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Abstract: Wildfires are a common disturbance factor worldwide, especially over the last decade due
to global climate change. Monitoring postfire forest regrowth provides fundamental information
needed to enhance the management and support of ecosystem recovery after fires. The purpose of this
study is to propose an algorithm for postfire forest regrowth monitoring using tasseled-cap-derived
indices. A complex approach is used for its implementation, for which a model is developed based on
three components—Disturbance Index (DI), Vector of Instantaneous Condition (VIC), and Direction
Angle (DA). The final product—postfire regrowth (PFIR)—allows for a quantitative assessment of the
intensity of regrowth. The proposed methodology is based on the linear orthogonal transformation
of multispectral satellite images—tasseled cap transformation (TCT)—that increases the degree
of identification of the three main components that change during a fire—soil, vegetation, and
water/moisture—and implies a higher accuracy of the assessments. The results provide a thematic
raster representing the intensity of the regrowth classes, which are defined after the PFIR threshold
values are determined (HRI—high regrowth intensity; MRI—moderate regrowth intensity; and LRI—
low regrowth intensity). The accuracy assessment procedure is conducted using very-high-resolution
(VHR) aerial and satellite data from World View (WV) sensors, as well as multispectral Sentinel 2A
images. Three different forest test sites affected by fire in Bulgaria are examined. The results show
that the classified thematic raster maps are distinguished by a good performance in monitoring the
regrowth dynamics, with an average overall accuracy of 62.1% for all three test sites, ranging from
73.9% to 48.4% for the individual forests.

Keywords: remote sensing; postfire monitoring; forest regrowth; tasseled cap transformation;
Disturbance Index; Direction Angle

1. Introduction

Global climate change is increasing the frequency of wildfires, resulting in various
disturbances to forest ecosystems. The restoration of vegetation and beginning of succes-
sional processes, called recovery, are major components of landscape dynamics [1,2]. The
monitoring of postfire forest regrowth provides essential information for enhancing the
management of and support for ecosystem recovery after wildfires.

The remote sensing methods used in fire research mainly apply vegetation indices
(VIs), which indirectly assess the changes that occur in the biophysical characteristics of
vegetation after a fire, such as the leaf area index, photosynthetic activity, water content,
and moisture stress [3]. Traditionally, VIs have been used for the assessment of disturbances
caused by fires [3–6]. Remote sensing methods based on VI methodologies support the
study of the disturbance to forest ecosystems; however, they are not accurate enough to
study the recovery processes in forest ecosystems observed after a fire. In the scientific
literature, contradictory reports present the effectiveness of spectral indices for monitoring
postfire vegetation regrowth [2,3,5,6]. The proposed methodology is based on the linear
orthogonal transformation of multispectral satellite images—tasseled cap transformation
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(TCT) [7,8]—that increases the degree of identification of the three main components that
change during a fire—soil, vegetation, and water/moisture—and implies a higher accuracy
of the assessments.

The algorithm for postfire forest regrowth monitoring proposed in this paper is based
on three components—Disturbance Index (DI) [9], Vector of Instantaneous Condition
(VIC) [10], and Direction Angle (DA) [10]. DI images ensure an opportunity to emphasize
pixels that vary from average to disturbed forest conditions [9]. According to recent
studies, the DI was examined as a comparatively efficient approach to monitoring forest
disturbances and recovery processes [11–13]. The VIC and DA represent indices that are
obtained on the basis of the TCT and were introduced in previous research [10]. Based on the
three tasseled cap components—brightness (TCB), greenness (TCG), and wetness (TCW)—a
vector describing the current condition of the forest ecosystem is obtained, namely, the VIC.
The VIC represents the condition and the connection among the three main components
of a studied ecosystem, as well as quantitatively displaying the correlation among the
components in the case of a disaster (e.g., fire). The DA is the angle between the TCG and
VIC [10]. The DA represents the deviation from the pre-fire forest ecosystem condition. It
enables the evaluation of the rate of regrowth of the TCG.

The aim of this paper is to propose a model that utilizes the traditionally used DI in
addition to those introduced by the authors, VIC and DA, which allows for a quantitative
assessment of the intensity of regrowth in various forest ecosystems. The final product—
postfire regrowth (PFIR)—provides a thematic raster representing the intensity of regrowth
classes. The recovery classes are defined after the determination of the threshold values
for the PFIR: HRI—high regrowth intensity; MRI—moderate regrowth intensity; and
LRI—low regrowth intensity. Three different forest test sites affected by fire in Bulgaria
were examined. The accuracy assessment procedure was performed based on very-high-
resolution (VHR) aerial and satellite images and Sentinel 2A images.

2. Materials and Methods
2.1. Study Area

The proposed algorithm for postfire forest regrowth was implemented and tested on
the territory of the three test sites with forests that had been disturbed by fires. The selected
test sites are located next to the town of Ardino and the villages of Bistritsa and Perperek,
Bulgaria (Figure 1).

2.1.1. Ardino Test Site

The test site, next to the town of Ardino, Bulgaria, is located in the southeastern part of
Rhodope Mountains at 660–990 m above sea level (a.s.l.) (Figure 1b). A wildfire broke out
on 29 July 2016 and burned an area of 100 ha with coniferous forests. The most common
tree species in the coniferous forests are Scots pine (Pinus sylvestris L.) and black pine (Pinus
nigra Arn.). The mean value of the slope inclination is 16◦, and the maximum is 27◦, which
conditions allow for the development of shallow Luvisols. The climate in the region is
continental Mediterranean with mountainous elements, and the forests in the Ardino test
site are Mediterranean mountain forests [14].

2.1.2. Bistritsa Test Site

The Bistritsa test site is located on the northeastern slope of Vitosha Mountain, next
to the capital city Sofia, at 1430–1760 m a.s.l. (Figure 1c). The test site covers one of the
first nature reserves in Bulgaria—Bistrishko Branishte, established to preserve the typical
old spruce forests in the region. There are seven different forms of the European (Norway)
spruce (Picea abies) on the territory of the nature reserve Bistrishko Branishte. A wildfire
broke out in the area of Bistrishko Branishte on 1 July 2012 and affected 70 ha mostly dry
and dead forest vegetation (resulting from a tornado in 2001 and a bark beetle outbreak in
2004). The fire was devastating and the forest stands were almost completely destroyed,
which predetermined the worst vegetation status of the forest ecosystems amongst the
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test sites examined in this study. The slopes are steep (mean value of slope inclination
21◦, maximum 33◦), and the soils are highly erodible and shallow Leptosols. The climate
is mountainous and according to the Köppen climate classification it is characterized as
Boreal; therefore, the forests are classified as Boreal mountain forests [14,15].
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Figure 1. (a) Overall view of the test site locations on the territory of Bulgaria; (b) aerial images of
Ardino, 2017; (c) Bistritsa, 2013; (d) Perperek, 2017, after the fires. The red line displays the perimeter
of the fire.
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2.1.3. Perperek Test Site

The test site next to Perperek village is situated in the northeastern part of Rhodope
Mountains, 15 km from the city of Kardzhali (Figure 1d). A wildfire took place on 21
November 2015 and affected an area of 30 ha with mixed and coniferous forests. The
mixed forests are represented by Turkey oak (Quercus cerris L.), hornbeam (Quercus frainetto
Ten), and Oriental hornbeam (Carpinus orientalis Mill.), with Mediterranean elements in
places with secondary origin. A massive afforestation with black pine coniferous forest
was performed in the 1950s due to erosion processes and the expansion of bare lands. The
Perperek test site has a lower altitude and gentler slopes (mean value of slope inclination
of 10◦ and maximum 17◦) than the other test sites. The soils are Chromic Cambisols. The
climate is continental Mediterranean and the forests are Mediterranean hill forests [14,15].
Although the climate conditions are similar to those of the Ardino test site, the gentler
slopes define lower vulnerability to soil erosion and more favorable conditions for veg-
etation regrowth. This test site exhibited the lowest damage after the fire and optimal
environmental conditions for forest regrowth [14].

2.2. Data Used
2.2.1. Satellite Data Used for Postfire Regrowth

Postfire forest regrowth monitoring was conducted on the territory of the three test
sites using Landsat and Sentinel 2 data. The forest regrowth assessment was performed
for the study period 2012–2022 taking into account the vegetation period of the forests
(growing season) as well as the absence of clouds and cloud shadows over the study areas.
Landsat (ETM+ and OLI) with spatial resolution of 30 m and Sentinel 2A satellite imageries
(Table 1) with spatial resolution ranging between 10 m and 60 m were freely downloaded
from the US Geological Survey—Earth Explorer [16], and Copernicus Open Access Hub [17]
on behalf of the regrowth monitoring.

Table 1. Satellite data used for postfire regrowth monitoring.

Ardino Bistritsa Perperek

29 June 2012
15 July 2012

Landsat 7 ETM+ 19 August 2013
5 July 2014
8 July 2015

Landsat 8 OLI 7 November 2015
25 December 2015

11 July 2016
5 August 2016 13 July 2016 21 August 2016

15 July 2017 27 August 2017 15 July 2017
Sentinel 2A 24 August 2018 1 September 2018 29 August 2018

29 August 2019 12 August 2019 24 August 2019
28 August 2020 5 September 2020 23 August 2020
23 August 2021 1 August 2021 18 August 2021
28 August 2022 22 July 2022 18 August 2022

2.2.2. Data Used for PFIR Threshold Values Determination and Accuracy
Assessment Procedure

For the purpose of the PFIR threshold values determination and accuracy assessment
procedure, VHR aerial and satellite optical data were utilized as well as multispectral
Sentinel 2A images (Table 2).
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Table 2. Data used in the PFIR threshold values determination and accuracy assessment procedure.

Test Site Fire Date
VHR Aerial

Data Soon after
Fire Date

VHR Satellite
Data (WV02,

WV03) Later after
Fire Date

S2A Data

Ardino 29 July 2016 2017 4 August 2021 3 August 2021
Bistritsa 1 July 2012 2013 18 September 2018 1 September 2018
Perperek 21 November 2015 2017 17 June 2022 14 June 2022

The spatial resolution of the aerial images is 0.4 m. In addition to the aerial images,
VHR satellite data from World View (WV) (2 and 3) sensors of MAXAR technologies were
used (Table 2) with spatial resolution ranging between 0.6 m and 2 m. The VHR data
processing was conducted using the extensive cloud-based Earth Observation platform
Sentinel-Hub (c), provided by “Synergise” (Slovenia).

2.3. Methodology
2.3.1. PFIR Workflow Description

The aim of the PFIR is to monitor the recovery in the forest ecosystems after fire. To
achieve this goal, a complex approach is used; for the implementation of this, a model
based on three components, DI, VIC, and DA, has been developed. The PFIR algorithm
represents the series of processing steps needed to derive the PFIR. It uses Sentinel 2 images
(replaced by Landsat 7 ETM+ and Landsat 8 OLI for years before Sentinel 2).

The different operations are described in the following sections.

Input Data

PFIR uses Landsat 7 ETM+, Landsat 8 OLI, and Sentinel 2 A stacked multi-band
images as input data. Landsat 7 ETM+ stacked multi-band images comprise band (B) B1,
B2, B3, B4, B5, and B7. Landsat 8 OLI—B2, B3, B4, B5, B6, and B7. Sentinel 2A stacked
images use the following bands—B1, B2, B3, B4, B5, B6, B7, B8, B8A, B9, B10, B11, and
B12. If needed, the spectral bands used as input data could be resampled to 10/20/30 m
resolution. However, for the purpose of the regrowth monitoring in this research, this is
not the case.

TCT

The aim of this step is to apply TCT to the input multi-band images. Different
sensors (Landsat 7 ETM+, Landsat 8 OLI, and Sentinel 2 A) use different transformation
matrices [18–20] fixed only to them.

The coefficients for orthogonal transformations of Landsat 7 ETM+ are derived by
Huang et al. [18] as follows:

TCB = 0.356*B1 + 0.397*B2 + 0.390*B3 + 0.697*B4 + 0.229*B5 + 0.160*B7 (1)

TCG = −0.334*B1 − 0.354*B2 − 0.456*B3 + 0.697*B4 − 0.024*B5 − 0.263*B7 (2)

TCW = 0.263*B1 + 0.214*B2 + 0.093*B3 + 0.066*B4 − 0.763*B5 − 0.539*B7 (3)

The coefficients for orthogonal transformations of Landsat 8 OLI are derived by
Baig et al. [19] as follows:

TCB = 0.3029*B2 + 0.2786*B3 + 0.4733*B4 + 0.5599*B5 + 0.508*B6 + 0.1872*B7 (4)

TCG = −0.2941*B2 − 0.243*B3 − 0.5424*B4 + 0.7276*B5 + 0.0713*B6 − 0.1608*B7 (5)

TCW = 0.1511*B2 + 0.1973*B3 + 0.3283*B4 + 0.3407*B5 − 0.7117*B6 − 0.4559*B7 (6)
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The coefficients for orthogonal transformations of Sentinel 2 are derived by Ned-
kov [20] as follows:

TCB = 0.0356*B1 + 0.0822*B2 + 0.1360*B3 + 0.2611*B4 + 0.2964*B5 + 0.3338*B6
+0.3877*B7 + 0.3895*B8 + 0.0949*B9 + 0.0009*B10 + 0.3882*B11 + 0.1366*B12 +

0.4750*B8A
(7)

TCG = −0.0635*B1 − 0.1128*B2 − 0.1680*B3 − 0.3480*B4 − 0.3303*B5 + 0.0852*B6
+0.3302*B7 + 0.3165*B8 + 0.0467*B9 − 0.0009*B10 − 0.4578*B11 − 0.4064*B12 +

0.3625*B8A
(8)

TCW = 0.0649*B1 + 0.1363*B2 + 0.2802*B3 + 0.3072*B4 − 0.5288*B5 − 0.1379*B6 −
0.0001*B7 − 0.0807*B8 − 0.0302*B9 + 0.0003*B10 − 0.4064*B11 − 0.5602*B12 −

0.1389*B8A
(9)

The result is TC transformed multi-band images containing three layers—TCB, TCG,
and TCW. The next step is decomposition of each of the TC components.

Normalization

The aim of this step is calculation of the normalized values of TC components. Firstly,
calculation of the mean and standard deviations is conducted. Secondly, calculation of the
normalized values of the TC components is performed. These spectral normalization steps
should be taken in order to normalize radiometric change. The normalization is conducted
as follows:

nTCW = (TCW − E{TCW})⁄(St.Dev(TCW)) (10)

nTCB = (TCB − E{TCB})⁄(St.Dev(TCB)) (11)

nTCG = (TCG − E{TCG})⁄(St.Dev(TCG)) (12)

where E{TCB}, E{TCG}, and E{TCW} represent the mean TCB, TCG, and TCW of the
mature forest class, respectively. St.Dev (TCB), St.Dev (TCG), and St.Dev (TCW) are the
corresponding standard deviations within the mature forest class. Hence, nTCB, nTCG,
and nTCW indicate the TCB, TCG, and TCW normalized by the statistics of a mature
forest class, respectively. The mature forest class is identified using the forest map (forest
dominant leaf type raster—Copernicus high-resolution layers).

DI

The aim of this step Is calculation of the DI. After normalization, the three component
indices were combined linearly to determine the DI [9] as follows:

DI = nTCB − (nTCG + nTCW) (13)

VIC

The aim of this step is calculation of the VIC. Based on the normalized values of the
TC components, the calculation of the VIC [10] is conducted as follows:

VIC =
√

nTCB2 + nTCG2 + nTCW2 (14)

The VIC calculation is a step towards obtaining the DA.

DA

After calculation of the VIC, the DA generation follows. The DA represents the
deviation angle between the TCG and the VIC [10]:

DA = arccos(nTCG/VIC) (15)
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Classification

The aim of this step is to combine the DI and the DA with raster calculations and
to classify the output raster. The PFIR sums the values of the DI and the DA. The result
provides thematic raster classified by the intensity of recovery—the PFIR. The PFIR varies
widely—in the present study the values ranged between −2.6 and +7.6. The lower the
value, the higher the regrowth intensity, and vice versa, the greater the value, the lower the
regrowth intensity.

2.3.2. PFIR Threshold Values Determination and Accuracy Assessment Procedure

VHR aerial and satellite images (Table 2) and Sentinel 2A images were used to deter-
mine the threshold values of the PFIR and to assess its accuracy. The procedure follows
several steps:

1. The forest regrowth intensity was identified by visual interpretation of VHR images
between two dates far enough apart to observe progress in forest vegetation regrowth
and expert knowledge (Table 2). Sample point locations representative for the intensity
of the forest regrowth were selected on each of the acquired VHR images. The number
of sample points was adjusted to the area of the individual test sites. However, due
to intra-categorical heterogeneity for some categories, the number of samples differs.
More samples were used for the categories where there isa possibility of error in
the interpretation. Areas with three distinct categories of regrowth intensity were
identified: areas with high regrowth intensity (HRI), moderate regrowth intensity
(MRI), and low regrowth intensity (LRI) (Figure 2, Table 3). In the Bistritsa test
site, the categories of regrowth intensity were difficult to differentiate only by visual
interpretation. For that reason, for this test site, the normalized difference vegetation
index (NDVI) was calculated to facilitate the differentiation in the individual classes
(Figure 2d).

2. After that, the PFIR was calculated on Sentinel 2A images, acquired on the nearest
to the later after fire VHR date. The PFIR values in each sample point location were
extracted for each test site.

3. Afterwards, a matrix was created with the number of pixels categorized into each of
the categories. The range of the PFIR values was divided by a step of 0.5 to obtain
representative values for each of the three categories. The number of sample points
falling into each of the representatives was counted and summed for each test site. The
thresholds between the three categories (HRI, MRI, and LRI) are where the number of
points between two consecutive categories is equal (Table 4).

The PFIR values of 61% of the sample points categorized by the visual interpretation
of VHR images as points with HRI are below 1. A total of 81.6% of the sample points
categorized as points with MRI are with PFIR values ranging between 1 and 2.5, and 73%
of the sample points categorized as points with LRI have PFIR values above 2.5.

4. Accuracy assessment procedure is based on the same VHR and Sentinel 2A images.
The classification accuracy was calculated only on the classified Sentinel 2A images
and only images from this sensor were coupled with the VHR reference data in the
accuracy assessment procedure. Sample polygons categorized by visual interpretation
into areas with HRI, MRI, and LRI were delineated on the VHR satellite imageries
acquired on the later postfire dates, which serves as reference data in the accuracy
assessment procedure. Similarly, we tried to adjust the area of the sample polygons
to the area of the test sites, considering the heterogeneity of the territory. The PFIR
rasters calculated based on the Sentinel 2A images were used as classified data. The
classified PFIR rasters were extracted by the sample polygons representative for
each of the three categories, showing the intensity of regrowth (HRI, MRI, and LRI).
The generated outputs were used for accuracy assessment calculations in an error
matrices for each test site (Table 5) [21]. The accuracy metrics calculated include
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overall accuracy (OA), error of omission (EO), error of commission (EC), producer’s
accuracy (PA), and user’s accuracy (UA).
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Figure 2. Sample point locations representative for the three distinct categories of regrowth intensity
(HRI, MRI, and LRI) in each of the test sites: Ardino (a,b), Bistritsa (c,d), and Perperek (e,f).

Table 3. Number of the sample points and area of the sample polygons used for each individual
postfire regrowth category in the different test sites (LRI—low regrowth intensity; MRI—moderate
regrowth intensity; HRI—high regrowth intensity).

Post-Fire Regrowth

Bistritsa (70 ha) Ardino (100 ha) Perperek (30 ha)

LRI MRI HRI LRI MRI HRI LRI MRI HRI

Sample points (num) 10 10 10 19 18 18 12 10 13
Sample polygons (ha) 2.38 3.77 2.29 20.94 5.64 7.64 2.11 2.73 9.16
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Table 4. Matrix for determination of PFIR threshold values containing the number of pixels catego-
rized into each of the classes (HRI, MRI, and LRI) divided into pre-defined groups according the
PFIR values and confidence in the classification for each of the classes.

PFIR Values

<0 0–0.5 0.5–1 1–1.5 1.5–2 2–2.5 2.5–3 3–3.5 3.5–4 4–4.5 >4.5

HRI
Ardino 7 4 3 3 1 0 0 0 0 0 0
Bistritsa 0 2 5 1 2 1 0 0 0 0 0
Perperek 0 0 5 4 2 1 1 0 0 0 0
Total 7 6 13 8 5 2 1 0 0 0 0

61%
MRI

Ardino 0 0 4 9 3 1 1 0 0 0 0
Bistritsa 0 0 0 0 4 6 0 0 0 0 0
Perperek 0 0 1 4 4 0 0 0 1 0 0
Total 0 0 5 13 11 7 1 0 1 0 0

81.6%
LRI

Ardino 0 0 1 1 0 1 4 3 6 2 1
Bistritsa 0 0 0 1 0 5 5 0 0 0 0
Perperek 0 0 0 0 1 1 1 1 4 3 1
Total 0 0 1 2 1 7 10 4 10 5 2

73%

Table 5. Example of an error matrix for accuracy assessment of PFIR (LRI—low regrowth intensity;
MRI—moderate regrowth intensity; HRI—high regrowth intensity; N—number of pixels). The
diagonal elements in the error matrix represent the areas (pixels) that were correctly classified (N=).
The off-diagonal elements of an error matrix represent the areas (pixels) that were not correctly
classified (N?).

Reference Data

LRI MRI HRI Total

C
la

ss
ifi

ed
da

ta LRI N= N? N? N?

MRI N? N= N? N?

HRI N? N? N= N?

Total N? N? N? N=

Each error matrix consists of an N × N array where N is the number of classes/pixels
in the data. The columns represent the reference data (the ground truth) and the rows the
classified data (PFIR) [21]. The OA shows the proportion of correctly classified reference
data expressed as a percentage, with 100% accuracy being a perfect classification [21]. The
EO refers to the reference sites and the EC refers to the classified results. EO and EC
are calculated by inspecting the reference and classified sites for incorrect classifications.
For each class, separate EO and EC calculations were made. The sum of incorrect EO
classifications in the columns of the error matrix was divided by the total number of
reference sites, and the sum of incorrect EC classifications in the rows of the error matrix
was divided by the total number of classified sites [21]. PA indicates how often the actual
on-site features are correctly represented on the classified map, and UA indicates how often
that class actually appears on the map [21].
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3. Results
3.1. PFIR for Ardino Test Site

Using the proposed algorithm PFIR for Ardino test site, the intensity of regrowth was
calculated for the period of the monitoring—2016–2022 (Figure 3). The PFIR was generated
several days before the fire (11 July 2016) (Figure 3a) and immediately after the fire (5
August 2016) (Figure 3b) in order to assess the prefire forest condition as well as the postfire
disturbances due to the fire event. The same methodology for postfire regrowth was applied
to pre- and postfire imageries aiming to provide a starting point for the monitoring and
making the results comparable. Figure 3c–h show the PFIR for the study period 2017–2022.
The PFIR classified thematic rasters display three classes indicating the regrowth intensity
rate—HRI, MRI, and LRI.
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3.2. PFIR for Bistritsa Test Site

The PFIR for Bistritsa test site was calculated for the study period 2012–2022 (Figure 4).
The PFIR was obtained two days before the fire event (29 June 2012) (Figure 4a) and a few
days after the fire (15 July 2012) (Figure 4b) aiming to assess the pre- and postfire forest
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condition and disturbances. Figure 4c–k exhibit the PFIR for the time of the monitoring—
2013–2022.
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3.3. PFIR for Perperek Test Site

The PFIR for Perperek test site was obtained for the period 2015–2022 (Figure 5). The
PFIR was generated the same way before the fire (7 November 2015) (Figure 5a) and after
the fire (25 December 2015) (Figure 5b) for assessment of pre-fire condition and postfire
forest ecosystem disturbances using the proposed methodology. Figure 5c–i show the
results for PFIR for the monitoring period—2016–2022.

3.4. Accuracy Metrics

The overall accuracy for all of the three test sites is 62.1%, ranging from 48.4% for
the Perperek test site and 73.9% for the Ardino test site. The LRI class of the Ardino test
site is distinguished by the lowest EO. For the rest of the regrowth intensity classes in the
other test sites, this type of error is significantly larger, except for the HRI, as well as in the
Ardino test site (Table 6).

In general, with less than 40% EO, the LRI class stands out, resulting in an average
value of 24.5% for this type of error. The EO is highest for the MRI class, which is expected
because the intermediate classes are generally the most difficult to differentiate. The lowest
EC values are observed for the Bistritsa (4%) and Ardino (8.8%) test sites. For the HRI in
Ardino, both types of errors are equivalent and much smaller in value compared to those
of the other two test sites. The low EC value at MRI for Bistritsa test site results in lower EC
overall for all three test sites (17.6%). The highest EC has Bistritsa test site for both extreme
classes and Perperek site for the HRI class (Table 4).

The PFIR is distinguished by very good PA in the classification of HRI (93.5%) and
LRI (75.5%). For the HRI, the Bistritsa test site has PA of 100%, Perperek with PA of 98.2%,
and Ardino—82.4%. For the LRI classification, Ardino has PA of 95.5%. The UA is highest
for MRI classification, as for the Bistritsa test site this value is the highest (96%), and for
the Perperek test site it is 83.7%. Similarly, the UA for HRI classification is high in Ardino
(91.2%), as well as LRI classification in Perperek (79.9%) (Table 6).
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Table 6. Accuracy metrics, calculated for PFIR for the three test sites using VHR images as reference
data. OA—overall accuracy; EO—error of omission; EC—error of commission; PA—producer’s
accuracy; UA—user’s accuracy; HRI—high regrowth intensity; MRI—moderate regrowth intensity;
LRI—low regrowth intensity.

Test
Site OA EO

LRI
EO

MRI
EO
HRI

EC
LRI

EC
MRI

EC
HRI

PA
LRI

PA
MRI

PA
HRI

UA
LRI

UA
MRI

UA
HRI

Ardino 73.9 4.5 63.9 8.8 30.8 32.4 8.8 95.5 36.1 82.4 69.2 67.6 91.2
Bistritsa 63.9 32.9 41.9 63.0 60.3 4.0 63.0 67.1 58.1 100.0 39.7 96.0 37.0
Perperek 48.4 36.0 73.2 69.6 20.1 16.3 69.6 64.0 26.8 98.2 79.9 83.7 30.4

Final 62.1 24.5 59.7 47.1 37.1 17.6 47.1 75.5 40.3 93.5 62.9 82.4 52.9

4. Discussion
4.1. Assessment of Postfire Regrowth Dynamics Using PFIR

In Figure 3a, the territory of almost the entire fire area is classified with HRI, which
determines better vegetation status of the forest ecosystems several days before the fire.
A large part of the test site is classified with LRI, distinguishing the burnt areas a few
days after the fire (Figure 3b) and showing that the Ardino test site was significantly
affected by the fire [19]. The largest part of the test area is classified with HRI and MRI
in Figure 3c—one year after the fire, typically for the initial regrowth process—starting
with herbaceous and shrubby vegetation [3,14,22]. Sanitary logging was conducted in 2018
removing the damaged forest stands [14], resulting in LRI over the large part of the test site
(Figure 3d). In the next few years (Figure 3e–h), the PFIR exhibits less favorable condition
for intensive regrowth.

The worst vegetation status of the forest ecosystems (resulting from a tornado and
bark beetle outbreak in the previous years) is observed in Bistritsa test site, which is verified
by PFIR raster before the fire (Figure 4a). The completely dry forests were the perfect fuel
for the wildfire, benefited from hot and dry climatic conditions [14]. The most affected by
the fire forests are those of the Bistritsa test site as well, distinguished by LRI over the entire
test site (Figure 4b). The PFIR after the wildfire demonstrates the completely destroyed
forests. Although there was no sanitary logging in Bistritsa test site, due to its nature
reserve protective status, the PFIR exhibits low recovery rates during the first years of the
monitoring (Figure 4c–e). The post-ire regrowth vegetation is presented predominantly by
annual herbaceous plants [14] mainly influencing the PFIR fluctuations during the study
period of the monitoring (Figure 4f–l).

Ecosystems with limited water resources and low gross primary productivity, such as
grassland ecosystems, exhibit higher dependency on hydro-climatic changes influencing
vegetation status. They are distinguished by essential productivity reduction under drought
impact [23]. This is the reason for the higher dynamics in the PFIR in the Bistritsa test
site. Assessing the impact of local forest ecology on the postfire regrowth dynamics using
DI, Chen et al., 2022 [12] found a correlation between DI and topographic and climatic
factors. In mountainous areas, colder habitats are distinguished by lower recovery rates
than warmer ones. The results of postfire regrowth dynamics monitoring in this article
confirm the results of Chen et al., 2022 [12]. Similarly, the results obtained in this study
confirm that forest regrowth depends on climatic factors [14,24].

The PFIR exhibits HRI distinguishing good vegetation status of the study forests in
the Perperek test site before the fire event (Figure 5a). After the fire, almost the entire
test site area is distinguished by LRI, which confirms the negative ecologic impact of the
wildfire over the forests (Figure 5b). The PFIR demonstrates optimal condition for regrowth
dynamics (Figure 5c–i). In particular areas, the PFIR exhibits LRI due to sanitary logging in
2017 (Figure 5d) [14]. Burnt forest stands were removed in some small areas during the
sanitary logging [14] and the PFIR indicates them with LRI that persists during the entire
period of the regrowth monitoring (Figure 5d–i).
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The PFIR distinguishes areas with sanitary logging, indicating them with LRI. How-
ever, the PFIR could not distinguish if the regrowth is due to forest vegetation regrowth or
other types of vegetation (herbaceous, shrubby vegetation).

4.2. Accuracy Metrics Discussion

Errors of omission represent the real-life objects that were not correctly classified.
The results of the present study show that the greater the heterogeneity, the greater the
EO is. These observations were confirmed also on the test site level. The lowest EO was
found at the test site with the most homogenous environmental conditions throughout the
territory and, hence, the most uniformly distributed regrowth categories (Bistritsa test site).
Due to the cold and wet conditions for vegetation development, the regrowth intensity
in Bistritsa is slower compared with the other test sites. In addition, the greatest part of
the territory was identified namely with MRI on the date used for accuracy assessment
procedure (Table 2, Figure 4h), which undoubtedly influenced the lower EO for this test
site. On the contrary, the greatest EO for the Bistritsa test site was found in the HRI
class, which was the class with the lowest territorial representation on the date used for
accuracy assessment procedure (Figure 4h). EO increased with the heterogeneity in the
environmental conditions and, hence, in the intensity of forest regrowth. Perperek was
the test site with the most preserved forest stands after the fire outbreak and the most
diverse environmental conditions for forest regrowth after that (Figure 5i). This effect can
be observed also in the results shown in Table 6. The EO in Perperek was the greatest for
all three regrowth categories amongst the studied test sites.

In general, it is observed that in assessing the errors, the values for the individual
test sites are mostly influenced by the number of sample points used in the determination
of threshold values. An exception is the EC value at MRI for Bistritsa test site. In the
assessment of accuracies, this trend is not always observed. However, PA and UA are
complements of the OE and CE. Hence, it can be concluded that the results obtained about
the individual test sites should be interpreted carefully.

Taking into consideration the differences in the percentage reliability of the individual
threshold categories, the lowest accuracy can be predicted for the classification of the HRI
and the highest—for MRI. Barely 61% of the test points with a PFIR value below 1 are
determined as HRI, whereas the confidence in the classification of MRI is 81.6% (Table 4).
These expectations were confirmed by the results after the calculation of the different
accuracy metrics (Table 6).

The results show that the classified raster thematic maps are distinguished by a good
performance in monitoring the regrowth intensity with an average overall accuracy of
62.1%. The PFIR is distinguished by very good PA in the classification of HRI (93.5%) and
LRI (75.5%). The UA is highest for MRI classification. Due to possible influence of the
number of sample points used in the determination of threshold values, the obtained results
related to the accuracy metrics for the individual test sites should be interpreted carefully.
However, the final results for the accuracy metrics, including all three test sites, normalize
these differences and can be taken as representative of the PFIR performance generally.

5. Conclusions

This study introduces a unique and novel algorithm for monitoring postfire forest
regrowth using tasseled-cap-retrieved indices. The proposed model, utilizing the well-
known DI, as well as VIC and DA, introduced by the authors, allows for a quantitative
assessment of the intensity of regrowth in various forest ecosystems. The results provide
a thematic raster—PFIR—performing the intensity of regrowth classes, determined after
PFIR threshold values qualification (HRI, MRI, and LRI).

Postfire regrowth monitoring was performed and tested on the territory of three
test sites with various forest environment in Bulgaria for the study period 2012–2022.
For the purpose of this particular study, Landsat and Sentinel 2 imageries have been
utilized. However, satellite data by various sensors could be applied as long as there is
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a TC transformation matrix for them. The objective of this paper was not to compare
the performance of the method across different sensors. However, this could be a subject
of further research. The results for PFIR exhibit good performance assessing the pre-fire
forest condition as well as postfire disturbances. Furthermore, PFIR could be a subject
of further research, aiming to assess the postfire disturbances defined after threshold
values determination.
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