Dual-Task Network for Terrace and Ridge Extraction: Automatic Terrace Extraction via Multi-Task Learning
Abstract
:1. Introduction
2. Materials
2.1. Experimental Area
2.2. Dataset Creation
3. Methods
3.1. DTRE-Net Architecture
3.2. ResBlock
3.3. Multi-Scale Feature Fusion Module
3.4. Multi-Scale Edge Residual Correction Model
3.5. Improved Binary Cross-Entropy Loss
3.6. Evaluation Criterion
4. Results
4.1. Comparison of Terrace Extraction
4.2. Comparison of Field Ridge Extraction
5. Discussion
5.1. Single Tasking versus Dual Tasking
5.2. Ablation Experiments
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Yu, M.; Li, Y.; Luo, G.; Yu, L.; Chen, M. Agroecosystem composition and landscape ecological risk evolution of rice terraces in the southern mountains, China. Ecol. Indic. 2022, 145, 109625. [Google Scholar] [CrossRef]
- Mishra, P.K.; Rai, A.; Rai, S.C. Indigenous knowledge of terrace management for soil and water conservation in the Sikkim Himalaya, India. Indian J. Tradit. Know. 2020, 19, 475–485. [Google Scholar] [CrossRef]
- Xu, Q.; Wu, P.; Dai, J.; Wang, T.; Li, Z.; Cai, C.; Shi, Z. The effects of rainfall regimes and terracing on runoff and erosion in the Three Gorges area, China. Environ. Sci. Pollut. Res. 2018, 25, 9474–9484. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Zhu, H.; Dong, K.; Li, D. Plant Community and Succession in Lowland Grasslands under Saline–Alkali Conditions with Grazing Exclusion. Agron. J. 2017, 109, 2428–2437. [Google Scholar] [CrossRef]
- Dai, W.; Na, J.; Huang, N.; Hu, G.; Yang, X.; Tang, G.; Xiong, L.; Li, F. Integrated edge detection and terrain analysis for agricultural terrace delineation from remote sensing images. Int. J. Geogr. Inf. Sci. 2020, 34, 484–503. [Google Scholar] [CrossRef]
- Diaz-Gonzalez, F.A.; Vuelvas, J.; Correa, C.A.; Vallejo, V.E.; Patino, D. Machine learning and remote sensing techniques applied to estimate soil indicators—Review. Ecol. Ind. 2022, 135, 108517. [Google Scholar] [CrossRef]
- Martínez-Casasnovas, J.A.; Ramos, M.C.; Cots-Folch, R. Influence of the EU CAP on terrain morphology and vineyard cultivation in the Priorat region of NE Spain. Land Use Policy 2010, 27, 11–21. [Google Scholar] [CrossRef]
- Agnoletti, M.; Cargnello, G.; Gardin, L.; Santoro, A.; Bazzoffi, P.; Sansone, L.; Pezza, L.; Belfiore, N. Traditional landscape and rural development: Comparative study in three terraced areas in northern, central and southern Italy to evaluate the efficacy of GAEC standard 4.4 of cross compliance. Ital. J. Agron. 2011, 6, e16. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, M.; Zhao, X.; Wang, X.; Luo, Z.; Zhao, Y. Methods for Automatic Identification and Extraction of Terraces from High Spatial Resolution Satellite Data (China-GF-1). Int. Soil Water Conserv. Res. 2017, 5, 17–25. [Google Scholar] [CrossRef]
- Hellman, I.; Heinse, R.; Karl, J.W.; Corrao, M. Detection of terracettes in semi-arid rangelands using Fourier-based image analysis of very-high-resolution satellite imagery. Earth Surf. Process. Landf. 2020, 45, 3368–3380. [Google Scholar] [CrossRef]
- Luo, L.; Li, F.; Dai, Z.; Yang, X.; Liu, W.; Fang, X. Terrace extraction based on remote sensing images and digital elevation model in the loess plateau, China. Earth Sci. Inform. 2020, 13, 433–446. [Google Scholar] [CrossRef]
- Zhao, H.; Fang, X.; Ding, H.; Josef, S.; Xiong, L.; Na, J.; Tang, G. Extraction of terraces on the Loess Plateau from high-resolution DEMs and imagery utilizing object-based image analysis. ISPRS Int. J. Geo-Inf. 2017, 6, 157. [Google Scholar] [CrossRef]
- Zhang, X.; Feng, S.; Zhao, C.; Sun, Z.; Zhang, S.; Ji, K. MGSFA-Net: Multi-Scale Global Scattering Feature Association Network for SAR Ship Target Recognition. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024. early access. [Google Scholar] [CrossRef]
- Zhao, W.; Du, S. Learning multiscale and deep representations for classifying remotely sensed imagery. ISPRS J. Photogramm. Remote Sens. 2016, 113, 155–165. [Google Scholar] [CrossRef]
- Pan, G.; Qi, G.; Wu, Z.; Zhang, D.; Li, S. Land-Use Classification Using Taxi GPS Traces. IEEE Trans. Intell. Transp. Syst. 2012, 14, 113–123. [Google Scholar] [CrossRef]
- Xiong, L.; Tang, G.; Yang, X.; Li, F. Geomorphology-oriented digital terrain analysis: Progress and perspectives. J. Geogr. Sci. 2021, 31, 456–476. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Kemker, R.; Salvaggio, C.; Kanan, C. Algorithms for semantic segmentation of multispectral remote sensing imagery using deep learning. ISPRS J. Photogramm. Remote Sens. 2018, 145, 60–77. [Google Scholar] [CrossRef]
- Sun, Z.; Dai, M.; Leng, X.; Leng, Y.; Xiong, B.; Ji, K.; Kuang, G. An anchor-free detection method for ship targets in high-resolution SAR images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 7799–7816. [Google Scholar] [CrossRef]
- Zheng, J.; Yuan, S.; Wu, W.; Li, W.; Yu, L.; Fu, H.; Coomes, D. Surveying coconut trees using high-resolution satellite imagery in remote atolls of the Pacific Ocean. Remote Sens. Environ. 2023, 287, 113485. [Google Scholar] [CrossRef]
- Hui, J.; Du, M.; Ye, X.; Qin, Q.; Sui, J. Effective Building Extraction from High-Resolution Remote Sensing Images with Multitask Driven Deep Neural Network. IEEE Geosci. Remote Sens. Lett. 2018, 16, 786–790. [Google Scholar] [CrossRef]
- Yu, M.; Rui, X.; Xie, W.; Xu, X.; Wei, W. Research on Automatic Identification Method of Terraces on the Loess Plateau Based on Deep Transfer Learning. Remote Sens. 2022, 14, 2446. [Google Scholar] [CrossRef]
- Luo, L.; Li, P.; Yan, X. Deep Learning-Based Building Extraction from Remote Sensing Images: A Comprehensive Review. Energies 2021, 14, 7982. [Google Scholar] [CrossRef]
- Tian, H.; Wang, P.; Tansey, K.; Han, D.; Zhang, J.; Zhang, S.; Li, H. A deep learning framework under attention mechanism for wheat yield estimation using remotely sensed indices in the Guanzhong Plain, PR China. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102375. [Google Scholar] [CrossRef]
- Liu, Z.; Li, N.; Wang, L.; Zhu, J.; Qin, F. A multi-angle comprehensive solution based on deep learning to extract cultivated land information from high-resolution remote sensing images. Ecol. Indic. 2022, 141, 108961. [Google Scholar] [CrossRef]
- Li, M.; Wu, P.; Wang, B.; Park, H.; Yang, H.; Wu, Y. A Deep Learning Method of Water Body Extraction from High Resolution Remote Sensing Images with Multisensors. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 3120–3132. [Google Scholar] [CrossRef]
- Yao, J.; Sun, S.; Zhai, H.; Feger, K.-H.; Zhang, L.; Tang, X.; Li, G.; Wang, Q. Dynamic monitoring of the largest reservoir in North China based on multi-source satellite remote sensing from 2013 to 2022: Water area, water level, water storage and water quality. Ecol. Indic. 2022, 144, 109470. [Google Scholar] [CrossRef]
- Yu, B.; Yang, A.; Chen, F.; Wang, N.; Wang, L. SNNFD, spiking neural segmentation network in frequency domain using high spatial resolution images for building extraction. Int. J. Appl. Earth Obs. Geoinf. 2022, 112, 102930. [Google Scholar] [CrossRef]
- Wang, Y.; Kong, X.; Guo, K.; Zhao, C.; Zhao, J. Intelligent Extraction of Terracing Using the ASPP ArrU-Net Deep Learning Model for Soil and Water Conservation on the Loess Plateau. Agriculture 2023, 13, 1283. [Google Scholar] [CrossRef]
- Lu, Y.; Li, X.; Xin, L.; Song, H.; Wang, X. Mapping the terraces on the Loess Plateau based on a deep learning-based model at 1.89 m resolution. Sci. Data 2023, 10, 115. [Google Scholar] [CrossRef] [PubMed]
- Cook, D.; Feuz, K.D.; Krishnan, N.C. Transfer learning for activity recognition: A survey. Knowl. Inf. Syst. 2013, 36, 537–556. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Xiong, L.-Y.; Wang, C.; Wang, H.-R.; Wei, H.; Tang, G.-A. Terraces mapping by using deep learning approach from remote sensing images and digital elevation models. Trans. GIS 2021, 25, 2438–2454. [Google Scholar] [CrossRef]
- Sofia, G.; Bailly, J.S.; Chehata, N.; Tarolli, P.; Levavasseur, F. Comparison of pleiades and LiDAR digital elevation models for terraces detection in farmlands. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 1567–1576. [Google Scholar] [CrossRef]
- Shi, H.; Fan, J.; Wang, Y.; Chen, L. Dual Attention Feature Fusion and Adaptive Context for Accurate Segmentation of Very High-Resolution Remote Sensing Images. Remote Sens. 2021, 13, 3715. [Google Scholar] [CrossRef]
- Zhang, D.; Pan, Y.; Zhang, J.; Hu, T.; Zhao, J.; Li, N.; Chen, Q. A generalized approach based on convolutional neural networks for large area cropland mapping at very high resolution. Remote Sens. Environ. 2020, 247, 111912. [Google Scholar] [CrossRef]
- Shen, X.; Weng, L.; Xia, M.; Lin, H. Multi-Scale Feature Aggregation Network for Semantic Segmentation of Land Cover. Remote Sens. 2022, 14, 6156. [Google Scholar] [CrossRef]
- Wang, H.; Yao, Z.; Li, T.; Ying, Z.; Wu, X.; Hao, S.; Liu, M.; Wang, Z.; Gu, T. Enhanced open biomass burning detection: The BranTNet approach using UAV aerial imagery and deep learning for environmental protection and health preservation. Ecol. Indic. 2023, 154, 110788. [Google Scholar] [CrossRef]
- Shao, Z.; Zhou, Z.; Huang, X.; Zhang, Y. MRENet: Simultaneous Extraction of Road Surface and Road Centerline in Complex Urban Scenes from Very High-Resolution Images. Remote Sens. 2021, 13, 239. [Google Scholar] [CrossRef]
- Pelizari, P.A.; Geiß, C.; Groth, S.; Taubenböck, H. Deep multitask learning with label interdependency distillation for multicriteria street-level image classification. ISPRS J. Photogramm. Remote Sens. 2023, 204, 275–290. [Google Scholar] [CrossRef]
- Xu, L.; Yang, P.; Yu, J.; Peng, F.; Xu, J.; Song, S.; Wu, Y. Extraction of cropland field parcels with high resolution remote sensing using multi-task learning. Eur. J. Remote Sens. 2023, 56, 2181874. [Google Scholar] [CrossRef]
- Li, M.; Long, J.; Stein, A.; Wang, X. Using a semantic edge-aware multi-task neural network to delineate agricultural parcels from remote sensing images. ISPRS J. Photogramm. Remote Sens. 2023, 200, 24–40. [Google Scholar] [CrossRef]
- Xia, G.S.; Bai, X.; Ding, J.; Zhu, Z.; Belongie, S.; Luo, J.; Datcu, M.; Pelillo, M.; Zhang, L. DOTA: A Large-Scale Dataset for Object Detection in Aerial Images. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018. [Google Scholar] [CrossRef]
- Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid scene parsing network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2881–2890. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution for semantic image segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 801–818. [Google Scholar]
- Peng, C.; Zhang, X.; Yu, G.; Luo, G.; Sun, J. Large Kernel Matters–Improve Semantic Segmentation by Global Convolutional Network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4353–4361. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Long, J.; Shelhamer, E.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015, Munich, Germany, 5–9 October 2015; Volume 9351, pp. 234–241. [Google Scholar]
Area | Methods | Precision (%) | Recall (%) | F1-score (%) | IoU (%) |
---|---|---|---|---|---|
T1 | FCN | 88.73 | 85.84 | 87.27 | 77.41 |
PSPNet | 88.79 | 84.58 | 86.63 | 75.42 | |
UNet | 88.65 | 90.57 | 89.60 | 81.12 | |
DeepLabv3+ | 89.98 | 85.75 | 87.81 | 78.27 | |
DTRE-Net | 93.35 | 91.83 | 92.58 | 85.18 | |
T2 | FCN | 85.21 | 91.30 | 88.15 | 78.81 |
PSPNet | 85.12 | 87.04 | 86.07 | 75.54 | |
UNet | 86.97 | 91.74 | 89.29 | 80.65 | |
DeepLabv3+ | 87.51 | 92.27 | 89.82 | 81.53 | |
DTRE-Net | 91.43 | 93.65 | 92.53 | 86.09 |
Area | Methods | Precision (%) | Recall (%) | F1-score (%) | IoU (%) |
---|---|---|---|---|---|
T1 | FCN | 60.17 | 75.84 | 67.10 | 50.49 |
PSPNet | 60.18 | 72.17 | 65.63 | 48.85 | |
UNet | 61.74 | 74.27 | 67.43 | 50.87 | |
DeepLabv3+ | 63.14 | 77.01 | 69.39 | 51.12 | |
DTRE-Net | 70.71 | 79.48 | 74.84 | 59.79 | |
T2 | FCN | 75.48 | 82.12 | 78.66 | 64.82 |
PSPNet | 72.39 | 79.52 | 75.79 | 61.01 | |
UNet | 77.78 | 82.79 | 80.20 | 66.94 | |
DeepLabv3+ | 78.36 | 83.54 | 80.87 | 67.88 | |
DTRE-Net | 83.72 | 85.96 | 84.83 | 73.65 |
Area | Methods | Precision (%) | Recall (%) | F1-score (%) | IoU (%) |
---|---|---|---|---|---|
T1 | Single-task | 63.24 | 73.98 | 68.19 | 51.73 |
Dual-task | 70.71 | 79.48 | 74.84 | 59.79 | |
T2 | Single-task | 79.36 | 81.19 | 80.27 | 67.04 |
Dual-task | 83.72 | 85.96 | 84.83 | 73.65 |
Methods | Precision (%) | Recall (%) | F1-score (%) | IoU (%) |
---|---|---|---|---|
Base | 89.96 | 90.19 | 90.08 | 81.95 |
Base + MSFF | 90.83 | 90.51 | 90.68 | 82.94 |
Base + MSER | 91.12 | 89.75 | 90.55 | 82.73 |
DTRE-Net | 91.13 | 91.04 | 91.09 | 83.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Zhang, J.; Huang, X.; Zhou, W.; Fu, H.; Chen, Y.; Zhan, Z. Dual-Task Network for Terrace and Ridge Extraction: Automatic Terrace Extraction via Multi-Task Learning. Remote Sens. 2024, 16, 568. https://doi.org/10.3390/rs16030568
Zhang J, Zhang J, Huang X, Zhou W, Fu H, Chen Y, Zhan Z. Dual-Task Network for Terrace and Ridge Extraction: Automatic Terrace Extraction via Multi-Task Learning. Remote Sensing. 2024; 16(3):568. https://doi.org/10.3390/rs16030568
Chicago/Turabian StyleZhang, Jun, Jun Zhang, Xiao Huang, Weixun Zhou, Huyan Fu, Yuyan Chen, and Zhenghao Zhan. 2024. "Dual-Task Network for Terrace and Ridge Extraction: Automatic Terrace Extraction via Multi-Task Learning" Remote Sensing 16, no. 3: 568. https://doi.org/10.3390/rs16030568
APA StyleZhang, J., Zhang, J., Huang, X., Zhou, W., Fu, H., Chen, Y., & Zhan, Z. (2024). Dual-Task Network for Terrace and Ridge Extraction: Automatic Terrace Extraction via Multi-Task Learning. Remote Sensing, 16(3), 568. https://doi.org/10.3390/rs16030568