Multi-Level Feature Extraction Networks for Hyperspectral Image Classification
Abstract
:1. Introduction
- (1)
- A multi-level feature extraction network (MLFEN) for HSI classification is proposed. By combining the capability of CNN’s local spatial–spectral feature capture and ViT’s global sequence modeling, MLFEN achieves effective fusion of shallow to deep features of HSIs.
- (2)
- A sophisticated hybrid convolutional attention module (HCAM) is suggested, which incorporates band shift, hybrid convolution, and attention mechanisms to efficiently capture and enhance multidimensional features. By seamlessly combining these essential techniques, HCAM can empower the model to gain a comprehensive understanding of the intricate details present within the image.
- (3)
- A novel variation of the ViT called enhanced dense vision transformer (EDVT) is introduced. EDVT is specifically designed for characterizing HSI data. To address the issue of information loss due to deep networks, EDVT incorporates a modified architecture for its encoders. Additionally, EDVT includes an adaptive feature fusion (AFF) component that enables effective information transfer and feature reuse.
- (4)
- A new sparse loss function for HSI classification is developed, combining the benefits of both the cross-entropy loss function and a sparsity regularization operator. This loss function contributes to sparse representation, thus effectively solving the overfitting problem and improving the robustness and accuracy of classification.
2. Method
2.1. Hybrid Convolutional Attention Module (HCAM)
2.1.1. Band Shift
2.1.2. Multidimensional Feature Extraction
2.1.3. Attention Module (AM)
2.2. Enhanced Dense Vision Transformer (EDVT)
2.3. Sparse Loss Function
3. Results
3.1. Dataset Description
3.2. Experimental Setup
3.2.1. Implementation Details
3.2.2. Evaluation Indicators
3.3. Parameter Analysis
3.3.1. The Influence of the Selection of Dimensionality Reduction Method
3.3.2. The Influence of Patch Size
3.3.3. The Influence of the Number of Training Samples
3.3.4. The Influence of Coefficient
3.3.5. The Influence of the Depth of EDVT
3.4. Ablation Study
3.5. Comparative Experiments
3.5.1. Quantitative Evaluation
3.5.2. Visual Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
HSI | Hyperspectral image |
MLFEN | Multi-Level Feature Extraction Network |
HCAM | Hybrid Convolutional Attention Module |
EDVT | Enhanced Dense Vision Transformer |
PCA | Principal Component Analysis |
CNN | Convolutional Neural Network |
1D-CNN | 1D Convolutional Neural Network |
2D-CNN | 2D Convolutional Neural Network |
3D-CNN | 3D Convolutional Neural Network |
HybridSN | Hybrid Spectral Convolutional Neural Network |
CVSSN | Central Vector-oriented Self-Similarity Network |
SSFTT | Spectral–Spatial Feature Tokenization Transformer |
SENet | Squeeze-and-Excitation Network |
DANet | Dual Attention Network |
SSAN | Spectral-Spatial Attention Network |
MAFN | Multi Attention Fusion Network |
ViT | Vision Transformer |
HiT | Hyperspectral image Transformer |
AFF | Adaptive Feature Fusion |
MSA | Multi-head Self-Attention mechanism |
MLP | Multi-Layer Perception network |
AM | Attention Module |
ReLU | Rectified Linear Unit |
LN | Layer Normalization |
PU | Pavia University dataset |
KSC | Kennedy Space Center dataset |
SA | Salinas dataset |
IP | Indian Pines dataset |
HU | Houston University |
ROSIS | Reflective Optics System Imaging Spectrometer |
AVIRIS | Airborne Visible/InfraRed Imaging Spectrometer |
OA | Overall Accuracy |
AA | Average Accuracy |
Kappa | Kappa Coefficient |
ROI | Region Of Interest |
References
- Liao, X.; Liao, G.; Xiao, L. Rapeseed Storage Quality Detection Using Hyperspectral Image Technology-An Application for Future Smart Cities. J. Test. Eval. 2023, 51, 1740–1752. [Google Scholar] [CrossRef]
- Ghandehari, M.; Aghamohamadnia, M.; Dobler, G.; Karpf, A.; Cavalcante, C.; Buckland, K.; Qian, J.; Koonin, S. Ground based Hyperspectral Imaging of Urban Emissions. In Proceedings of the 2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Los Angeles, CA, USA, 21–24 August 2016; pp. 1–3. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, L.; Tong, Q.; Sun, X. The Spectral Crust project—Research on new mineral exploration technology. In Proceedings of the 2012 4th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Shanghai, China, 4–7 June 2012; pp. 1–4. [Google Scholar] [CrossRef]
- Contreras, C.; Khodadadzadeh, M.; Tusa, L.; Loidolt, C.; Tolosana-Delgado, R.; Gloaguen, R. Geochemical and Hyperspectral Data Fusion for Drill-Core Mineral Mapping. In Proceedings of the 2019 10th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS), Amsterdam, The Netherlands, 24–26 September 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Gevaert, C.M.; Suomalainen, J.; Tang, J.; Kooistra, L. Generation of spectral–temporal response surfaces by combining multispectral satellite and hyperspectral UAV imagery for precision agriculture applications. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2015, 8, 3140–3146. [Google Scholar] [CrossRef]
- Ang, K.L.M.; Seng, J.K.P. Big data and machine learning with hyperspectral information in agriculture. IEEE Access 2021, 9, 36699–36718. [Google Scholar] [CrossRef]
- Samaniego, L.; Bárdossy, A.; Schulz, K. Supervised classification of remotely sensed imagery using a modified k-NN technique. IEEE Trans. Geosci. Remote Sens. 2008, 46, 2112–2125. [Google Scholar] [CrossRef]
- Melgani, F.; Bruzzone, L. Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1778–1790. [Google Scholar] [CrossRef]
- Ham, J.; Chen, Y.; Crawford, M.M.; Ghosh, J. Investigation of the random forest framework for classification of hyperspectral data. IEEE Trans. Geosci. Remote Sens. 2005, 43, 492–501. [Google Scholar] [CrossRef]
- Xue, Z.; Nie, X.; Zhang, M. Incremental Dictionary Learning-Driven Tensor Low-Rank and Sparse Representation for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–19. [Google Scholar] [CrossRef]
- Hughes, G. On the mean accuracy of statistical pattern recognizers. IEEE Trans. Inf. Theory. 1968, 14, 55–63. [Google Scholar] [CrossRef]
- Wu, Z.; Yan, Z. Selection of optimal bands for hyperspectral local feature descriptor. IEEE Geosci. Remote Sens. Lett. 2021, 19, 5511205. [Google Scholar] [CrossRef]
- Xu, B.; Li, X.; Hou, W.; Wang, Y.; Wei, Y. A similarity-based ranking method for hyperspectral band selection. IEEE Trans. Geosci. Remote Sens. 2021, 59, 9585–9599. [Google Scholar] [CrossRef]
- Licciardi, G.; Marpu, P.R.; Chanussot, J.; Benediktsson, J.A. Linear versus nonlinear PCA for the classification of hyperspectral data based on the extended morphological profiles. IEEE Geosci. Remote Sens. Lett. 2011, 9, 447–451. [Google Scholar] [CrossRef]
- Ye, Q.; Yang, J.; Liu, F.; Zhao, C.; Ye, N.; Yin, T. L1-norm distance linear discriminant analysis based on an effective iterative algorithm. IEEE Trans. Circ. Syst. Video Technol. 2016, 28, 114–129. [Google Scholar] [CrossRef]
- Luo, F.; Zhang, L.; Zhou, X.; Guo, T.; Cheng, Y.; Yin, T. Sparse-adaptive hypergraph discriminant analysis for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 2019, 17, 1082–1086. [Google Scholar] [CrossRef]
- Ghamisi, P.; Benediktsson, J.A.; Ulfarsson, M.O. The spectral-spatial classification of hyperspectral images based on Hidden Markov Random Field and its Expectation-Maximization. In Proceedings of the 2013 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Melbourne, Australia, 21–26 July 2013; pp. 1107–1110. [Google Scholar] [CrossRef]
- Dalla Mura, M.; Villa, A.; Benediktsson, J.A.; Chanussot, J.; Bruzzone, L. Classification of hyperspectral images by using extended morphological attribute profiles and independent component analysis. IEEE Geosci. Remote Sens. Lett. 2010, 8, 542–546. [Google Scholar] [CrossRef]
- He, L.; Liu, C.; Li, J.; Li, Y.; Li, S.; Yu, Z. Hyperspectral image spectral–spatial-range Gabor filtering. IEEE Trans. Geosci. Remote Sens. 2020, 58, 4818–4836. [Google Scholar] [CrossRef]
- Ji, R.; Gao, Y.; Hong, R.; Liu, Q.; Tao, D.; Li, X. Spectral-spatial constraint hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2013, 52, 1811–1824. [Google Scholar] [CrossRef]
- Li, S.; Song, W.; Fang, L.; Chen, Y.; Ghamisi, P.; Benediktsson, J.A. Deep learning for hyperspectral image classification: An overview. IEEE Trans. Geosci. Remote Sens. 2019, 57, 6690–6709. [Google Scholar] [CrossRef]
- Ma, A.; Filippi, A.M.; Wang, Z.; Yin, Z.; Huo, D.; Li, X.; Güneralp, B. Fast sequential feature extraction for recurrent neural network-based hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2020, 59, 5920–5937. [Google Scholar] [CrossRef]
- Yu, Q.; Wei, W.; Pan, Z.; He, J.; Wang, S.; Hong, D. GPF-Net: Graph-Polarized Fusion Network for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5519622. [Google Scholar] [CrossRef]
- Cai, Y.; Zhang, Z.; Cai, Z.; Liu, X.; Jiang, X. Hypergraph-structured autoencoder for unsupervised and semisupervised classification of hyperspectral image. IEEE Geosci. Remote Sens. Lett. 2021, 19, 5503505. [Google Scholar] [CrossRef]
- Qin, A.; Tan, Z.; Wang, R.; Sun, Y.; Yang, F.; Zhao, Y.; Gao, C. Distance Constraints-based Generative Adversarial Networks for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5511416. [Google Scholar] [CrossRef]
- Paoletti, M.E.; Haut, J.M.; Fernández-Beltran, R.; Plaza, J.; Plaza, A.J.; Li, J.Y.; Pla, F. Capsule Networks for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2019, 57, 2145–2160. [Google Scholar] [CrossRef]
- Qi, W.; Zhang, X.; Wang, N.; Zhang, M.; Cen, Y. A spectral-spatial cascaded 3D convolutional neural network with a convolutional long short-term memory network for hyperspectral image classification. Remote Sens. 2019, 11, 2363. [Google Scholar] [CrossRef]
- Wang, Q.; Yuan, Z.; Du, Q.; Li, X. GETNET: A general end-to-end 2-D CNN framework for hyperspectral image change detection. IEEE Trans. Geosci. Remote Sens. 2018, 57, 3–13. [Google Scholar] [CrossRef]
- Wei, H.; Yangyu, H.; Li, W.; Fan, Z.; Hengchao, L. Deep Convolutional Neural Networks for Hyperspectral Image Classification. J. Sens. 2015, 2015, 258619. [Google Scholar] [CrossRef]
- Yang, X.; Ye, Y.; Li, X.; Lau, R.Y.; Zhang, X.; Huang, X. Hyperspectral image classification with deep learning models. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5408–5423. [Google Scholar] [CrossRef]
- Hamida, A.B.; Benoit, A.; Lambert, P.; Amar, C.B. 3-D deep learning approach for remote sensing image classification. IEEE Trans. Geosci. Remote Sens. 2018, 56, 4420–4434. [Google Scholar] [CrossRef]
- Roy, S.K.; Krishna, G.; Dubey, S.R.; Chaudhuri, B.B. HybridSN: Exploring 3-D–2-D CNN feature hierarchy for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 2019, 17, 277–281. [Google Scholar] [CrossRef]
- Paoletti, M.E.; Haut, J.M.; Fernandez-Beltran, R.; Plaza, J.; Plaza, A.J.; Pla, F. Deep pyramidal residual networks for spectral–spatial hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2018, 57, 740–754. [Google Scholar] [CrossRef]
- Ma, X.; Fu, A.; Wang, J.; Wang, H.; Yin, B. Hyperspectral image classification based on deep deconvolution network with skip architecture. IEEE Trans. Geosci. Remote Sens. 2018, 56, 4781–4791. [Google Scholar] [CrossRef]
- Nalepa, J.; Myller, M.; Imai, Y.; Honda, K.I.; Takeda, T.; Antoniak, M. Unsupervised Segmentation of Hyperspectral Images Using 3-D Convolutional Autoencoders. IEEE Geosci. Remote Sens. Lett. 2020, 17, 1948–1952. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, X.; Li, T.; Meng, H.; Cao, X.; Wang, L. Adversarial Representation Learning for Hyperspectral Image Classification with Small-Sized Labeled Set. Remote Sens. 2022, 14, 2612. [Google Scholar] [CrossRef]
- Sellami, A.; Tabbone, S. Deep neural networks-based relevant latent representation learning for hyperspectral image classification. Pattern Recognition 2022, 121, 108224. [Google Scholar] [CrossRef]
- Zhang, K.; Zhu, D.; Min, X.; Zhai, G. Implicit Neural Representation Learning for Hyperspectral Image Super-Resolution. In Proceedings of the 2022 IEEE International Conference on Multimedia and Expo (ICME), Taipei, Taiwan, 18–22 July 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Li, M.; Liu, Y.; Xue, G.; Huang, Y.; Yang, G. Exploring the Relationship Between Center and Neighborhoods: Central Vector Oriented Self-Similarity Network for Hyperspectral Image Classification. IEEE Trans. Circuits Syst. Video Technol. 2023, 33, 1979–1993. [Google Scholar] [CrossRef]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141. [Google Scholar] [CrossRef]
- Fu, J.; Liu, J.; Tian, H.; Li, Y.; Bao, Y.; Fang, Z.; Lu, H. Dual attention network for scene segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 16–20 June 2019; pp. 3146–3154. [Google Scholar] [CrossRef]
- Sun, H.; Zheng, X.; Lu, X.; Wu, S. Spectral–spatial attention network for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2019, 58, 3232–3245. [Google Scholar] [CrossRef]
- Li, Z.; Zhao, X.; Xu, Y.; Li, W.; Zhai, L.; Fang, Z.; Shi, X. Hyperspectral Image Classification with Multiattention Fusion Network. IEEE Geosci. Remote Sens. Lett. 2022, 19, 5503305. [Google Scholar] [CrossRef]
- Yan, H.; Zhang, E.; Wang, J.; Leng, C.; Peng, J. MTFFN: Multimodal Transfer Feature Fusion Network for Hyperspectral Image Classification. IEEE Geosci. Remote Sens. Lett. 2022, 19, 6008005. [Google Scholar] [CrossRef]
- Lyutikova, M.N.; Korobeynikov, S.M.; Rao, U.M.; Fofana, I. Mixed Insulating Liquids With Mineral Oil for High-Voltage Transformer Applications: A Review. IEEE Trans. Dielect. Electr. Insul. 2022, 29, 454–461. [Google Scholar] [CrossRef]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An image is worth 16 × 16 words: Transformers for image recognition at scale. arXiv 2021, arXiv:2010.11929v2. [Google Scholar]
- Wang, W.; Xie, E.; Li, X.; Fan, D.P.; Song, K.; Liang, D.; Lu, T.; Luo, P.; Shao, L. Pyramid vision transformer: A versatile backbone for dense prediction without convolutions. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 11–17 October 2021; pp. 568–578. [Google Scholar] [CrossRef]
- Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 11–17 October 2021; pp. 10012–10022. [Google Scholar] [CrossRef]
- Touvron, H.; Cord, M.; Jégou, H. Deit iii: Revenge of the vit. In Proceedings of the European Conference on Computer Vision (ECCV), Tel Aviv, Israel, 23–27 October 2022; Springer: Cham, Switzerland, 2022; pp. 516–533. [Google Scholar] [CrossRef]
- Yuan, L.; Chen, Y.; Wang, T.; Yu, W.; Shi, Y.; Jiang, Z.H.; Tay, F.E.; Feng, J.; Yan, S. Tokens-to-token vit: Training vision transformers from scratch on imagenet. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 11–17 October 2021; pp. 558–567. [Google Scholar] [CrossRef]
- Hong, D.; Han, Z.; Yao, J.; Gao, L.; Zhang, B.; Plaza, A.; Chanussot, J. SpectralFormer: Rethinking hyperspectral image classification with transformers. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5518615. [Google Scholar] [CrossRef]
- Zhao, Z.; Hu, D.; Wang, H.; Yu, X. Convolutional Transformer Network for Hyperspectral Image Classification. IEEE Geosci. Remote Sens. Lett. 2022, 19, 6009005. [Google Scholar] [CrossRef]
- He, X.; Chen, Y.; Lin, Z. Spatial-Spectral Transformer for Hyperspectral Image Classification. Remote Sens. 2021, 13, 498. [Google Scholar] [CrossRef]
- Ma, C.; Jiang, J.; Li, H.; Mei, X.; Bai, C. Hyperspectral Image Classification via Spectral Pooling and Hybrid Transformer. Remote Sens. 2022, 14, 4732. [Google Scholar] [CrossRef]
- Sun, L.; Zhao, G.; Zheng, Y.; Wu, Z. Spectral–spatial feature tokenization transformer for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5522214. [Google Scholar] [CrossRef]
- Yang, X.; Cao, W.; Lu, Y.; Zhou, Y. Hyperspectral image transformer classification networks. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5528715. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778. [Google Scholar] [CrossRef]
- Liu, F.; Ren, X.; Zhang, Z.; Sun, X.; Zou, Y. Rethinking skip connection with layer normalization. In Proceedings of the International Conference on Computational Linguistics (COLING), Barcelona, Spain, 8–13 December 2020; pp. 3586–3598. [Google Scholar] [CrossRef]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 June 2017; pp. 4700–4708. [Google Scholar] [CrossRef]
- Ho, Y.; Wookey, S. The real-world-weight cross-entropy loss function: Modeling the costs of mislabeling. IEEE Access 2019, 8, 4806–4813. [Google Scholar] [CrossRef]
- Kumar, A.; Shaikh, A.M.; Li, Y.; Bilal, H.; Yin, B. Pruning filters with L1-norm and capped L1-norm for CNN compression. Appl. Intell. 2021, 51, 1152–1160. [Google Scholar] [CrossRef]
Dataset | Image Size | Categories | Bands | Band Range | Resolution | Sensor | Location |
---|---|---|---|---|---|---|---|
PU | 610 × 340 | 9 | 103 | 430~860 nm | 1.3 m | ROSIS | Pavia, Italy |
KSC | 512 × 614 | 13 | 176 | 400~2500 nm | 18 m | AVIRIS | Florida, USA |
SA | 512 × 217 | 16 | 204 | 360~2500 nm | 3.7 m | AVIRIS | Salinas Valley, USA |
IP | 145 × 145 | 16 | 200 | 400~2500 nm | 20 m | AVIRIS | North-Western Indiana, USA |
HU | 349 × 1905 | 15 | 144 | 364~1046 nm | 2.5 m | ITRES CASI-1500 | Texas, USA |
No. | Pavia University (PU) (1%) | Kennedy Space Center (KSC) (1%) | Houston University (HU) (1%) | ||||||
---|---|---|---|---|---|---|---|---|---|
Class | Train | Test | Class | Train | Test | Class | Train | Test | |
1 | Asphalt | 66 | 6565 | Scrub | 7 | 747 | Healthy grass | 13 | 1238 |
2 | Meadows | 186 | 18,463 | Willow swamp | 2 | 239 | Stressed grass | 13 | 1241 |
3 | Gravel | 20 | 2079 | Cabbage palm hammock | 2 | 252 | Synthetic grass | 7 | 690 |
4 | Trees | 30 | 3034 | Cabbage palm/oak hammock | 2 | 248 | Tree | 12 | 1232 |
5 | Painted metal sheets | 13 | 1332 | Slash pine | 2 | 157 | Soil | 12 | 1230 |
6 | Bare Soil | 50 | 4979 | Oak/broadleaf hammock | 2 | 225 | Water | 3 | 322 |
7 | Bitumen | 13 | 1317 | Hardwood swamp | 2 | 101 | Residential | 13 | 1255 |
8 | Self-Blocking Bricks | 36 | 3646 | Graminoid marsh | 4 | 423 | Commercial | 12 | 1232 |
9 | Shadows | 9 | 938 | Spartina marsh | 5 | 510 | Road | 13 | 1239 |
10 | Cattail marsh | 4 | 396 | Highway | 12 | 1215 | |||
11 | Salt marsh | 4 | 411 | Railway | 12 | 1223 | |||
12 | Mudd flats | 5 | 493 | Parking lot1 | 12 | 1221 | |||
13 | Water | 9 | 909 | Parking lot2 | 5 | 464 | |||
14 | Tennis court | 4 | 424 | ||||||
15 | Running track | 7 | 653 | ||||||
Total | 423 | 42353 | Total | 50 | 5111 | Total | 150 | 14,879 | |
No. | Indian Pines (IP) (1%) | Salinas (SA) (1%) | |||||||
Class | Train | Test | Class | Train | Test | ||||
1 | Alfalfa | 1 | 45 | Broccoli_green_weeds_1 | 20 | 1889 | |||
2 | Corn notill | 14 | 1414 | Broccoli_green_weeds_2 | 37 | 3689 | |||
3 | Corn mintill | 8 | 822 | Fallow | 19 | 1957 | |||
4 | Corn | 2 | 235 | Fallow_rough_plow | 13 | 1381 | |||
5 | Grass pasture | 48 | 435 | Fallow_smooth | 26 | 2652 | |||
6 | Grass trees | 73 | 657 | Stubble | 39 | 3920 | |||
7 | Grass pasture mowed | 1 | 27 | Celery | 35 | 3544 | |||
8 | Hay windrowed | 5 | 473 | Grapes_untrained | 112 | 11,159 | |||
9 | Oats | 1 | 19 | Soil_vineyard_develop | 62 | 6141 | |||
10 | Soybean notill | 10 | 962 | Corn_senesced_green_weeds | 32 | 3246 | |||
11 | Soybean mintill | 25 | 2430 | Lettuce_remaine_4wk | 10 | 1058 | |||
12 | Soybean clean | 6 | 587 | Lettuce_remaine_5wk | 19 | 1908 | |||
13 | Wheat | 2 | 203 | Lettuce_remaine_6wk | 9 | 907 | |||
14 | Woods | 13 | 1252 | Lettuce_remaine_7wk | 10 | 1060 | |||
15 | Buildings grass trees drives | 39 | 347 | Vineyard_untrained | 72 | 7196 | |||
16 | Stone steel towers | 9 | 84 | Vineyard_vertical_trellis | 18 | 1789 | |||
Total | 257 | 9992 | Total | 533 | 53,496 |
OA (%) | AA (%) | Kappa (%) | |
---|---|---|---|
PCA | 97.37 ± 0.35 | 95.58 ± 0.66 | 96.41 ± 0.41 |
LDA | 97.25 ± 0.65 | 95.43 ± 1.32 | 96.34 ± 0.86 |
PCA | OA (%) | AA (%) | Kappa (%) | Train(s) | Params (M) |
---|---|---|---|---|---|
30 | 96.51 | 94.61 | 95.36 | 180.93 | 20.12 |
50 | 96.59 | 93.78 | 95.48 | 183.18 | 22.13 |
80 | 97.20 | 94.54 | 96.28 | 209.68 | 25.13 |
100 | 97.37 | 95.58 | 96.41 | 253.96 | 27.14 |
Indicators | Lce | Loss ( Value) | ||||||
---|---|---|---|---|---|---|---|---|
0.001 | 0.005 | 0.01 | 0.02 | 0.05 | 0.1 | 0.2 | ||
OA (%) | 95.15 | 96.46 | 96.85 | 97.37 | 96.96 | 96.81 | 96.44 | 95.93 |
AA (%) | 92.35 | 94.36 | 94.66 | 95.58 | 94.70 | 94.68 | 93.84 | 91.97 |
Kappa (%) | 93.56 | 95.31 | 95.82 | 96.41 | 95.97 | 95.77 | 95.94 | 94.59 |
Module | Depth | Indicators | ||||
---|---|---|---|---|---|---|
OA (%) | AA (%) | Kappa (%) | Train (s) | Test (s) | ||
EDVT | 1 | 89.28 | 81.40 | 85.16 | 146.07 | 5.87 |
2 | 93.23 | 87.86 | 90.92 | 154.19 | 6.34 | |
3 | 97.37 | 95.58 | 96.41 | 253.96 | 8.04 | |
4 | 96.68 | 94.67 | 95.60 | 261.12 | 8.52 | |
5 | 95.97 | 92.77 | 94.64 | 310.23 | 9.41 | |
6 | 95.69 | 92.22 | 94.27 | 320.74 | 9.92 |
Cases | OA | AA | Kappa |
---|---|---|---|
without Band Shift | 95.96 | 92.82 | 94.63 |
with Band Shift | 97.37 | 95.58 | 96.41 |
Cases | Components | Indicators | ||||
---|---|---|---|---|---|---|
HCAM | EDVT | Loss | OA (%) | AA (%) | Kappa (%) | |
1 | × | × | × | 90.25 | 80.66 | 86.93 |
2 | × | √ | √ | 91.29 | 84.38 | 88.36 |
3 | √ | × | √ | 95.70 | 91.66 | 94.28 |
4 | √ | √ | × | 95.15 | 92.35 | 93.56 |
5 | √ | √ | √ | 97.37 | 95.58 | 96.41 |
No. | 2D-CNN | 3D-CNN | HybridSN | SSAN | MAFN | ViT | HiT | CVSSN | SSFTT | MLFEN |
---|---|---|---|---|---|---|---|---|---|---|
1 | 94.66 ± 2.06 | 93.62 ± 0.77 | 93.80 ± 1.92 | 94.14 ± 3.01 | 98.06 ± 3.20 | 85.92 ± 0.90 | 89.14 ± 3.22 | 94.89 ± 1.80 | 93.68 ± 1.97 | 97.10 ± 0.80 |
2 | 99.11 ± 0.49 | 98.30 ± 0.39 | 98.80 ± 0.45 | 99.24 ± 0.25 | 99.07 ± 0.93 | 98.30 ± 2.22 | 97.43 ± 1.50 | 98.16 ± 0.76 | 99.86 ± 0.08 | 99.88 ± 0.11 |
3 | 69.86 ± 6.04 | 58.56 ± 2.82 | 65.48 ± 9.85 | 75.84 ± 8.78 | 78.10 ± 6.96 | 78.58 ± 0.10 | 74.18 ± 8.47 | 87.97 ± 7.48 | 85.62 ± 4.17 | 88.21 ± 3.16 |
4 | 86.12 ± 6.08 | 92.67 ± 1.70 | 91.53 ± 1.27 | 88.79 ± 4.42 | 95.79 ± 3.53 | 77.84 ± 1.49 | 86.82 ± 2.29 | 96.86 ± 2.26 | 89.70 ± 1.31 | 91.96 ± 1.89 |
5 | 99.92 ± 0.16 | 99.71 ± 0.28 | 99.79 ± 0.23 | 97.16 ± 5.07 | 98.63 ± 0.51 | 98.27 ± 0.48 | 99.14 ± 0.68 | 97.97 ± 2.61 | 99.76 ± 0.22 | 99.74 ± 0.32 |
6 | 88.86 ± 2.55 | 74.23 ± 2.76 | 84.94 ± 5.79 | 93.14 ± 4.73 | 97.39 ± 1.34 | 97.79 ± 1.13 | 79.78 ± 2.99 | 95.93 ± 2.28 | 98.56 ± 0.91 | 99.77 ± 0.22 |
7 | 70.50 ± 9.33 | 74.07 ± 4.17 | 80.84 ± 5.41 | 91.52 ± 4.50 | 94.05 ± 5.89 | 85.94 ± 0.88 | 78.76 ± 7.20 | 91.98 ± 6.74 | 97.43 ± 1.77 | 98.02 ± 2.43 |
8 | 88.96 ± 4.76 | 88.52 ± 4.20 | 89.46 ± 5.57 | 93.44 ± 0.91 | 91.28 ± 3.44 | 71.48 ± 9.21 | 85.97 ± 4.73 | 90.11 ± 4.06 | 88.25 ± 2.42 | 89.04 ± 2.33 |
9 | 99.48 ± 0.49 | 99.93 ± 0.09 | 99.46 ± 0.50 | 98.30 ± 1.97 | 99.93 ± 0.52 | 65.27 ± 0.71 | 98.69 ± 1.15 | 97.84 ± 1.90 | 87.98 ± 3.42 | 95.88 ± 3.30 |
OA (%) | 92.68 ± 1.35 | 90.30 ± 0.68 | 92.93 ± 1.11 | 95.25 ± 0.69 | 96.33 ± 1.54 | 89.26 ± 0.32 | 90.59 ± 0.47 | 95.86 ± 0.83 | 95.98 ± 0.51 | 97.37 ± 0.35 |
AA (%) | 87.61 ± 3.33 | 85.33 ± 1.81 | 89.34 ± 2.00 | 92.62 ± 0.76 | 94.84 ± 0.64 | 85.13 ± 1.45 | 87.48 ± 1.03 | 94.63 ± 1.29 | 93.43 ± 0.96 | 95.58 ± 0.66 |
Kappa (%) | 90.21 ± 1.82 | 86.98 ± 0.92 | 90.54 ± 1.51 | 93.68 ± 0.93 | 95.73 ± 0.98 | 87.45 ± 0.93 | 87.88 ± 0.53 | 94.51 ± 1.09 | 94.66 ± 0.68 | 96.41 ± 0.41 |
No. | 2D-CNN | 3D-CNN | HybridSN | SSAN | MAFN | ViT | HiT | CVSSN | SSFTT | MLFEN |
---|---|---|---|---|---|---|---|---|---|---|
1 | 95.85 ± 2.59 | 95.84 ± 0.70 | 97.92 ± 0.73 | 90.75 ± 4.86 | 96.56 ± 2.97 | 96.94 ± 4.67 | 95.04 ± 3.86 | 93.37 ± 4.08 | 99.80 ± 0.22 | 97.42 ± 2.51 |
2 | 71.31 ± 7.57 | 56.12 ± 4.90 | 64.52 ± 9.92 | 59.62 ± 7.69 | 61.44 ± 9.53 | 90.30 ± 5.57 | 92.25 ± 7.32 | 62.89 ± 16.14 | 66.27 ± 4.19 | 66.92 ± 3.86 |
3 | 92.91 ± 5.10 | 58.40 ± 9.72 | 89.16 ± 9.77 | 89.60 ± 6.92 | 77.91 ± 9.24 | 62.38 ± 5.77 | 83.27 ± 9.92 | 78.36 ± 13.58 | 100.00 ± 0.00 | 99.16 ± 1.28 |
4 | 19.57 ± 6.56 | 21.95 ± 0.60 | 25.89 ± 6.09 | 28.26 ± 9.91 | 39.53 ± 7.90 | 37.92 ± 9.37 | 41.06 ± 7.89 | 54.51 ± 9.01 | 86.23 ± 8.45 | 91.35 ± 7.55 |
5 | 14.62 ± 4.89 | 16.37 ± 2.57 | 15.80 ± 8.25 | 47.02 ± 9.42 | 38.50 ± 5.90 | 44.06 ± 7.43 | 41.76 ± 2.67 | 52.04 ± 21.45 | 81.76 ± 0.00 | 79.87 ± 4.62 |
6 | 67.62 ± 9.02 | 52.47 ± 1.86 | 71.97 ± 7.64 | 50.31 ± 9.89 | 33.19 ± 3.13 | 38.36 ± 6.56 | 51.86 ± 7.31 | 79.53 ± 15.25 | 60.00 ± 11.51 | 95.83 ± 5.20 |
7 | 85.74 ± 7.93 | 94.06 ± 8.77 | 88.82 ± 8.73 | 85.80 ± 6.72 | 78.60 ± 8.03 | 55.90 ± 3.60 | 56.00 ± 5.70 | 79.52 ± 19.96 | 100.00 ± 0.00 | 100.00 ± 0.00 |
8 | 84.23 ± 8.79 | 47.27 ± 4.03 | 80.41 ± 9.11 | 78.47 ± 5.87 | 81.79 ± 7.97 | 80.79 ± 9.33 | 84.40 ± 8.07 | 59.45 ± 8.98 | 97.92 ± 1.61 | 99.66 ± 0.51 |
9 | 86.73 ± 2.14 | 86.22 ± 1.37 | 87.54 ± 1.19 | 73.92 ± 8.96 | 90.87 ± 8.55 | 76.62 ± 9.21 | 87.92 ± 5.63 | 86.78 ± 8.84 | 86.54 ± 3.45 | 94.67 ± 4.65 |
10 | 91.35 ± 2.86 | 84.30 ± 2.35 | 85.19 ± 5.22 | 70.54 ± 9.30 | 96.50 ± 4.15 | 96.76 ± 4.12 | 92.75 ± 8.28 | 71.17 ± 17.22 | 99.85 ± 0.32 | 99.92 ± 0.16 |
11 | 99.86 ± 0.26 | 99.27 ± 1.18 | 100.00 ± 0.00 | 98.09 ± 2.56 | 90.30 ± 6.45 | 92.74 ± 7.05 | 95.31 ± 4.97 | 95.21 ± 5.83 | 100.00 ± 0.00 | 100.00 ± 0.00 |
12 | 96.98 ± 1.07 | 93.50 ± 1.02 | 93.23 ± 4.30 | 80.62 ± 9.72 | 91.50 ± 7.58 | 78.47 ± 8.26 | 83.90 ± 7.95 | 89.64 ± 7.51 | 98.43 ± 1.44 | 99.98 ± 0.06 |
13 | 100.00 ± 0.00 | 100.00 ± 0.00 | 100.00 ± 0.00 | 99.49 ± 1.02 | 99.53 ± 1.47 | 99.98 ± 0.07 | 99.92 ± 0.25 | 99.07 ± 1.90 | 100.00 ± 0.00 | 100.00 ± 0.00 |
OA (%) | 85.29 ± 2.24 | 78.81 ± 0.60 | 84.31 ± 2.42 | 77.82 ± 2.66 | 82.65 ± 5.22 | 79.29 ± 4.87 | 81.63 ± 4.66 | 81.39 ± 2.82 | 93.73 ± 0.80 | 96.13 ± 0.75 |
AA (%) | 77.65 ± 3.11 | 68.90 ± 0.55 | 75.60 ± 3.35 | 69.88 ± 3.38 | 72.66 ± 6.53 | 68.17 ± 7.89 | 72.26 ± 8.38 | 77.04 ± 3.54 | 90.52 ± 1.13 | 93.98 ± 1.03 |
Kappa (%) | 83.65 ± 2.47 | 76.36 ± 0.67 | 82.52 ± 2.70 | 75.30 ± 2.98 | 80.48 ± 5.98 | 76.58 ± 5.67 | 79.28 ± 5.39 | 79.26 ± 3.15 | 93.01 ± 0.89 | 95.69 ± 0.84 |
No. | 2D-CNN | 3D-CNN | HybridSN | SSAN | MAFN | ViT | HiT | CVSSN | SSFTT | MLFEN |
---|---|---|---|---|---|---|---|---|---|---|
1 | 98.59 ± 2.45 | 97.31 ± 2.68 | 97.41 ± 3.13 | 99.97 ± 0.02 | 99.56 ± 0.91 | 99.27 ± 1.59 | 97.53 ± 2.94 | 99.19 ± 1.14 | 99.82 ± 0.30 | 99.96 ± 0.05 |
2 | 99.91 ± 0.18 | 99.65 ± 0.64 | 99.91 ± 0.08 | 99.40 ± 1.04 | 100.00 ± 0.00 | 99.89 ± 0.24 | 99.74 ± 0.54 | 99.98 ± 0.04 | 99.99 ± 0.04 | 99.99 ± 0.02 |
3 | 99.49 ± 0.17 | 97.82 ± 0.99 | 97.43 ± 3.51 | 96.17 ± 1.98 | 99.97 ± 0.08 | 99.24 ± 1.66 | 97.04 ± 4.85 | 96.86 ± 1.58 | 100.00 ± 0.00 | 99.98 ± 0.03 |
4 | 99.60 ± 0.27 | 99.59 ± 0.12 | 97.31 ± 4.48 | 96.50 ± 3.46 | 99.78 ± 0.33 | 85.76 ± 8.91 | 88.04 ± 8.04 | 95.87 ± 2.66 | 99.88 ± 0.12 | 99.11 ± 1.44 |
5 | 97.58 ± 0.45 | 90.58 ± 2.81 | 94.22 ± 3.96 | 92.66 ± 2.58 | 95.94 ± 5.93 | 97.92 ± 2.19 | 94.52 ± 3.43 | 98.12 ± 1.63 | 98.65 ± 0.31 | 99.38 ± 0.40 |
6 | 100.00 ± 0.00 | 100.00 ± 0.00 | 100.00 ± 0.00 | 99.96 ± 0.07 | 99.98 ± 0.03 | 99.86 ± 0.40 | 98.37 ± 2.84 | 99.97 ± 0.07 | 99.74 ± 0.73 | 99.90 ± 0.17 |
7 | 98.85 ± 0.80 | 99.58 ± 0.19 | 99.24 ± 0.98 | 99.30 ± 0.42 | 99.86 ± 0.07 | 99.73 ± 0.35 | 98.96 ± 1.75 | 99.29 ± 0.86 | 99.96 ± 0.09 | 99.96 ± 0.04 |
8 | 85.21 ± 2.42 | 79.57 ± 1.99 | 84.01 ± 3.04 | 84.23 ± 2.20 | 96.38 ± 1.96 | 92.58 ± 3.87 | 88.93 ± 7.55 | 92.92 ± 1.76 | 98.93 ± 0.74 | 99.19 ± 0.66 |
9 | 99.94 ± 0.05 | 99.91 ± 0.10 | 99.97 ± 0.03 | 98.64 ± 2.36 | 99.99 ± 0.02 | 99.88 ± 0.30 | 99.77 ± 0.47 | 99.67 ± 0.34 | 100.00 ± 0.00 | 100.00 ± 0.00 |
10 | 95.78 ± 0.75 | 90.96 ± 1.87 | 92.10 ± 1.99 | 87.90 ± 3.00 | 98.82 ± 0.51 | 97.79 ± 2.17 | 91.94 ± 7.53 | 95.76 ± 2.13 | 98.63 ± 0.55 | 99.45 ± 0.35 |
11 | 84.23 ± 2.38 | 84.42 ± 0.64 | 86.56 ± 2.52 | 89.77 ± 4.19 | 98.87 ± 0.83 | 99.11 ± 1.13 | 96.83 ± 3.39 | 94.54 ± 5.67 | 99.90 ± 0.09 | 98.81 ± 1.95 |
12 | 99.81 ± 0.11 | 99.96 ± 0.04 | 99.84 ± 0.12 | 98.64 ± 0.97 | 99.83 ± 0.47 | 95.97 ± 4.06 | 94.34 ± 7.19 | 99.66 ± 0.50 | 99.92 ± 0.08 | 99.94 ± 0.10 |
13 | 98.44 ± 0.60 | 97.28 ± 0.54 | 93.44 ± 5.94 | 94.95 ± 3.63 | 93.25 ± 4.61 | 92.13 ± 8.78 | 95.95 ± 3.79 | 99.18 ± 1.27 | 92.18 ± 3.22 | 93.08 ± 4.22 |
14 | 98.13 ± 0.75 | 97.80 ± 0.50 | 98.85 ± 0.51 | 97.35 ± 0.58 | 98.44 ± 0.70 | 90.09 ± 8.79 | 75.74 ± 8.17 | 98.20 ± 1.45 | 99.32 ± 0.29 | 99.23 ± 0.65 |
15 | 70.37 ± 3.86 | 71.29 ± 3.52 | 79.70 ± 2.71 | 82.12 ± 3.13 | 89.12 ± 4.18 | 66.40 ± 6.77 | 78.49 ± 5.58 | 89.59 ± 2.68 | 94.42 ± 1.50 | 96.15 ± 2.21 |
16 | 96.92 ± 0.74 | 96.67 ± 1.32 | 96.70 ± 1.21 | 95.22 ± 4.05 | 99.42 ± 0.23 | 98.69 ± 0.58 | 94.38 ± 2.47 | 98.68 ± 1.44 | 99.76 ± 0.35 | 99.88 ± 0.16 |
OA (%) | 91.91 ± 0.20 | 90.11 ± 0.36 | 92.34 ± 0.41 | 92.20 ± 0.72 | 97.28 ± 0.67 | 89.80 ± 2.11 | 88.94 ± 3.11 | 96.17 ± 0.19 | 98.69 ± 0.26 | 99.05 ± 0.45 |
AA (%) | 95.18 ± 0.23 | 93.90 ± 0.35 | 94.79 ± 0.53 | 94.55 ± 1.01 | 98.08 ± 0.42 | 91.78 ± 1.84 | 89.44 ± 3.94 | 97.34 ± 0.45 | 98.82 ± 0.29 | 99.00 ± 0.39 |
Kappa (%) | 90.99 ± 0.22 | 88.99 ± 0.40 | 91.48 ± 0.46 | 91.31 ± 0.80 | 96.97 ± 0.75 | 88.60 ± 2.39 | 88.23 ± 3.33 | 95.73 ± 0.21 | 98.54 ± 0.29 | 98.95 ± 0.50 |
No. | 2D-CNN | 3D-CNN | HybridSN | SSAN | MAFN | ViT | HiT | CVSSN | SSFTT | MLFEN |
---|---|---|---|---|---|---|---|---|---|---|
1 | 1.34 ± 1.17 | 0.91 ± 2.20 | 0.23 ± 0.72 | 0.46 ± 1.44 | 15.00 ± 19.47 | 2.91 ± 1.12 | 1.70 ± 1.26 | 47.41 ± 5.55 | 44.67 ± 29.72 | 6.67 ± 1.93 |
2 | 71.80 ± 1.73 | 40.48 ± 8.31 | 49.56 ± 6.43 | 41.36 ± 4.75 | 81.21 ± 4.66 | 51.50 ± 2.73 | 66.00 ± 11.17 | 59.64 ± 0.97 | 68.80 ± 3.50 | 86.59 ± 4.96 |
3 | 29.88 ± 7.38 | 23.22 ± 2.20 | 44.42 ± 3.33 | 13.69 ± 7.03 | 74.56 ± 1.82 | 34.71 ± 4.15 | 5.67 ± 4.34 | 53.49 ± 9.51 | 94.96 ± 1.73 | 90.74 ± 5.10 |
4 | 4.32 ± 8.77 | 6.08 ± 8.84 | 16.87 ± 5.86 | 26.43 ± 1.78 | 34.74 ± 5.65 | 20.33 ± 12.19 | 40.18 ± 14.34 | 62.68 ± 5.64 | 46.00 ± 6.41 | 85.58 ± 2.62 |
5 | 18.12 ± 3.73 | 25.21 ± 3.04 | 49.46 ± 5.87 | 36.37 ± 3.96 | 87.82 ± 1.69 | 30.66 ± 6.16 | 81.73 ± 3.02 | 62.11 ± 7.84 | 75.44 ± 1.29 | 96.82 ± 3.82 |
6 | 97.74 ± 1.52 | 92.59 ± 3.65 | 92.29 ± 3.9 | 90.16 ± 8.63 | 95.14 ± 2.44 | 85.20 ± 1.38 | 91.25 ± 2.71 | 80.68 ± 6.39 | 95.64 ± 1.44 | 98.45 ± 1.40 |
7 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.77 ± 2.43 | 1.83 ± 5.37 | 1.72 ± 2.43 | 17.95 ± 5.39 | 3.82 ± 3.23 | 25.89 ± 2.46 | 0.00 ± 0.00 | 0.00 ± 0.00 |
8 | 98.38 ± 0.81 | 95.07 ± 3.00 | 93.97 ± 8.28 | 87.45 ± 7.38 | 97.53 ± 1.82 | 80.95 ± 14.93 | 93.16 ± 4.37 | 97.90 ± 3.88 | 99.49 ± 0.42 | 97.49 ± 0.42 |
9 | 0.00 ± 0.00 | 1.67 ± 5.27 | 2.94 ± 1.73 | 3.05 ± 1.95 | 1.30 ± 1.84 | 7.41 ± 6.93 | 1.85 ± 0.62 | 19.20 ± 9.80 | 0.00 ± 0.00 | 21.52 ± 1.08 |
10 | 40.28 ± 8.46 | 22.78 ± 7.21 | 61.99 ± 2.90 | 36.83 ± 6.75 | 65.30 ± 16.17 | 61.20 ± 3.57 | 49.94 ± 14.19 | 64.58 ± 0.13 | 75.17 ± 1.93 | 87.85 ± 3.69 |
11 | 69.16 ± 6.36 | 83.38 ± 8.53 | 72.62 ± 5.00 | 85.34 ± 3.06 | 81.70 ± 9.51 | 74.16 ± 6.79 | 71.38 ± 8.02 | 75.06 ± 5.27 | 92.67 ± 1.83 | 95.21 ± 1.22 |
12 | 23.34 ± 1.53 | 25.12 ± 7.36 | 40.51 ± 3.13 | 16.92 ± 2.16 | 68.35 ± 9.51 | 21.67 ± 12.01 | 10.18 ± 6.70 | 41.28 ± 5.23 | 63.05 ± 9.53 | 75.88 ± 4.21 |
13 | 73.62 ± 7.6 | 59.59 ± 2.65 | 79.59 ± 9.82 | 80.20 ± 8.36 | 98.19 ± 0.68 | 63.78 ± 5.24 | 98.28 ± 1.28 | 76.18 ± 3.86 | 86.75 ± 6.32 | 98.90 ± 1.05 |
14 | 96.78 ± 4.84 | 96.05 ± 4.10 | 94.41 ± 6.90 | 93.75 ± 3.87 | 90.66 ± 7.59 | 90.53 ± 9.53 | 81.17 ± 7.81 | 86.10 ± 5.52 | 99.32 ± 0.61 | 99.17 ± 0.68 |
15 | 23.73 ± 7.94 | 40.94 ± 3.14 | 30.48 ± 2.33 | 28.60 ± 4.78 | 65.13 ± 5.94 | 31.22 ± 9.68 | 43.53 ± 9.47 | 63.29 ± 9.04 | 90.10 ± 2.59 | 92.39 ± 4.01 |
16 | 36.07 ± 4.50 | 53.37 ± 9.22 | 57.55 ± 4.65 | 20.45 ± 4.88 | 87.95 ± 7.81 | 76.76 ± 3.45 | 77.65 ± 7.72 | 80.44 ± 0.65 | 46.20 ± 6.96 | 86.81 ± 6.80 |
OA (%) | 61.32 ± 2.52 | 58.56 ± 2.36 | 64.68 ± 3.38 | 59.07 ± 2.98 | 80.19 ± 1.64 | 60.98 ± 2.19 | 62.05 ± 3.74 | 67.26 ± 2.59 | 84.33 ± 1.20 | 89.29 ± 2.48 |
AA (%) | 42.70 ± 4.44 | 41.65 ± 4.32 | 48.69 ± 6.09 | 41.13 ± 4.03 | 65.38 ± 2.44 | 46.75 ± 5.33 | 50.75 ± 2.75 | 62.25 ± 2.70 | 67.39 ± 2.35 | 72.64 ± 6.31 |
Kappa (%) | 55.41 ± 2.69 | 51.34 ± 3.07 | 59.50 ± 3.96 | 52.04 ± 3.73 | 77.31 ± 1.85 | 55.06 ± 2.54 | 56.10 ± 4.50 | 62.70 ± 2.90 | 82.06 ± 1.37 | 87.70 ± 2.88 |
No. | 2D-CNN | 3D-CNN | HybridSN | SSAN | MAFN | ViT | HiT | CVSSN | SSFTT | MLFEN |
---|---|---|---|---|---|---|---|---|---|---|
1 | 94.50 ± 4.70 | 98.96 ± 1.17 | 98.80 ± 1.55 | 92.75 ± 5.32 | 91.93 ± 1.17 | 89.86 ± 5.51 | 91.67 ± 6.30 | 89.15 ± 6.94 | 95.70 ± 1.49 | 93.34 ± 1.52 |
2 | 83.20 ± 3.86 | 84.66 ± 2.89 | 86.21 ± 3.64 | 83.79 ± 4.58 | 90.99 ± 5.65 | 79.72 ± 1.15 | 93.83 ± 6.41 | 92.33 ± 5.06 | 91.39 ± 3.64 | 92.52 ± 2.98 |
3 | 71.40 ± 21.16 | 91.34 ± 1.84 | 91.49 ± 5.20 | 95.12 ± 5.35 | 97.16 ± 1.37 | 94.06 ± 7.61 | 98.80 ± 1.78 | 94.22 ± 5.86 | 96.02 ± 0.89 | 93.24 ± 2.36 |
4 | 92.50 ± 3.72 | 91.38 ± 2.84 | 87.36 ± 8.99 | 91.81 ± 1.58 | 78.56 ± 5.09 | 73.25 ± 1.49 | 90.70 ± 6.23 | 86.62 ± 12.28 | 86.57 ± 2.06 | 84.44 ± 6.53 |
5 | 100.00 ± 0.00 | 98.76 ± 1.22 | 99.60 ± 0.57 | 94.63 ± 5.51 | 99.72 ± 0.57 | 97.76 ± 5.89 | 98.19 ± 2.20 | 93.12 ± 2.27 | 100.00 ± 0.00 | 100.00 ± 0.00 |
6 | 67.07 ± 5.71 | 69.06 ± 6.05 | 70.12 ± 3.69 | 62.39 ± 14.03 | 80.92 ± 3.17 | 72.63 ± 6.92 | 72.26 ± 12.88 | 83.49 ± 17.15 | 81.76 ± 2.59 | 83.57 ± 3.44 |
7 | 65.33 ± 8.03 | 58.87 ± 3.06 | 67.84 ± 7.80 | 54.45 ± 3.01 | 69.08 ± 9.78 | 73.94 ± 4.28 | 84.37 ± 8.13 | 82.26 ± 4.26 | 75.28 ± 2.10 | 78.62 ± 3.86 |
8 | 59.71 ± 4.86 | 56.35 ± 3.31 | 71.61 ± 6.01 | 58.42 ± 9.90 | 74.15 ± 5.46 | 64.46 ± 2.31 | 61.49 ± 11.88 | 76.77 ± 7.58 | 79.70 ± 6.62 | 77.27 ± 1.52 |
9 | 73.75 ± 6.08 | 77.38 ± 4.04 | 58.80 ± 9.29 | 77.86 ± 5.09 | 67.99 ± 13.68 | 52.99 ± 8.57 | 76.88 ± 10.79 | 82.33 ± 6.56 | 79.64 ± 3.53 | 79.80 ± 14.88 |
10 | 43.30 ± 10.46 | 68.96 ± 6.93 | 78.29 ± 5.69 | 78.17 ± 13.18 | 88.37 ± 6.62 | 71.73 ± 4.15 | 68.60 ± 14.45 | 73.30 ± 7.66 | 88.72 ± 4.42 | 93.33 ± 4.96 |
11 | 70.04 ± 9.62 | 71.38 ± 8.66 | 77.17 ± 8.21 | 72.25 ± 5.07 | 75.56 ± 10.25 | 68.79 ± 1.18 | 75.19 ± 9.15 | 79.90 ± 8.38 | 76.67 ± 5.67 | 85.65 ± 7.11 |
12 | 69.34 ± 10.86 | 65.57 ± 8.99 | 80.37 ± 10.07 | 60.05 ± 11.81 | 80.91 ± 4.40 | 73.30 ± 1.94 | 71.46 ± 12.75 | 77.23 ± 8.31 | 83.38 ± 3.63 | 89.13 ± 5.87 |
13 | 67.56 ± 7.65 | 91.26 ± 1.55 | 63.09 ± 8.55 | 71.83 ± 8.06 | 74.58 ± 11.49 | 42.66 ± 5.33 | 58.15 ± 15.62 | 87.66 ± 7.88 | 90.22 ± 3.32 | 80.72 ± 7.77 |
14 | 62.93 ± 19.29 | 91.58 ± 3.06 | 86.07 ± 10.24 | 81.42 ± 13.39 | 99.63 ± 0.43 | 97.07 ± 2.23 | 91.34 ± 18.01 | 74.98 ± 5.29 | 100.00 ± 0.00 | 99.67 ± 0.49 |
15 | 98.91 ± 0.61 | 98.77 ± 0.73 | 98.39 ± 1.46 | 92.57 ± 2.82 | 99.91 ± 0.18 | 97.93 ± 3.45 | 98.95 ± 1.33 | 89.05 ± 7.43 | 100.00 ± 0.00 | 99.98 ± 0.05 |
OA (%) | 74.89 ± 1.18 | 79.29 ± 1.50 | 80.81 ± 1.73 | 77.40 ± 1.86 | 83.25 ± 2.79 | 75.23 ± 3.45 | 81.93 ± 2.24 | 83.04 ± 2.20 | 87.09 ± 1.03 | 88.17 ± 1.81 |
AA (%) | 74.64 ± 1.84 | 80.95 ± 1.40 | 81.01 ± 1.69 | 77.83 ± 2.06 | 84.63 ± 2.51 | 76.01 ± 2.99 | 82.13 ± 2.79 | 84.16 ± 2.09 | 88.34 ± 0.88 | 88.75 ± 1.80 |
Kappa (%) | 72.82 ± 1.28 | 77.62 ± 1.62 | 79.25 ± 1.87 | 75.58 ± 2.01 | 81.90 ± 3.02 | 73.30 ± 3.65 | 80.45 ± 2.43 | 81.67 ± 2.39 | 86.05 ± 1.11 | 87.21 ± 1.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, S.; Li, X.; Tian, S.; Chen, W.; Zhang, E. Multi-Level Feature Extraction Networks for Hyperspectral Image Classification. Remote Sens. 2024, 16, 590. https://doi.org/10.3390/rs16030590
Fang S, Li X, Tian S, Chen W, Zhang E. Multi-Level Feature Extraction Networks for Hyperspectral Image Classification. Remote Sensing. 2024; 16(3):590. https://doi.org/10.3390/rs16030590
Chicago/Turabian StyleFang, Shaoyi, Xinyu Li, Shimao Tian, Weihao Chen, and Erlei Zhang. 2024. "Multi-Level Feature Extraction Networks for Hyperspectral Image Classification" Remote Sensing 16, no. 3: 590. https://doi.org/10.3390/rs16030590
APA StyleFang, S., Li, X., Tian, S., Chen, W., & Zhang, E. (2024). Multi-Level Feature Extraction Networks for Hyperspectral Image Classification. Remote Sensing, 16(3), 590. https://doi.org/10.3390/rs16030590