast downsampling strategy using depth-
wise separable convolution is employed to expand the receptive field. Additionally, a
context-embedding block (CEB) (Figure 5) is added to the SB to capture the relationship
between the probability of landslide occurrence and the surrounding environment. The
outputs of the two branches show different levels of features. The DB branch extracts
shallow information, such as color, texture, and morphology, while the SB branch captures
global semantic information related to the probability of landslide occurrence influenced
by the surrounding environment. However, a simple fusion method (such as addition,
concatenation, or multiplication) might overlook more effective information. Therefore, the
BGA module is designed (Figure 6) to effectively fuse information from the two branches
by integrating features at different scales through rich feature combinations.
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After CNN training is completed, the Softmax classifier outputs the probability. In this
study, patch-based high-level features and point-based numerical landslide predisposing
factors are fused into a one-dimensional feature vector, creating a hybrid feature represen-
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tation of landslide predisposing factors. Finally, the traditional ML model is integrated
into the CNN model, replacing the final classification layer. The hybrid features are fed
into the ML classifier to predict the spatial probability. In this study, two classical ML
methods, SVM and RF, are used as the final classifiers. SVM_CNN and RF_CNN are used
to represent these two methods in the following.

2.3. Evaluation Indicators

AUC, OA, and MAE are adopted to evaluate the performance of the proposed methods
quantitatively. AUC represents the area under the ROC curve, which ranges from 0.5 to 1.
A higher AUC value indicates better predictive performance. OA measures the accuracy of
correctly predicting sample points and can be calculated using Equation (5).

OA =
TP + TN

TP + FP + TN + FN
(5)

where TP (true positive) and TN (true negative) represent the number of correctly pre-
dicted landslide and non-landslide sample points, respectively. FP (false positive) and
FN (false negative) represent the numbers of mispredicted landslide and non-landslide
sample points.

MAE represents the average distance between the predicted values of the model and
the true values and is expressed in Equation (6):

MAE(y, ŷ) =
1
n

n−1

∑
i=0

|yi − ŷi| (6)

where yi is the ith predicted value and ŷi is the ith true value.
We counted the number of landslides at different susceptibility levels and compared

them with the landslide inventory map to verify the accuracy of the prediction results.
When the proportion of historical landslides is higher in high-susceptibility areas and
lower in low-susceptibility areas, it indicates a high consistency between the susceptibility
map and landslide inventory. We also calculated the percentage of areas with different
susceptibility levels under different methods, which also illustrates the strengths and
weaknesses of the methods.

3. Study Area and Data
3.1. Study Area

In 2008, an Ms 8.0 earthquake occurred in Wenchuan County, Sichuan Province, China,
triggering many seismic landslides. Beichuan County (104◦26′–104◦29′E, 31◦35′–31◦38′N)
is in the northeast of Wenchuan County and covers an area of 2868 km². The county suffered
massive damage due to its location along the Beichuan–Yingxiu fault belt. In addition,
Beichuan County exhibits typical conditions for landslide development, characterized by
complex topography, diverse lithology and strata, and uneven distribution of precipitation.
Figure 7a shows the location of Beichuan County.

3.2. Landslide Inventory Map

The availability of a reliable landslide inventory map is a basic requirement of LSA [34].
In this study, we utilized an inventory map generated by Chong Xu [35]. The map was
obtained by visual interpretation using high-resolution remote sensing images and sub-
sequently verified in the field. From this inventory map, we randomly selected 1102
representative landslides as positive samples. When generating negative samples, we
aim to maintain a certain distance from the landslides, which ensures that the selected
samples can truly reflect the characteristics of landslides and non-landslides. To meet the
requirement of random selection and avoid the influence of subjective factors, we generated
a 1 km buffer around landslides and selected an equal number of non-landslides randomly
outside the buffer. The samples were then divided into training and testing datasets at
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a ratio of 7:3, which has been proven suitable for LSA [36–38]. Figure 7b illustrates the
distribution of positive and negative samples.
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3.3. Landslide Predisposing Factors

Landslide predisposing factors are composed of environmental factors and earthquake-
related factors. We selected 14 environmental factors, including hydrological factors,
geomorphic factors, geological factors, vegetation cover factors, and anthropogenic factors
(Table 2, Figure 8). Distance to river, mean annual precipitation, topographic wetness
index (TWI), and groundwater are hydrological factors. Generally, areas with dense water
system distribution, high rainfall, and high surface humidity are more prone to landslides.
Geomorphic factors also play a crucial role in LSA as the fundamental cause of landslides is
slope instability. Factors such as elevation, slope, aspect, plan curvature, profile curvature,
and topographic relief index (TRI) are geomorphic factors. The stability of lithology is
different due to the fragility of the rock, making it an essential geological factor. Vegetation,
known for its ability to stabilize water and soil, can reduce the likelihood of landslides.
Areas with higher vegetation coverage usually have a lower probability of landslides, as
represented by the normalized difference vegetation index (NDVI) factor. Anthropogenic
factors, including distance to road and landcover, are also important considerations as
human activities can increase the likelihood of landslides. All the factors were normalized
to a range of 0–255 to maintain the same value range between each datum and avoid
model misconvergence.

Table 2. Landslide predisposing factors.

Type Predisposing Factors Data Source Time

Hydrological

Distance to river
Mean annual precipitation

TWI
Groundwater

Calculated with the river network
CHIRPS

Calculated with DEM
GRACE-FO Data

2010
2004–2008

2009
2004–2008

Geomorphic

Elevation
Slope

Aspect
Plan curvature

Profile curvature
TRI

ASTER GDEM
Calculated with DEM
Calculated with DEM
Calculated with DEM
Calculated with DEM
Calculated with DEM

2009

Geological Lithology National Geological Library (China) 2008

Vegetation Cover NDVI Geospatial Data Cloud 2004–2008

Anthropogenic Distance to road
Landcover

Calculated with the road network
National Earth System Science Data Center (China) 2008

Earthquake-related Newmark displacement (Dn) - 2008



Remote Sens. 2024, 16, 566 9 of 22Remote Sens. 2024, 16, x FOR PEER REVIEW 10 of 23 
 

 

 
Figure 8. Cont.



Remote Sens. 2024, 16, 566 10 of 22Remote Sens. 2024, 16, x FOR PEER REVIEW 11 of 23 
 

 

 
Figure 8. Environmental predisposing factors: (a) distance to river; (b) mean annual precipitation; 
(c) TWI; (d) groundwater; (e) elevation; (f) slope; (g) aspect; (h) plan curvature; (i) profile curvature; 
(j) TRI; (k) lithology; (l) NDVI; (m) distance to road; (n) landcover; (o) PGA; (p) Ia; (q) Dn. 

 
Figure 9. Relationship between landslide density and different earthquake-related factors: (a) PGA; 
(b) Ia; (c) Dn. 

4. Experiments and Result 
The models we used are as follows: RF, random forest; SVM, support vector machine; 

RF_CNN, convolutional neural network combined with RF classifier; SVM_CNN, convo-
lutional neural network combined with SVM classifier. N_, PGA_, and Ia_ represent the 
models that use Dn, PGA, and Ia as earthquake-related factors. 

  

Figure 8. Environmental predisposing factors: (a) distance to river; (b) mean annual precipitation;
(c) TWI; (d) groundwater; (e) elevation; (f) slope; (g) aspect; (h) plan curvature; (i) profile curvature;
(j) TRI; (k) lithology; (l) NDVI; (m) distance to road; (n) landcover; (o) PGA; (p) Ia; (q) Dn.

To highlight the superiority of Dn as an earthquake-related factor, we chose two
traditional earthquake-related factors, Ia and PGA, for comparative experiments. Steps
for the calculation of Ia are described in Equation (4). PGA represents the maximum
acceleration of the ground due to the action of seismic waves. It was originally employed
to assess the extent of earthquake damage to buildings. Due to its widespread availability,
it has become the most used ground motion parameter for evaluating earthquake intensity.
In this study, PGA was obtained using the attenuation equation fitted to the Wenchuan
ground shaking records by Xie et al. [39]

log(PGA) = 3.565 − 0.7087log
(

D f + 5.348
)

(7)

where D f is seismogenic fault distance.
The three different earthquake-related factors are shown in Figure 8o–q. We calculated

the distribution relationship between landslide density and different earthquake-related
factors. As depicted in Figure 9, a significant relationship between landslide density
and three distinct earthquake-related factors is evident, highlighting the significance of
this study.
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(b) Ia; (c) Dn.

4. Experiments and Result

The models we used are as follows: RF, random forest; SVM, support vector machine;
RF_CNN, convolutional neural network combined with RF classifier; SVM_CNN, convo-
lutional neural network combined with SVM classifier. N_, PGA_, and Ia_ represent the
models that use Dn, PGA, and Ia as earthquake-related factors.

4.1. Multicollinearity Analysis

When there is a high correlation between factors, it is easy to lead to model distortion.
To ensure that there is no linear correlation among the different landslide predisposing
factors, a multicollinearity analysis was conducted using tolerance (TOL) and variance
inflation factor (VIF) [40]. The results are shown in Table 3. The TOL is more than 0.1, and
the VIF is close to 1, indicating that there is no multicollinearity among the factors and that
the factors were selected reasonably.

Table 3. Multicollinearity analysis.

Predisposing Factors TOL VIF

Lithology 0.84 1.194
Landcover 0.64 1.557

Mean annual precipitation 0.59 1.695
Elevation 0.34 2.943

NDVI 0.70 1.434
Distance to road 0.63 1.597

Groundwater 0.93 1.072
TRI 0.73 1.365
TWI 0.76 1.309

Distance to river 0.67 1.504
Plan curvature 0.78 1.280

Profile curvature 0.78 1.290
Aspect 0.96 1.040
Slope 0.93 1.074

Dn 0.74 1.323

4.2. Seismic Landslide Susceptibility Maps

The model’s final output is a probability map, ranging from 0 to 1. In this study, we
chose an interval of 0.2 to categorize the entire study area into five susceptibility areas: very
high, high, moderate, low, and very low.
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Figure 10 shows the susceptibility maps of N_RF_CNN and N_SVM_CNN. Although
there are some differences in detail between the models, the general trend remains con-
sistent. Very high and high susceptibility areas are widely distributed in the area, mainly
concentrated in the east and southeast, and the central region. The northern and northwest
of the study area present a lower hazard. The overall hazard trend is closely related to
the characteristics of roads, rivers, and the earthquake. Furthermore, we calculated the
susceptibility area of N_RF_CNN and N_SVM_CNN (Figure 11). The areas classified as
“very low” exhibited widespread distribution, accounting for 65.8% and 65.9% of the total
area using the two methods, respectively. Following that are the areas classified as “very
high” or “high”, the “very high” and “high” susceptibility areas are mainly concentrated
near the fracture zone, with a decreasing trend towards the northwest and southeast sides.
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4.2.1. Comparison with Different Earthquake-Related Factors

To demonstrate the effectiveness of Dn as a representative earthquake characteristic,
comparative experiments were conducted using PGA and Ia as the earthquake-related
factor (the algorithm exclusively considers RF_CNN and SVM_CNN). The results are
depicted in Figure 12. The proportions of different susceptibility areas were calculated
(Figure 11). The different results show a higher concentration of very high susceptibility
and high susceptibility areas when considering Dn as an earthquake-related factor. In the
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results obtained by employing PGA and Ia, the proportions of very high susceptibility and
high-susceptibility areas are reduced. Conversely, moderate susceptibility areas account
for a large proportion, indicating that the results exhibit limited predictive capability.
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In terms of details, in the susceptibility maps generated by N_RF_CNN and N_SVM_CNN,
the western and central areas (highlighted by the red rectangles in Figure 12) exhibit higher
levels of danger compared to the results obtained by other methods. The reasons for these
conditions are as follows:

1. These regions are traversed by the Tongkou River and other water systems.
2. The terrain in these areas experiences significant fluctuations.
3. The locations are situated within valleys and are densely populated with towns. The

presence of human-made structures inevitably amplifies the degree of susceptibility.

4.2.2. Comparison with Different ML Algorithms

To establish the superiority of the improved CNN method, we conducted comparative
experiments involving traditional SVM and RF algorithms (consider Dn as the sole seismic
predisposing factor). Figure 13 shows the susceptibility maps. The proportions of different
susceptibility areas were calculated, as illustrated in Figure 11. Under identical conditions,
the results of N_RF indicate a notably higher proportion of moderate susceptibility areas,
comprising 19.2%, in contrast to N_RF_CNN, which accounts for only 5.8% of moderate
susceptibility areas. Similar trends are also observed for N_SVM and N_SVM_CNN. This
indicates that when traditional RF and SVM are used to predict landslide susceptibility, the
results are characterized by a high degree of ambiguity in many areas, rendering them of
limited practical utility.
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4.3. Evaluation and Validation

To assess model accuracy, quantitative evaluations were conducted utilizing the AUC,
OA, and MAE. Additionally, to validate the method’s practical applicability, the percentage
of historical landslides at different susceptibility levels was counted.
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4.3.1. Comparison with Different Earthquake-Related Factors

As shown in Figure 14, the results using Dn are better than PGA and Ia in all indicators
(the algorithm exclusively considers RF_CNN and SVM_CNN) and obtain a higher OA
and AUC, and lower MAE. N_RF_CNN has the strongest ability to predict landslides with
the highest OA (78.21%), AUC (0.7814), and lower MAE (0.2483).
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The more landslides fall into low susceptibility areas, the poorer the ability to predict
landslides. As shown in Table 4, the results obtained using Dn as the earthquake-related fac-
tor show that the proportion of historical landslides in the very high and high-susceptibility
zones exceeds 87%. In contrast, when PGA is employed, this proportion does not sur-
pass 70%. Likewise, when Ia is employed, this proportion remains below 82%. A higher
number of historical landslides in low-susceptibility areas could have adverse implica-
tions for LSA. When PGA or Ia is employed, a considerable number of points are in very
low and low-susceptibility areas. In contrast, when Dn is employed, the proportion of
historical landslides in very low and low-susceptibility zones is lower, indicating better
prediction results.

Table 4. The percentage of historical landslide points in different susceptibility levels using different
earthquake-related factors.

Very Low Low Moderate High Very High

PGA_RF_CNN 8% 7% 16% 9% 60%
PGA_SVM_CNN 9% 7% 15% 8% 61%

Ia_RF_CNN 5% 4% 10% 17% 64%
Ia_SVM_CNN 6% 4% 8% 15% 67%

N_RF_CNN 4% 4% 5% 12% 75%
N_SVM_CNN 4% 3% 5% 12% 76%

N_RF 5% 6% 13% 24% 53%
N_SVM 4% 7% 13% 29% 47%

4.3.2. Comparison with Different ML Algorithms

As shown in Figure 15, all indicators show that the improved CNN outperforms RF
and SVM (consider Dn as the sole seismic predisposing factor), achieving a higher OA and
AUC, and lower MAE. From N_RF to N_RF_CNN resulted in a 4.69% increase in OA, a
0.047 increase in AUC, and a decrease in MAE to 0.2483. Similarly, N_SVM to N_SVM_CNN
led to a 4.47% rise in OA accuracy, a 0.045 increase in AUC, and a decrease in MAE to 0.2519.
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MAE.

Compared to N_RF_CNN and N_SVM_CNN (Table 4), both N_RF and N_SVM have
lower proportions of historical landslides in very high and high-susceptibility areas, while
demonstrating higher proportions in the very low and low-susceptibility areas.

5. Discussion
5.1. Feasibility of Dn as Earthquake-Related Factors for Seismic LSA

When previous studies used the Newmark model, they directly used Dn as the result
to predict landslides. We innovatively apply Dn as the earthquake-related factor to the
improved CNN model to generate landslide susceptibility maps, simultaneously taking
advantage of the physical principles of the Newmark model and the powerful feature
extraction capability of CNNs. As shown in Figure 16, compared to LSA (using the
N_RF_CNN method as an example), the Dn map has a wider susceptibility area, and the
prediction effect of landslides is poor. This is because the physical model does not consider
the influence of the surrounding environment on landslide development.
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As the earthquake-related factor in LSA, Dn contains more comprehensive seismic
information, rather than just simple ground vibration parameters compared with Ia and
PGA. When calculating Dn, various factors, such as ground motion parameters, physical
mechanisms, and geotechnical mechanics, are included. As shown in Equations (1) and (3),
shear parameters of the rock–soil mass and slope are used. The friction angle and cohesion
are two mechanical indicators of the shear strength of rock–soil mass. The friction angle
is physically the coefficient of friction, characterizing the ability to resist sliding between
adjacent soil layers. Cohesion is the mutual attraction between adjacent parts within the
same substance. These two properties characterize the stability of a geotechnical body
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under static conditions. For example, relatively hard limestone has a higher friction angle
and cohesion, making it more stable. Unweathered mudstone, which is relatively soft,
has a lower friction angle and cohesion and is less stable in comparison. Nevertheless,
when ground motion parameters are different, the harder limestone may be destabilized,
while the mudstone is more stable. Using Equation (3), the probability of destabilization
of rock–soil mass with different properties under different ground motion parameters
can be obtained. Several physical principles are involved. Dn contains richer physical
and seismic information than simple ground motion parameters, enabling better LSA
results using Dn as an earthquake-related factor. However, it is worth noting that previous
studies have been limited to employing Dn for landslide prediction. For instance, Yuan
et al. utilized the Newmark model to assess seismic landslides triggered by the 2013
Lushan earthquake in China, with the results applicable to future co-seismic landslide
prediction [41]. Similarly, Gupta et al. applied the Newmark model in the Indian Himalayas
for landslide prediction and validated the results using a landslide inventory [42]. While
these studies yielded positive outcomes, they overlooked a crucial aspect—the intrinsic
logic of landslide development intricately linked to the surrounding environment. Factors
such as hydrological characteristics, geological features, and human influences cannot
be disregarded. Therefore, using Dn as an earthquake-related factor to obtain a more
comprehensive and reasonable seismic LSA can not only compensate for the shortcomings
of the traditional earthquake-related factors in expressing seismic information but also take
into account the various environmental factors affecting the development of landslides.

The results show that the performance of LSA with Dn is significantly better compared
to LSA without Dn. Figure 17 illustrates that regardless of the algorithm used, the suscep-
tibility maps generated by Dn exhibit a broader distribution and higher granularity. As
shown in Table 5, the approaches using Dn consistently achieve a higher OA and AUC, as
well as lower MAE, regardless of the algorithm used. PGA exhibits the lowest accuracy,
while Ia demonstrates slightly better accuracy. This has practical implications. Since PGA
is a crucial metric characterizing earthquake damage to buildings, it has limitations as an
indicator of seismic hazard. Contrastingly, Ia can reflect the cumulative effect of the entire
ground shaking time course and is more accurate than PGA in describing the potential
damage caused by earthquakes. LSA results constrained by Dn exhibit fewer moderate and
low-susceptibility areas, while high-susceptibility areas are more concentrated, primarily
distributed around the Beichuan–Yingxiu fracture belt spanning Beichuan County. This
distribution pattern demonstrates a trend of spreading from the center of the fracture zone
toward the periphery. Previous studies have indicated that the landslides triggered by the
2008 Wenchuan earthquake are densely distributed along the seismogenic fracture zone
and the junction of the fracture zone, with the landslide distribution sharply decreasing as
the distance from the fracture belt increases [35,43]. The results show that the susceptibility
maps obtained using Dn are more consistent with the historical landslide distribution,
especially in high-susceptibility areas.

Table 5. OA, AUC, and MAE of all methods.

OA AUC MAE

PGA_RF 70.39% 0.7029 0.3375
PGA_SVM 71.81% 0.7273 0.3549

PGA_RF_CNN 72.66% 0.7264 0.2812
PGA_SVM_CNN 73.26% 0.7323 0.2795

Ia_RF 72.45% 0.7136 0.3344
Ia_SVM 72.36% 0.7228 0.3544

Ia_RF_CNN 74.93% 0.7487 0.2633
Ia_SVM_CNN 74.62% 0.7461 0.267

N_RF 73.52% 0.7347 0.3254
N_SVM 73.14% 0.7311 0.3484

N_RF_CNN 78.21% 0.7814 0.2483
N_SVM_CNN 77.61% 0.7758 0.2519
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5.2. Feasibility of Improved CNN Model for Seismic LSA

The conventional CNN, due to its single linear structure, sacrifices low-level features
for image classification tasks. As the depth of the network increases, the richness of
feature information decreases. Therefore, we have made some adjustments based on the
conventional CNN. Specifically, the detail branch has fewer layers and a larger feature
map size, and it is responsible for extracting spatial details such as geometric and color
features of landslides and environment. The semantic branch has more layers and a
larger receptive field, which helps analyze the correlation between landslides and the
factors. To preserve low-level features, a residual connection structure in this branch is
adopted, which can also solve the problem of gradient disappearance in deep networks. To
improve network training efficiency, we use depthwise separable convolutions instead of
the traditional convolution mode. Each convolution kernel is assigned to a feature map
channel, which reduces the number of parameters while maintaining a certain receptive
field. This approach contributes to the construction of deep networks and can effectively
extract deep semantic information from source data. Finally, the traditional ML classifier
is used as the final classifier for classifying the extracted feature maps after nonlinear
alignment and combination. Compared to the linear computation of fully connected
layers, the ML classifier achieves more efficient secondary classification of the classified
feature layers.

By adopting the improved CNN model, we can comprehensively extract detailed
information. It can be seen from Table 5 that regardless of the earthquake-related factors
used, the improved CNN model consistently outperforms traditional ML in LSA, achieving
higher accuracy. It is worth noting that the classification accuracy in this paper is not
very high overall, with a maximum OA of 78.21%. This is because compared with other
computer vision tasks, the natural environments that nurture landslides are complex and
diverse, and the landslide samples are randomly distributed and of various sizes, making it
difficult to achieve a high level of accuracy for the landslide classification task. Additionally,
for an objective evaluation of the LSA, it is necessary to further calculate the overlap
rate of historical landslides. As can be seen from the last four rows of Table 4, a higher
percentage of historical landslides fall into very high and high susceptibility using the
improved CNN model compared to traditional ML. Of historical landslides, 87% and
88% fall into the very high and high-susceptibility areas predicted by RF_RF_CNN and
N_SVM_CNN methods, respectively. As seen in Figure 17, the susceptibility maps of
traditional ML exhibit noticeable strip and block patterns. Nevertheless, under the same
conditions, N_RF_CNN and N_SVM_CNN show superior prediction performance and
exhibit greater ability in capturing details. The improved method effectively solves the
limitations of traditional ML in capturing deep features, while also improving the landslide
prediction ability of the CNN model through refinement.

5.3. Problems and Improvement Directions

Theoretically, the geotechnical parameters used to calculate the Dn are spatially vari-
able, so it is not optimal to combine the parameters at the macroscopic scale. Furthermore,
due to long-term geological activities and weathering, the rock–soil mass evolves cor-
respondingly, which leads to certain errors between empirical and actual parameters.
Therefore, our future research will focus on how to effectively use historical landslides
to invert rock–soil mass parameters to provide reliable data support for LSA. Another
problem that should not be ignored is that most landslides are concentrated around the
Beichuan–Yingxiu fracture zone. There is no obvious heterogeneity between the locations
of these landslides and environments due to the limitation of the spatial resolution, making
it unfavorable for feature learning for both positive and negative samples.

6. Conclusions

In this study, a seismic LSA model based on the Newmark model and DL was estab-
lished and employed in the hardest-hit areas of the 2008 Wenchuan earthquake. The aim is
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to assist in solving emergency responses for geological disasters after strong earthquakes.
The work led to the following conclusions:

1. Seismic landslides are the largest secondary hazards after earthquakes. Beichuan was
chosen for the study to provide a rapid LSA in similar areas in the future. The seismic
landslide susceptibility maps obtained using the methods proposed in this study
reveal that the study area exhibits a very high level of landslide susceptibility with
a concentrated distribution. The distribution of landslides is mainly influenced by
the seismogenic fracture zone, posing a significant threat to human life and property,
which requires attention.

2. Traditional PGA and Ia contain limited seismic information and fail to fully convey
the impact of earthquakes on landslides and may even underestimate the effects. In
contrast, Dn can comprehensively convey the mechanical properties of rock–soil mass
and the influence of earthquakes.

3. It is evident that the improved dual-channel CNN effectively integrates the strengths
of both traditional ML and CNNs when compared to traditional ML, providing a new
approach for fusing high-level features with multiple predisposing factors in LSA.

4. In this paper, a new seismic LSA method is proposed, which can comprehensively
take the environmental predisposing factors and the earthquake-related factors into
account. Globally, seismic landslides are frequent and have caused enormous dam-
age to people. This method can provide timely and effective support for landslide
early warning and landslide risk assessment in post-earthquake disaster areas, thus
reducing the losses of people and property.
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