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Abstract: Surface urban heat islands (SUHIs) can extend beyond the urban boundaries and greatly
affect the thermal environment of continuous regions over an agglomeration. Traditional urban-rural
dichotomy depending on the built-up and non-urban lands is challenged in characterizing regional
SUHIs, such as how to accurately quantify the intensity, spatial pattern, and scales of SUHIs, which
are vulnerable to SUHIs, and what the optimal scale for conducting measures to mitigate the SUHIs.
We propose a machine-learning-assisted solution to address these problems based on the thermal
similarity in the Yangtze River Delta of China. We first identified the regional-level SUHI zone of
approximately 42,328 km2 and 38,884 km2 and the areas that have no SUHI effects from the annual
cycle of land surface temperatures (LSTs) retrieved from Terra and Aqua satellites. Defining SUHI
as an anomaly on background condition, random forest (RF) models were further adopted to fit the
LSTs in the areas without the SUHI effects and estimate the LST background and SUHI intensity
at each grid point in the SUHI zone. The RF models performed well in fitting rural LSTs with
a simulation error of approximately 0.31 ◦C/0.44 ◦C for Terra/Aqua satellite data and showed a
good generalization ability in estimating the urban LST background. The RF-estimated daytime
Aqua/SUHI intensity peaked at approximately 6.20 ◦C in August, and the Terra/SUHI intensity had
two peaks of approximately 3.18 and 3.81 ◦C in May and August, with summertime RF-estimated
SUHIs being more reliable than other SUHI types owing to the smaller simulation error of less than
1.0 ◦C in July–September. This machine-learning-assisted solution identified an optimal SUHI scale
of 30,636 km2 and a zone of approximately 23,631 km2 that is vulnerable to SUHIs, and it provided
the SUHI intensity and statistical reliability for each grid point identified as being part of the SUHI.
Urban planners and decision-makers can focus on the statistically reliable RF-estimated summertime
intensities in SUHI zones that have an LST annual cycle similar to that of large cities in developing
effective strategies for mitigating adverse SUHI effects. In addition, the selection of large cities might
strongly affect the accuracy of identifying the SUHI zone, which is defined as the areas that have an
LST annual cycle similar to large cities. Water bodies might reduce the RF performance in estimating
the LST background over urban agglomerations.

Keywords: surface urban heat islands; urban agglomerations; random forest; land surface temperature;
MODIS

1. Introduction

Urban areas are usually warmer than their surrounding rural regions [1]. This phe-
nomenon, known as the urban heat island (UHI), has been expanding to a regional level in
many urban agglomerations experiencing rapid urbanization, new industrialization, and
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fast transportation in recent years [2–4]. Regional UHIs greatly affect the thermal envi-
ronment of continuous regions and threaten regional-level environmental sustainability,
biodiversity, and resource and energy consumption, and they are thus increasingly drawing
attention from residents, urban climate researchers, and policymakers [5,6]. Accurate UHI
information on urban agglomerations, including the intensity, spatial pattern, and scale
of UHIs and their spatiotemporal variations, is of practical importance to urban planning
and environmental management in terms of shaping rational urban clusters, mitigating
heat-related health risks and improving human comfort [4,7].

UHIs are defined differently depending on the layers in which the highest temper-
atures are recorded, namely surface UHIs (SUHIs), canopy-layer UHIs (CUHIs), and
boundary-layer UHIs (BLUHIs) [1]. The three types of UHIs have strong differences in in-
tensity, extent, spatial pattern, and diurnal and seasonal variations within a single city. It is
difficult for policymakers in urban design to select a UHI type as a reference in developing
effective strategies to mitigate the adverse effects of UHIs [7]. CUHIs and BLUHIs, with the
intensity notably lower than that of SUHIs and peaking in winter [8–11], can be markedly
enhanced by upstream urbanization and have a nonlocal distribution due to atmospheric
thermal advection and local wind circulation [12,13]. Being the main heating source of
CUHIs and BLUHIs, SUHIs explain 70–87% of the land surface temperature (LST) variation
in urban areas, with a spatial pattern similar to built-up land and a high sensitivity to land
cover and human activities [4,14,15]. The SUHI intensity peaks in the summer daytime
owing to the seasonal and diurnal variations of solar radiation and notably exacerbates
summer heatwave stress on human health in urban areas [16]. Hence, it is more important
that urban planners and decision-makers have accurate information on summertime SUHIs
than on other UHI types in establishing effective strategies for coping with urban heat
waves and heat-related health risks.

Against a background of rapid urbanization and global warming, key decision-makers
and urban planners are becoming increasingly concerned with mitigating regional-level
SUHIs over urban agglomerations from the perspective of climatology in actively incor-
porating UHI-related considerations [7]. However, it is a great challenge to accurately
characterize the intensity, spatial pattern, and scale of SUHIs in urban agglomerations,
mainly because the daytime SUHIs extend beyond the urban boundaries, with the extent
being approximately 2.3–3.9, 1–3, 1.3–2.5, and 1.5–2.0 times the urban size over many large
cities and metropolitan areas in the world [4,17–19]. The SUHI extent also has notable
diurnal, seasonal, and inter-city differences [9,10], which further increase the difficulty of
characterizing the SUHIs in urban agglomerations [20–22]. An ambiguous classification of
the urban areas and surrounding rural areas could be responsible for disagreements on the
spatial extent and intensity of SUHIs [21]. Fine-resolution mesoscale models and regional
climate models have been developed to investigate the effects of urbanization on the ther-
mal and physical properties of the land surface at various spatiotemporal scales [19,23–26],
but complex data collection, data pre-and post-processing, and model validation make
it difficult to simulate complex urbanization processes and human activities over urban
agglomerations at a high spatial resolution [27,28]. Recent advances in machine-learning
approaches have made it possible to extract valuable SUHI information from a variety
of widely available high-spatial-resolution satellite data [21]; e.g., the two-dimensional
Gaussian, decision regression tree, random forest (RF), and support vector machine models
are becoming useful tools that support heat-related active policy measures in urban plan-
ning [29–34]. Integrating machine-learning and remote-sensing methods has improved the
insights into the relationship between urbanization, climatic, geographical, and biophysical
conditions, as well as the SUHIs [35,36]. A myriad of factors affecting micro-scale SUHIs,
including the albedo, roughness, geographical location, topography, urban geometry, land
cover, thermal capacity and conductivity, and anthropogenic heat have been investigated
using machine-learning methods and high-resolution satellite products for the Yangtze
River Delta, Pearl River Delta, and Jing-Jin-Ji urban agglomerations of China and European
and American cities [37–42]. A convolutional neural network model was used to predict
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the impact of urban structure patterns on the thermal environment and achieved a high
accuracy rate of 81.97% in identifying low and medium thermal risks [43]. RF regression
shows high accuracy in predicting the LSTs and identifying the main drivers of SUHI [44].
The nonlinear relationships between two-dimensional and three-dimensional factors and
the LST were investigated by applying the RF method over the Olympic Area of Beijing
and identified four dominant factors affecting the land thermal environments [45], among
which the vegetation and buildings were the domain factors influencing daytime and
nighttime LST on a block scale, and the urban greenery coverage is the most important for
urban heat mitigation [46,47].

Urbanization-induced impacts on global SUHI trends have shown strong divergent
features since the 1980s [48]. Under the 1.5 ◦C global warming limit, addressing UHI-related
challenges is urgent not only for environmental, ecosystem, social, and health consequences
but also for economic impacts relevant to labor, capital, and goods or services due to the
UHIs being a common issue for many metropolitans in the world [49]. Accurate UHI
information on urban agglomerations is of practical importance to future urban planning
and environmental management. However, the extent of SUHIs being larger than the
urban size and varying with the background climate state and land cover means that urban
and built-up land cannot accurately represent the spatial scale and distribution of SUHIs.
As a phenomenon of any area being warmer than its surroundings, heat islands also can
develop in a non-urban area, such as a wetland, water body at nighttime, or seasonally
bare soil lands. These non-urban heat islands do not represent a risk to humans or the
environment but strongly increase the difficulty of identifying the SUHI spatial pattern,
scale, and intensity in an urban agglomeration. How do you quantify the intensity, spatial
pattern, and scale of SUHIs, where are they vulnerable to the SUHIs, and what is the
optimal scale for conducting measures to mitigate the SUHIs over an urban agglomeration?
Using the Yangtze River Delta urban agglomeration (YRDUA) of China as an example,
we propose a machine-learning-assisted solution to address these problems by separately
characterizing the SUHI spatial features from the thermal similarity of land cover types
and the SUHI intensity according to the definition of urban heat islands as an anomaly
on background condition. The new solution can reasonably estimate the SUHI extent
being larger than the urban size and the SUHI intensity at each grid point with statistical
reliability and has great potential for rapidly developing urban agglomerations in the field
of urban planning and design.

2. Materials and Methods
2.1. Data Sources and Preprocessing

A daily 1 km all-weather LST dataset for 2000–2021 retrieved from the Moderate
Resolution Imaging Spectroradiometer (MODIS) sensors on Terra and Aqua satellites
was used to quantify the SUHIs in the YRDUA region [50]. A 500 m-resolution land
cover dataset for 2020 from Terra and Aqua satellites (MCD12Q1) was used to extract
the land cover types of croplands, forests, and large cities [51]. A global 8-day composite
fractional vegetation coverage (FVC) dataset generated from a suite of the global land
surface satellite products (GLASS) in 2000–2020 [52], a 30 m-resolution satellite-retrieved
human settlement dataset for 1978–2017 [53], a 30 m-resolution Landsat impervious surface
dataset at a 5-year interval in 1985–2020 [54], and a suite of global 1 km topographic
variables for environmental and biodiversity modeling [55] were used to input features
into RF models to estimate the SUHI intensity based on the 8-day composite MODIS/LST
in the YRDUA region. All these data are spatially and temporally continuous with no
gaps and missing values, and they are of great use in regional-level SUHIs over urban
agglomerations from the perspective of climatology. The global 1 km topographic products
provide fully standardized topographic variables to quantify the impacts of complex terrain
on the regional-level SUHIs in the YRDUA region.

Determined by the data source of MODIS/LSTs, GLASS products, and 1 km topo-
graphic variables, we investigated the regional-level SUHIs in the YRDUA region at a
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spatial resolution of 1 km × 1 km with an 8-day composite. The data were preprocessed
with spatiotemporal matching as the following procedure. First, a simple 8-day averaging
method was conducted for the daily 1 km all-weather MODIS/LST dataset to fit the 8-day
composite GLASS products in 2000–2020. Second, the 30 m-resolution Landsat impervious
surface and satellite-retrieved human settlement data were merged by their union at each
grid point in the period from 2015–2020 and upscaled to 1 km to generate more continuous
imperviousness density data in space by summarizing the merged impervious surface area
to the 1 km grid. Finally, all these data without gaps and missing values were reprojected
to the latitude–longitude grid at 30 arc seconds (about 1 km × 1 km spatial resolution) to
generate all variables for training the RF models.

2.2. Definition of the SUHI Intensity on Each Grid Point in Urban Agglomerations

Here, local LST anomaly is calculated as the difference between the actual and back-
ground LSTs at each grid point:

∆Ti = Ti − TBi, (1)

When defining SUHI as the additional anomaly on background condition [16], ∆Ti,
Ti, and TBi are the SUHI intensity and actual and background LSTs at grid point i in the
areas that have an SUHI phenomenon. Actual LSTs in the areas that have no SUHIs are
well-associated with climate, geographical, topographical, and biophysical conditions, all
of which have been well-retrieved from high-quality satellite datasets without gaps and
missing values [50,56]. When the LSTs in the areas that have no SUHIs are selected as the
background condition and fitted by machine-learning algorithms with geographical and
biophysical parameters, ∆Ti is the background simulation error at grid point i. Hence, it is
critical for quantifying the SUHI intensity on each grid point in urban areas to identify the
non-SUHI areas, which are mainly attributed to the LSTs in non-SUHI areas being used to
train the machine-learning models that are used to estimate the LST background in areas
that have an SUHI effect.

2.3. Identifying the SUHI and Non-SUHI Zones in Urban Agglomerations

Land cover types mainly consist of cropland, forests, water bodies, and urban and
built-up land in the YRDUA region at [117.5–123◦E, 28.5–33.7◦N] (Figure 1a), with the
total area of urban and built-up land of approximately 31,663 km2 in 2020. Spatially
continuous large cities with a built-up area exceeding 100 km2 along the Yangtze River
and Hangzhou Bay have been identified as representative areas that have notable SUHI
effects [4]. These cities are located along the Yangtze River and in Hangzhou Bay and are
surrounded by cropland and many medium-size (<100 km2) cities (Figure 1a). Applying
the urban population criteria of being more than 1 million, 1 million to 500,000, and below
500,000 from the China Urban Construction Statistical Yearbook [57,58], 15 large, nine
medium, and 36 small cities are obtained in the YRD region, with an average built-up area
of approximately 414.2, 113.6, and 49.4 km2. Small towns have an average built-up area
of approximately 4.6 km2 according to the China Urban–Rural Construction Statistical
Yearbook [57,58]. Therefore, large, medium, and small cities and villages are identified
from the MCD12Q1 urban and built-up lands by using continuously built-up areas that
are ≥100 km2, 50–100 km2, 5–50 km2, and <5 km2.
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Figure 1. The MCD12Q1 land cover types in 2020 (a) and long-term mean land surface temperature
(LST) annual cycles (lines) during the day and at night for croplands, forests, and medium and large
cities, and LST differences between large cities and cropland (red bars), and between cropland and
forests (green bars) for Terra (b,d) and Aqua data (c,e) between 2015–2020.

Here, the SUHI zones were defined as areas that have an LST annual cycle similar
to that of large cities. Since the Chinese government implemented a development plan
to restrict urban expansion in the YRDUA region in 2016, large- and medium-sized cities
have maintained a stable urban and built-up area of approximately 7787.6–7818.4 km2

according to the China Urban Construction Statistical Yearbook for 2015–2020 [57,58].
We thus investigated the land thermal features based on differences in the LST annual
cycle between medium-sized cities (50–100 km2), large cities, cropland, and forests for
the period 2015–2020. Statistically significant differences in the daytime LST annual cycle
were found among large cities, medium cities, cropland, and forests in an F-test variance
analysis at a 0.01 significance level (lines in Figure 1b,c). There were large LST differences
of approximately 4–8 ◦C between April–September and small differences of less than 2 ◦C
between October–March (red bars in Figure 1b,c). Medium and large cities, cropland, and
forests had similar nighttime LST annual cycles, with LST differences of approximately
−3 to 3 ◦C. The daytime LST annual cycle was thus suitable for classifying the land surface
thermal zones owing to its statistically significant differences among large cities, medium
cities, cropland, and forests.

A spatial similarity regression model (Si) proposed by Xie et al. in 2022 [4] was used
to identify areas that have LST annual cycles similar to those of large cities, cropland, and
forests. The spatial similarity of the LST annual cycle (Si) to the LST annual cycle of the
large cities, cropland, or forests at a grid point was quantified using the explained variance
(R2) and the root mean square error (RMSEi), defined as

Si =


(

1 − R2
i sin(Rπ/2)

)
RMSEi (Ri < 0)(

1 − 0.5RmodeR2
i sin(Riπ/2)

)
RMSEi (Ri ≥ 0)

, (2)
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RMSEi =

√√√√ N

∑
j=1

(
(Tij − Ti)−

(
Tij − Tr

))2/N, (3)

Ri =
∑N

j=1(Tij − Ti)
(
Trj − Tr

)√
∑N

j=1 (Tij − Ti)
2

∑N
j
(
Trj − Tr

)2
, (4)

where Ri is the correlation coefficient, Rmode is the mode of Ri frequencies, Trj is the region-
ally averaged LST in large cities, cropland, or forests, RMSEi is the root mean square error,
Tr is the average value of Trj, Tij and Ti denote the LST series at grid point i and the average

value, N is the series length, and
(

1 − R2
i sin(Rπ/2)

)
and

(
1 − 0.5RmodeR2

i sin(Riπ/2)
)

are adjustment factors adopted to avoid the excessive reduction of RMSEi. Si is the spatial
similarity of the LST annual cycle to the LST annual cycle of large cities, cropland, or
forests at the grid point i, with a statistical confidence level from the chi-square variable
χ2

i = ∑N
j=1

(
Tij − Tr + Ti

)2/ 1
N ∑N

j=1
(
Trj − Tr

)2. Applying a natural-break algorithm, all Si
values were classified into five types that were two zones with strong positive/negative val-
ues R~±1.0, two transition zones with positive/negative correlation, and an uncorrelated
zone (R~0) by using a natural-break algorithm.

2.4. Estimation of the SUHI Intensity on Each Grid Point in Urban Agglomerations

RF regression is a nonlinear machine-learning technique based on decision trees with
good generalization ability, and increasing the critical hyper-parameter ntree can improve
the RF model performance and stability [59]. Non-urban LSTs in the background, cropland,
and forest zones well-related to the geographical factors, the topographic variables, and
biophysical and urbanization parameters, were used to train the RF models adopting the
input features listed in Table 1.

Table 1. Influencing factors of the LST used in random forest models.

Categories of Variables Variables Meaning of Variables

Climate factors
LON Longitude in grid
LAT Latitude in grid

Geographical factor ELE Mean value of elevation in grid

Topographic variables

RUG Mean value of roughness in grid
SLP Mean value of slope in grid
TRI Mean value of terrain ruggedness index in grid

VRM Mean value of vector ruggedness measure in grid

Biophysical parameter FVC Fractional vegetation cover in grid
Urbanization parameter ISA Percentage of impervious surface area in grid

Theoretically, there is no need for any additional accuracy estimation procedures
like cross-validation or a separate test set to get an estimate of the training error for RF
regression owing to the out-of-bag error being estimated internally during the training.
Hence, three critical hyper-parameters used in the RF models, the tree depth max_depth,
the minimum samples required at a leaf node min_sample_count, and the maximum
tree number ntree, were determined by the out-of-bag error at the respective ranges of
5–25, 0.5%–3%, and 5–300 with the increments of 1, 0.1%, and 5 during the training. As
a result, all RF models showed a small out-of-bag error of less than 1.0 ◦C and 1.4 ◦C at
the critical hyper-parameters min_sample_count = 1%, max_depth = 10 and ntree = 200
for the 8-day composite long-term Terra and Aqua LSTs in the period between 2015–2020.
The min_sample_count = 1%, max_depth = 10, and ntree = 200 thus were selected as the
optimal values. Considering the urban LST background value at each grid point in the
SUHI zone as a missing value, these RF models trained by the non-urban LSTs were further
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used to estimate the urban LST background owing to the advantage of RF regression in
estimating a large proportion of missing data with a good accuracy.

The SUHI intensity at each grid point was estimated by adopting the following proce-
dure. (1) Applying the spatial similarity regression model proposed by Xie et al. (2022) [4],
the SUHI zone and its spatial pattern and scale were first identified from the MODIS/LST
annual cycle for the YRDUA region between 2015–2020. (2) Strong SUHI zones, vulnerable
SUHI zones, background zones, cropland zones, and forest zones were then identified
from long-term LST annual cycles similar to those of large cities, cropland, and forests. The
LST samples in the background, cropland, and forest zones were used to train RF models.
(3) A series of RF models with the hyper-parameters min_sample_count = 1%,
max_depth = 10, and ntree = 200 were obtained from each long-term 8-day composite
FVC field and non-urban LST field between 2015–2020, and the LST-simulating error was
calculated at each grid point. These RF models were further used to estimate the vegetation
background FVCbkg with ISA = 0 and the temperature background LSTbkg with ISA = 0
and FVC = FVCbkg at each grid point over strong SUHI zones and the vulnerable SUHI
zones. (4) The SUHI intensity was finally obtained from the difference between actual and
background LSTs at each grid point over urban agglomerations. The framework is shown
in Figure 2.
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Figure 2. Framework for characterizing the SUHI spatial pattern and scale and intensity in urban ag-
glomerations.

3. Results

Applying the proposed solution described in Section 2, the strong SUHI zone and
the zones being vulnerable to SUHIs were identified out on the similarity of long-term
LST annual cycles and successfully excluded the heat islands unrelated to urbanization
in the YRDUA region. We also obtained the SUHI intensity, spatial pattern, and scale for
each case of the long-term 8-day composite MODIS/LST data between 2015–2020, which
were further used to investigate the seasonal variations of the regional SUHIs related to
vegetation changes and urbanization. All these are conducive to urban planning and
environmental management in terms of shaping rational urban clusters and improving
human comfort.

3.1. The SUHI Spatial Pattern and Scale and the Land Surface Thermal Types

Terra/SUHI and Aqua/SUHI zones were obtained from the spatial similarity of LST
annual cycles similar to those in large cities with a chi-square test at 0.05 confidence level,
(Figure 3a,b), with the spatial extents of approximately 42,328 km2 and 38,884 km2. Their
intersections represented a stable daytime SUHI phenomenon over the middle and large
cities (Figure 3c) and were identified as the optimal SUHI zone, with statistical reliability



Remote Sens. 2024, 16, 599 8 of 20

belonging to the SUHIs at each grid point and a spatial scale of approximately 30,636 km2.
The thermal zones that have a long-term LST annual cycle similar to that of cropland
(forests) were identified from Terra and Aqua satellites, and their union was identified
as the cropland (forests) zones (Figure 3d,e). The SUHI zone had notable overlapping
areas with cropland and forest zones (Figure 3c–e), which were the mixed areas of built-up
land and natural and agricultural vegetation land according to the MCD12Q1 data in 2020.
These overlapping areas had an LST annual cycle simultaneously similar to that of large
cities, cropland, and forests and were identified as the SUHI vulnerable zone related to
urbanization, with a spatial extent of approximately 23,631 km2. A strong SUHI zone was
then defined as the difference between the SUHI zone and the SUHI vulnerable zone and
had a spatial extent of approximately 7005 km2 compatible with the urban and built-up
area of large- and medium-sized cities. Intersections between the cropland and forest
zones and the areas uncorrelated with large cities were further defined as background
zones without notable UHI effects. Ultimately, the YRDUA region was divided into a
strong SUHI zone, vulnerable SUHI zone, background zone, cropland zone, and forest zone
(Figure 3f). In summary, the SUHI effects steadily occurred in the strong SUHI zone, they
could deteriorate with the urbanization in the vulnerable zone, and they did not occur in
the background, cropland, and forest zones. According to the SUHI zone and the urban and
built-up land in 2020 MCD12Q1 data, approximately 24,784 km2 of urban and built-up land
and 14,098 km2 of non-urban land around large cities showed notable SUHI phenomenon
and approximately 6879 km2 of urban and built-up land in small cities and villages that
have no SUHI phenomenon. Hence, urban and built-up lands cannot accurately represent
the spatial scale and pattern of SUHIs.
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Figure 3. Strongly positively correlated (also referred to as SUHI), positively correlated, uncorrelated,
negatively correlated, and strongly negatively correlated zones that have the Terra/LST (a) and
Aqua/LST (b) annual cycles similar to those of large cities and the intersections of Terra/SUHI
and Aqua/SUHI zones (c); areas having the LST annual cycle similar to that of forests (d) and the
cropland (e); and five thermal zone types (f).
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3.2. Estimation of the FVC and LST Backgrounds and the SUHI Intensity

The nonurban LST is well-associated with climate, geographical, topographical, and
biophysical conditions, all of which have been well-retrieved from high-quality satellite
datasets without gaps or missing values [50,56]. RF regression models were with geograph-
ical, biophysical, and urbanization parameters to fit the nonurban LST in the background,
cropland, and forest zones and estimate the urban LST background and SUHI intensity at
each grid point in the SUHI zone.

Figure 4 shows an example of estimating the urban FVC and LST backgrounds and
quantifying the SUHI intensity on Day 225 of the long-term LST annual cycle between
2015–2020. An RF model was first trained by the FVC samples in the background, cropland,
and forest zones with the input features listed in Table 1 at the optimal hyper-parameter
ntree = 200 and was used to estimate the vegetation background FVCbkg without the urban
effect (ISA = 0) at each grid point in the SUHI zone. In the same way, the LST samples
in the background, cropland, and forest zones were used to train another RF model with
the input features listed in Table 1 at the optimal hyper-parameter ntree = 200. This RF
model was further used to estimate the temperature background LSTbkg with ISA = 0
and FVC = FVCbkg at each grid point in the SUHI zone. As shown in the left and middle
panels of Figure 4, the actual FVC and LST values and their estimated backgrounds from
the geographical factors, topographic variables, and vegetation background had similar
spatial patterns and comparable values in the background, cropland, and forest zones.
Almost no urban effects on the FVC and LST backgrounds were observed in the urban areas.
Large actual background differences in the FVC and LST (right panel in Figure 4) thus
represented urban effects and showed a spatial pattern similar to the urban and built-up
land (Figure 1a). The SUHIs reached a maximum intensity of approximately 5 ◦C during the
day and approximately 2 ◦C at night in the urban areas and valleys of the YRDUA region.
Small actual background LST differences below 1 ◦C were due to RF simulation errors in
the cropland and forest zones. Therefore, the RF models simulated the FVC and LST values
in the non-SUHI zone well and reasonably estimated the FVC and LST backgrounds in the
SUHI zone on Day 225 of the long-term LST annual cycle between 2015–2020.

Adopting RF models to fit the nonurban LSTs and estimate the LST background in the
SUHI zone for all long-term mean 8-day composite MODIS/LST data between 2015–2020,
the results revealed that all RF models performed well in fitting the LSTs in the non-SUHI
zone (Figure 5), with the annual MAE value being approximately 0.31 ◦C for Terra data and
0.44 ◦C for Aqua data. There were strong seasonal variations of the MAE in the background
zones for the daytime LST, with peaks of approximately 0.65 and 0.80 ◦C for Terra/LST
and Aqua/LST data between May–June (Figure 5a,b). The RF models performed well in
simulating the LST over background, cropland, and forest zones, with the average MAE
being approximately 0.14–0.65, 0.18–0.43, and 0.22–0.38 ◦C for daytime Terra/LST data and
0.28–0.80, 0.30–0.57, and 0.15–0.50 ◦C for daytime Aqua/LST data. The cropland and forest
zones had a stable MAE of approximately 0.29 and 0.40 ◦C for the daytime LST of Terra
and Aqua data. All RF models simulated the nighttime LST well, with a stable MAE of
approximately 0.20–0.30 ◦C (Figure 5c,d).
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Figure 4. Example of estimating the background (middle panel) and the urban effect (right panel)
of the fractional vegetation coverage (a–c) and land surface temperature (LST, d–o) on Day 225 of
the long-term annual cycle between 2015–2020 using the Random Forest method. Actual value, the
RF-estimated background and SUHI intensity for the daytime Terra/LST in (d–f) and Aqua/LST (g–i),
and the nighttime Terra/LST (j–l) and Aqua/LST (m–o).
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Figure 5. Seasonal variation of mean absolute errors of the random-forest-estimated land surface
temperature (LST) in background, cropland, and forest zones for daytime (a,b) and nighttime (c,d)
LSTs from the Terra (a,c) and Aqua (b,d) satellites.

3.3. Seasonal Variations of the SUHI Intensity in the YRDUA Region

As shown in Figure 6, the daytime SUHI intensity in the strong SUHI zone had a
strong seasonal variation in the range between 0.93–6.20 ◦C for Aqua data and 0.29–3.81 ◦C
for Terra data, with an Aqua/SUHI peak in August and two Terra/SUHI peaks of approxi-
mately 3.18 and 3.81 ◦C in May and August (Figure 6a,b). The zone vulnerable to SUHIs
had daytime Terra/SUHI and Aqua/SUHI intensities of approximately 0.12–1.85 ◦C and
0.43–2.74 ◦C, being half of the intensity in the strong SUHI zone. The strongest daytime
SUHI intensity between July–September corresponded to a small RF simulation error of
less than 1.0 ◦C (Figure 5), meaning that the RF models can provide reliable summertime
SUHI information for urban planners and decision-makers to design strategies for coping
with urban heat waves in the YRDUA region. The cropland zone had a weak cold effect
of approximately −1.0 to 0.0 ◦C for Terra and Aqua data. Nighttime SUHIs had a weak
intensity of less than 1.0 ◦C for Terra and Aqua data (Figure 6c,d).
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Figure 6. Seasonal variations of the regionally averaged intensity in the strong SUHI, vulnerable
SUHI, and cropland zones from the Terra (a,c) and Aqua (b,d) data.
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3.4. Spatial Distribution and Scale of the RF-Estimated SUHI Intensities

Applying the Jenks–Fisher natural-break algorithm, all daytime SUHIs were divided
into weak, medium, strong, and extreme types according to the regionally averaged inten-
sity in the SUHI zones, with the SUHI possessing intensities of 0.18–0.45, 0.46–1.68, and
1.69–2.00 and 2.01–2.59 ◦C for Terra and 0.60–0.88, 0.89–2.00, 2.01–2.90, and 2.91–4.03 ◦C
for Aqua. The spatial distribution of SUHI intensities of four types is shown in Figure 7a–h.
Strong and extreme SUHIs with an intensity of at least 1 ◦C had spatial extents of ap-
proximately 39,528–45,121 km2 for the Terra satellite and 50,078–56,665 km2 for the Aqua
satellite, which were larger than the spatial extents of 42,328 km2 and 38,884 km2 obtained
from the Terra and Aqua LST annual cycles (Table 2). After the spring sowing of maize, and
early harvesting of rice from late July to August over the southern valleys and along the
northern coast, some cropland is transformed to bare soil and contributes to the nonurban
heat island phenomenon that enhanced the SUHI spatial extent in the strong and extreme
types. With the threshold of SUHI intensity increasing from 1.0 ◦C to 2.0 ◦C, strong and
extreme SUHIs rapidly shrank to the middle and large cities and had the Terra/SUHI
and Aqua/SUHI spatial extents of approximately 27,694 km2 and 26,841 km2, which were
notably less than those obtained from the Terra and Aqua LST annual cycles. Weak and
medium SUHIs had an underestimated extent in the large cities and an overestimated
extent in southern YRDUA, with spatial extents of approximately 6612–39,109 km2 and a
spatial pattern different from the strong and extreme types. The SUHIs in winter, spring,
autumn, and summer showed spatial patterns and variations similar to weak, medium,
strong, and extreme types (Figure 7i–p). Therefore, a small amplitude variation in the
intensity ranging from 0.5–3.0 ◦C corresponded to a highly varying spatial extent of the
SUHIs among four seasons and the four types of SUHI. The RF models generated more
reliable Terra/SUHI and Aqua/SUHI intensities in the extreme type and summer than
in other types and seasons owing to the clear urban–rural cliff, low MAE, and statistical
reliability at the 0.05 confidence level (purple shading in Figure 7).

Table 2 lists the spatial extent of SUHIs for the Terra and Aqua satellites at different in-
tensity thresholds. Compared with the SUHI extents of 42,328 km2 and 38,884 km2 obtained
from the Terra and Aqua LST annual cycles, strong and extreme SUHIs had larger spatial
extents of approximately 39,528–45,121 km2 for the Terra satellite and 50,078–56,665 km2

for Aqua satellite (Table 2). When the threshold of SUHI intensity varies in the range
of 1.0–2.0 ◦C, strong and extreme SUHIs had smaller spatial extents of approximately
27,694–32,983 km2 for the Terra satellite and 38,798–45,759 km2 for the Aqua satellite. Weak
and medium SUHIs had a spatial pattern of approximately 6612–39,109 km2. The SUHIs in
winter, spring, autumn, and summer also showed a varying spatial extent at different inten-
sities. In short, it was difficult to identify the reasonable intensity threshold for quantifying
the optimal scale and pattern of SUHIs in the YRDUA region. Fortunately, two compatible
spatial extents of the SUHI were obtained from the spatial similarity of LST annual cycles
similar to those in large cities (Figure 3a,b). Their intersections represented a stable daytime
SUHI phenomenon over the middle and large cities and were identified as the optimal
SUHI zone of approximately 30,636 km2 for urban design and urban planning.

3.5. Relative Importance of the RF-Model Input Features

The relative importance values of nine input features were obtained using the RF
model regression to fit all actual LSTs in the YRDUA region between 2015–2020. A large
importance value means that the feature notably affected the RF model performance in
the simulation of the LST spatial distribution and the accuracy of the RF-estimated SUHI
intensity. The ISA, FVC, LAT, ELE, and LON features explained approximately 80% of the
LST spatial heterogeneity in the YRDUA region (Figure 8a,b). The LAT feature had the
largest importance value, exceeding 50%, in the cold season between October–March, and
the ISA and FVC features had a large combined importance of approximately 40%–60%
and anchored the spatial heterogeneity of the daytime LST in the warm season between
April–September. The terrain features of ELE, RUG, SLP, TRI, and VRM, as well as the
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LON feature, had a stable combined importance of approximately 40% in the daytime LST.
In contrast, the ISA and FVC features had small importance values of approximately 15%
for the nighttime LST (Figure 8c,d). The topographic variables of RUG, SLP, TRM, and
VRM had a combined importance value of less than 20%. The LAT, LON, and ELE features
contributed approximately 68% and 63% of the spatial variation of the nighttime Terra/LST
and Aqua/LST. The LAT feature contributed more than 50% of the nighttime LST spatial
variation between October–May and approximately 20–50% for the Lon feature between
June–September. The ISA feature had the lowest importance value of approximately 1–3%
in the nighttime LST spatial variation.
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Table 2. The spatial extent of SUHIs at different intensity thresholds.

Satellite SUHI Extent
(km2)

SUHI
Types

Sample
Size

The SUHI Intensity (◦C) The Spatial Extent of SUHIsat Different Intensities (km2)

Strong
Zones VulnerableZones ≥1 ◦C ≥1.5 ◦C ≥2 ◦C ≥3 ◦C ≥4 ◦C

Terra 42,328

Weak 15 0.6 0.26 6612 1305 242 0 0
Medium 8 1.63 0.75 25,237 12,990 6489 725 25
Strong 11 2.73 1.28 39,528 27,694 18,863 7663 1590

Extreme 12 3.39 1.61 45,121 32,983 24,405 12,435 4322

Aqua 38,884

Weak 11 1.09 0.51 23,830 9000 3347 474 40
Medium 14 2.38 1.09 39,109 24,992 15,252 4237 895
Strong 11 4.08 1.83 50,078 38,798 30,591 18,467 9433

Extreme 10 5.55 2.45 56,665 45,759 38,007 26,841 18,555

Terra 42,328

Spring 11 2.31 1.05 35,671 22,562 14,038 4178 451
Summer 12 3.31 1.56 44,940 32,601 24,028 12,016 4142
Autumn 11 1.94 0.93 30,334 17,087 9203 1151 52
Winter 12 0.51 0.21 2235 1043 176 0 0

Aqua 38,884

Spring 11 2.96 1.32 44,686 31,680 22,079 9067 2372
Summer 12 5.24 2.32 55,139 44,127 36,407 25,231 16,869
Autumn 11 3.36 1.54 45,942 34,036 25,431 12,702 4243
Winter 12 1.11 0.54 24,286 9266 3490 484 39
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Figure 8. Seasonal variations in the relative importance of nine inputting features for fitting all actual
LST values retrieved from the Terra (a,c) and Aqua (b,d) satellites at day (a,b) and night (c,d) in the
YRDUA region.

4. Discussion
4.1. Potential Applications of the Quantitative Regional SUHIs in Urban Planning
and Decision-Making

As a phenomenon of any area being warmer than its surroundings, heat islands
also can develop in a non-urban area, such as a wetland and water body at nighttime
or seasonally bare soil land. These heat islands do not represent a risk to humans or
the environment but increase the difficulty of identifying the SUHI spatial pattern and
scale and intensity in an urban agglomeration. Anthropogenic heat from vehicles, air-
conditioning units, buildings, thermal plants, and other industrial facilities further increase
this difficulty [60]. Fortunately, from the perspective of climatology, large cities usually
have a daytime LST annual cycle that is statistically significantly different from that of other
land cover types at a 0.05 statistical confidence level (Figure 1). Quantifying regional SUHI
spatial scales from the spatial similarity of LST annual cycles excluded the heat islands
unrelated to the urbanization and captured the SUHI phenomenon extending beyond
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the urban boundaries over large cities (Figure 2f). Relative to the varying SUHI spatial
extents obtained at different intensity thresholds, the statistically reliable spatial pattern
and extent identified from the LST annual cycle are more conducive to urban design and
planning. The vulnerable SUHI zones that have an LST annual cycle similar to that of
large cities, cropland, and forests can provide important references for urban planners
and decision-makers in urban design to restrain the rapid expansion of the SUHI spatial
extent over urban agglomerations. The strong SUHI zones that have the strongest SUHI
intensity and highly urbanized levels should be paid more attention to developing effective
mitigation strategies.

Defining the SUHI intensity as the difference between the actual and background
LSTs, the non-urban thermal types without SUHI effects: background, cropland, and forest
zones that are identified out from the spatial similarity of LST annual cycles at a 0.05
statistical confidence level. The three non-urban thermal types can be used in selecting
suitable non-urban LSTs to train the RF models, in which the non-urban LST samples
that have notable SUHI effects have been removed to improve the accuracy of estimating
the LST background. RF regression can quantify the contribution of various landscape
compositions, and biophysical and climate conditions on the LST. Thus, the non-urban LST
with the averaged simulation error of approximately 0.31 ◦C and 0.44 ◦C is well-fitting
for Terra and Aqua satellites, and it reasonably estimated the urban LST background
in the YRDUA region. The reliable RF-estimated SUHI intensity in the areas that have
an LST annual cycle similar to that of large cities is conducive for urban planners and
decision-makers to develop effective mitigation strategies.

4.2. Advantages and Limitations of the Proposed Solution in Quantifying Regional SUHIs

The SUHI spatial heterogeneity in cities cannot be adequately addressed using the
traditional urban–rural dichotomy [61]. Defining the SUHI intensity as the difference
between the actual and background LSTs, RF regression has clearly shown advantages in
estimating the LST background and SUHI intensity at each grid point. It describes the SUHI
phenomena based on empirical knowledge and the statistical relationships between LSTs
and the geographical, topographic, biophysical, urbanization parameters, and other factors.
Although fine-resolution mesoscale simulating models can estimate the LST background
and SUHI intensity at each grid point over urban agglomerations, complex data collection,
data pre- and post-processing, and model validation make it difficult to simulate complex
urbanization processes and human activities over urban agglomerations at a high spatial
resolution [27,28]. The two-dimensional Gaussian surface model has been widely used to
estimate the SUHI intensity and footprint owing to its good performance in quantifying
SUHIs [9,17,30]. Applying a two-dimensional Gaussian surface model to quantify the
SUHIs in a single city includes two key steps: First, identifying the rural LST pixels in
a single city according to the land cover data. Second, the two-dimensional Gaussian
surface models are used to fit the rural LSTs and estimate the urban LST background and
SUHI intensity on each grid point in urban areas. Its performance strongly depends on
the accuracy of the land cover data and is influenced by the complex terrain and urban
geometry. The proposed machine-learning-assisted solution identifies the SUHI zone and
rural LST samples from the statistically significant differences in the LST annual cycle
between the large cities and other land cover types and reduces the dependence on the land
cover data accuracy. More importantly, this solution provides clear urban–rural cliffs and
more reliable RF-estimated intensity on each grid point over an agglomeration with a 0.05
statistical confidence level and avoids some heat islands unrelated to urbanization being
wrongly marked as SUHIs. Hence, it has great potential in urban planning and design and
in mitigating heat-related health risks in rapidly developing urban agglomerations.

Compared with other machine-learning methods [4,7,32], the RF regression avoids
the additional accuracy estimation procedures like cross-validation or a separate test set to
obtain an estimate of the training error and can quantify the contribution of each inputting
feature on the spatial heterogeneity of SUHIs and LSTs over urban agglomerations. The
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ISA, FVC, LAT, ELE, and LON features explained approximately 80% of the LST spatial
heterogeneity in the YRDUA region (Figure 8). The LAT feature had the largest importance
value, exceeding 50%, between October–March, and the ISA and FVC features had a large,
combined importance of approximately 40–60% and anchored the spatial heterogeneity
of the daytime LST between April–September. In contrast, the ISA and FVC features had
small importance values of approximately 15% for the nighttime LST, and the LAT, LON,
and ELE features contributed approximately 68% and 63% of the spatial variation of the
nighttime Terra/LST and Aqua/LST. The main SUHI-related factors are solar radiation,
evapotranspiration, land cover type, climate, and geographical factors, topographical and
biophysical conditions, and rapid urbanization and other human activities. Most of these
factors are well-quantified by high-quality and high-accurate datasets without gaps or
missing values [56], and a suite of global 1 km topographic variables has been developed
to represent the environmental geographical and topographical conditions [55]. We need
to select suitable seasonally varying factors to estimate the urban LST background when
quantifying the regional SUHI intensities in urban agglomerations according to the data
availability of biophysical parameters for day and night. Among the seasonally varying fac-
tors, including the FVC index, normalized difference vegetation index, enhanced vegetation
index, leaf area index, surface albedo, downward shortwave radiation, soil moisture, and
evapotranspiration, the FVC feature was ultimately identified as the optimal biophysical
parameter by adopting RF models owing to its data availability and the ease of estimating
the FVC urban background from environmental, geographical, and topographical condi-
tions. The ISA and FVC features represented the effects of urbanization and vegetation
relating to solar radiation and biophysical conditions in the YRDUA region.

The proposed solution also has some limitations. A selection of the large cities might
strongly affect the accuracy of identifying the SUHI zone and rural LST samples in urban
agglomerations, mainly because the SUHI zones are defined as the areas having an LST
annual cycle similar to that of the large cities. Spatially continuous large cities with a built-
up area of ≥100 km2 have been identified as representative areas that have notable SUHI
effects in the YRDUA region. The criterion of built-up areas exceeding 100 km2 for large
cities might need further validation before applying it to identify the regional-level SUHIs
over other urban agglomerations. Statistically significant differences in the LST annual
cycle between large cities and other land cover types are prerequisites for identifying the
SUHI zone, but these differences also might not exist in some large cities over arid and
desert areas. In addition, the inputting features of RUG, SLP, TRI, VRM, FVC, and ISA
for training the RF models usually have a zero value over large lakes, rivers, and large
reservoirs, which can lead to the failure of simulating the LSTs over water bodies. In this
study, LST samples in large water bodies have been removed from the rural LST samples
to generate more accurate RF models in estimating the urban LST background and SUHI
intensity (Figures 4 and 7).

5. Conclusions

Since SUHIs have expanded to a regional level and have changed the climate over
many urban agglomerations worldwide, mitigating regional SUHIs from the perspective
of climatology has become a growing concern for decision-makers and urban planners
in terms of actively incorporating UHI-related considerations. Complex urban geometry
and human activities, weather and terrain conditions, and some nonurban land being
warmer than its surroundings greatly increase the difficulty of characterizing the SUHI
intensity, spatial pattern, and scale. Instead of quantifying the complex effects of the urban
geometry and human activities on the urban LST, reasonably estimating the urban LST
background is a feasible solution for quantifying regional SUHIs in urban agglomerations
when defining the SUHI intensity as the difference between the actual and background
LSTs. We thus proposed a machine-learning-assisted solution to quantify the SUHI spatial
features and intensity at each grid point based on the LST annual cycle in large cities
being statistically significantly different from that for other land cover types. This solution
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provides clear urban–rural cliffs and more reliable RF-estimated intensities of regional
SUHIs based on a chi-square testing statistical variable at a 0.05 statistical confidence level
and avoids some heat islands unrelated to urbanization being wrongly marked as SUHIs
in urban agglomerations. More importantly, we can focus on quantifying the intensity on
each grid point without the consideration of the nonurban heat islands when applying
machine-learning methods to characterize the SUHIs and the SUHI spatial features that
can be reasonably identified from the LST annual cycle over urban agglomerations.

Using the YRDUA as an example and applying the proposed solution, two compatible
SUHI spatial scales of approximately 42,328 and 38,884 km2 were obtained from long-term
Terra and Aqua LST annual cycles between 2015–2020. The SUHI spatial pattern and scales
were identified from the spatial similarity of LST annual cycles at a 0.05 confidence level
and excluded the heat island effects of non-urban land such as wetlands, water bodies,
and seasonally bare soils. We further adopted an RF method to estimate the urban LST
background and SUHI intensity at each 1 km × 1 km grid point using the MODIS-retrieved
LST as the response variable and nine satellite-retrieved input variables. By avoiding the
quantification of complex effects of the urban morphological factors and human activities
on the urban LST, RF models performed well in fitting the nonurban LST values with a
low MAE of approximately 0.31 ◦C for Terra/LST data and 0.44 ◦C for Aqua/LST data. In
addition, the RF models estimated the urban LST background and SUHI intensity in the
YRDUA region well. The daytime SUHI intensity in urban zones had a maximum value of
approximately 6.20 ◦C for Aqua/LST data in August and had two peaks of approximately
3.18 and 3.81 ◦C for Terra/LST data in May and August; these values were approximately
2.2 times the SUHI intensity in suburban zones. The RF models provide more reliable
summertime SUHI information in the YRDUA region owing to the low MAE errors of less
than 1.0 ◦C between July–September. This information includes the SUHI spatial pattern
and the intensity at each grid point. This feasible solution identifies the strong SUHI and
the vulnerable zones and the reliable summertime SUHI intensity on each grid point, all of
which are conducive to developing suitable mitigation strategies in different SUHI zones
for urban planners and decision-makers. The vulnerable zone, with the SUHI intensity
being half of that in the strong SUHI zone, should be paid more attention in urban design
to restrain the rapid expansion of the SUHI spatial extent over urban agglomerations.

The reasonable selection of input features in machine-learning methods is critical to
quantifying the SUHI intensities in urban agglomerations. SUHI-related factors mainly
comprise solar radiation, evapotranspiration, land cover type, climate and geographical
factors, topographical and biophysical conditions, and urbanization and human activities.
A lack of high-precision and high-resolution climate and weather conditions and human
activities could increase the uncertainty in quantifying SUHIs in the YRDUA region. Fortu-
nately, the ISA, VEG, LAT, and ELE explained approximately 80% of the spatial variation of
the long-term mean 8-day composite MODIS/LST data between 2015–2020 and anchored
the seasonal variation of the daytime SUHIs in the YRDUA region, meaning that it is
important to ensure sufficient vegetation to alleviate the SUHIs during rapid urbanization.
Our simple solution allows the non-expert to quantify regional SUHIs over urban agglom-
erations. It is a powerful tool that clarifies urban–rural LST boundaries and provides the
reliable land thermal types, the SUHI spatial patterns, and the SUHI intensity on each
grid point, and it also indicates the zones that are vulnerable to SUHIs with statistical
reliability in urban agglomerations. All these features are conducive to urban planning
and environmental management in terms of shaping rational urban clusters, mitigating
heat-related health risks, and improving human comfort.

Regional SUHIs gradually extend beyond the urban boundaries in some urban agglom-
erations and greatly affect the thermal environment of continuous regions and threaten
regional-level environmental sustainability, biodiversity, and resource and energy consump-
tion. Machine-learning methods have shown great potential in characterizing the intensity,
spatial pattern, and scale of regional SUHIs and their spatiotemporal variations over urban
agglomerations. Fine-scale simulation experiments should be conducted simultaneously
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as a complementary method to machine-learning methods to improve interpretability in
future studies, particularly in urban agglomerations that have complex terrain and weather
conditions, which could provide more valuable insights for urban design and decision-
making.

Author Contributions: Conceptualization, Y.D. and Z.X.; methodology, Z.X.; software, M.W.; val-
idation, N.W. and J.H.; formal analysis, Y.D.; investigation, Y.D. and N.W.; resources, L.Z.; data
curation, Y.D.; writing—original draft preparation, Y.D. and Z.X.; writing—review and editing, Z.X.;
visualization, N.W. and M.W.; supervision, Z.X.; project administration, Z.X.; funding acquisition,
Z.X. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China
(Grant 42075118 and Grant 42075027) and the National Key Research and Development Program
(Grant 2020YFA0608901).

Data Availability Statement: The daily LST data used in identifying SUHI effects are freely available
at the National Tibetan Plateau Data Center (https://doi.org/10.11888/Meteoro.tpdc.271252). The
500 m-resolution yearly land cover type dataset from 2001 to 2020 (MODIS/MCD12Q1) is freely
available at https://lpdaac.usgs.gov/products/mcd12q1v061/, accessed on 1 May 2023. The global
30-m-resolution impervious surface dataset with a 5-year interval (1985–2020) is freely available at
https://zenodo.org/record/5220816, accessed on 1 May 2023. Data pre- and post-processing and the
RF models training are supported by the C/C++ libraries of GDAL at https://gdal.org, accessed on
1 March 2023, Dlib at https://github.com/davisking/dlib, accessed on 1 March 2023, and OpenCV
at https://opencv.org/, accessed on 1 March 2023.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Oke, T.R.; Mills, G.; Christen, A.; Voogt, J.A. Urban Climates; Cambridge University Press: Cambridge, UK, 2017. [CrossRef]
2. Du, Y.; Xie, Z.Q.; Zeng, Y.; Shi, Y.F.; Wu, J.G. Impact of urban expansion on regional temperature change in the Yangtze River

Delta. J. Geogr. Sci. 2007, 17, 387–398. [CrossRef]
3. Fang, C.; Yu, D. Urban agglomeration: An evolving concept of an emerging phenomenon. Landsc. Urban Plan. 2017, 162, 126–136.

[CrossRef]
4. Xie, Z.Q.; Du, Y.; Miao, Q.; Zhang, L.L.; Wang, N. An approach to characterizing the spatial pattern and scale of regional heat

islands over urban agglomerations. Geophys. Res. Lett. 2022, 49, e2022GL099117. [CrossRef]
5. Manoli, G.; Fatichi, S.; Schläpfer, M.; Yu, K.; Crowther, T. Magnitude of urban heat islands largely explained by climate and

population. Nature. 2019, 573, 55–60. [CrossRef]
6. Masoudi, M.; Tan, P.Y. Multi–year comparison of the effects of spatial pattern of urban green spaces on urban land surface

temperature. Landsc. Urban Plan. 2019, 184, 44–58. [CrossRef]
7. Kim, S.W.; Brown, R.D. Urban heat island (UHI) intensity and magnitude estimations, a systematic literature review. Sci. Total

Environ. 2021, 779, 146389. [CrossRef] [PubMed]
8. Chakraborty, T.; Sarangi, C.; Tripathi, S.N. Understanding diurnality and interseasonality of a sub-tropical urban heat island.

Bound.-Layer Meteor. 2017, 163, 287–309. [CrossRef]
9. Hu, J.; Yang, Y.B.; Zhou, Y.Y.; Zhang, T.; Ma, Z.F.; Meng, X.J. Spatial patterns and temporal variations of footprint and intensity of

surface urban heat island in 141 China cities. Sustain. Cities Soc. 2022, 77, 103585. [CrossRef]
10. Yang, C.B.; Yan, F.Q.; Zhang, S.W. Comparison of land surface and air temperatures for quantifying summer and winter urban

heat island in a snow climate city. J. Environ. Manag. 2020, 265, 110563. [CrossRef]
11. Venter, Z.S.; Chakraborty, T.; Lee, X.H. Crowdsourced air temperatures contrast satellite measures of the urban heat island and its

mechanisms. Sci. Adv. 2021, 7, eabb9569. [CrossRef]
12. Zhang, D.L.; Shou, Y.X.; Dickerson, R.R. Upstream urbanization exacerbates urban heat island effects. Geophys. Res. Lett. 2009,

36, L24401. [CrossRef]
13. Zhang, N.; Chen, Y. A case study of the upwind urbanization influence on the urban heat island effects along the Suzhou-Wuxi

Corridor. J. Appl. Meteorol. Climatol. 2014, 53, 333–345. [CrossRef]
14. Imhoff, M.L.; Zhang, P.; Wolfe, R.E.; Bounoua, L. Remote sensing of the urban heat island effect across biomes in the continental

USA. Remote Sens. Environ. 2010, 114, 504–513. [CrossRef]
15. Li, X.M.; Asrar, G.R.; Imhoff, M.; Li, X.C. The surface urban heat island response to urban expansion: A panel analysis for the

conterminous United States. Sci. Total Environ. 2017, 605, 426–435. [CrossRef]
16. Zhao, L.; Lee, X.H.; Smith, R.B.; Oleson, K. Strong contributions of local background climate to urban heat islands. Nature 2014,

511, 216–219. [CrossRef] [PubMed]

https://doi.org/10.11888/Meteoro.tpdc.271252
https://lpdaac.usgs.gov/products/mcd12q1v061/
https://zenodo.org/record/5220816
https://gdal.org
https://github.com/davisking/dlib
https://opencv.org/
https://doi.org/10.1017/9781139016476
https://doi.org/10.1007/s11442-007-0387-0
https://doi.org/10.1016/j.landurbplan.2017.02.014
https://doi.org/10.1029/2022GL099117
https://doi.org/10.1038/s41586-019-1512-9
https://doi.org/10.1016/j.landurbplan.2018.10.023
https://doi.org/10.1016/j.scitotenv.2021.146389
https://www.ncbi.nlm.nih.gov/pubmed/34030271
https://doi.org/10.1007/s10546-016-0223-0
https://doi.org/10.1016/j.scs.2021.103585
https://doi.org/10.1016/j.jenvman.2020.110563
https://doi.org/10.1126/sciadv.abb9569
https://doi.org/10.1029/2009GL041082
https://doi.org/10.1175/JAMC-D-12-0219.1
https://doi.org/10.1016/j.rse.2009.10.008
https://doi.org/10.1016/j.scitotenv.2017.06.229
https://doi.org/10.1038/nature13462
https://www.ncbi.nlm.nih.gov/pubmed/25008529


Remote Sens. 2024, 16, 599 19 of 20

17. Zhou, D.C.; Zhao, S.Q.; Zhang, L.X.; Sun, G.; Liu, Y.Q. The footprint of urban heat island effect in China. Sci. Rep. 2015, 5, 11160.
[CrossRef] [PubMed]

18. Sun, Y.W.; Gao, C.; Li, J.L.; Wang, R.; Liu, J. Evaluating urban heat island intensity and its associated determinants of towns and
cities continuum in the Yangtze River Delta urban agglomerations. Sustain. Cities Soc. 2019, 50, 101659. [CrossRef]

19. Wang, Z.A.; Meng, Q.Y.; Allam, M.; Hu, D.; Zhang, L.L.; Menenti, M. Environmental and anthropogenic drivers of surface urban
heat island intensity: A case study in the Yangtze River Delta, China. Ecol. Indic. 2021, 128, 107845. [CrossRef]

20. Zhou, D.C.; Xiao, J.F.; Bonafoni, S.; Berger, C.; Deilami, K.; Zhou, Y.Y.; Frolking, S.; Yao, R.; Qiao, Z.; Sobrino, J.A. Satellite remote
sensing of surface urban heat islands: Progress, challenges, and perspectives. Remote Sens. 2019, 11, 48. [CrossRef]

21. Acosta, M.P.; Vahdatikhaki, F.; Santos, J.; Hammad, A.; Dor′ee, A.G. How to bring UHI to the urban planning table? A data-driven
modeling approach. Sustain. Cities Soc. 2021, 71, 102948. [CrossRef]

22. Chen, S.Z.; Yu, Z.W.; Liu, M.; Da, L.J.; Faiz, M. Trends of the contributions of biophysical (climate) and socioeconomic elements to
regional heat islands. Sci. Rep. 2021, 11, 12696. [CrossRef] [PubMed]

23. Wang, Y.; Li, Y.G.; Xue, Y.; Martilli, A.; Shen, J.; Chan, P.W. City-scale morphological influence on diurnal urban air temperature.
Build. Environ. 2020, 169, 106527. [CrossRef]

24. Back, Y.; Bach, P.M.; Jasper-Tönnies, A.; Rauch, W.; Kleidorfer, M. A rapid fine-scale approach to modeling urban bioclimatic
conditions. Sci. Total Environ. 2021, 756, 143732. [CrossRef] [PubMed]

25. Du, R.; Song, J.; Huang, X.; Wang, Q.; Zhang, C.; Brousse, O.; Chan, P.W. High-resolution regional modeling of urban moisture
island: Mechanisms and implications on thermal comfort. Build. Environ. 2022, 207, 108542. [CrossRef]

26. Zhu, D.; Ooka, R. WRF-based scenario experiment research on urban heat island: A review. Urban Clim. 2023, 49, 101512.
[CrossRef]

27. Feng, Y.; Li, H.; Tong, X.; Chen, L.; Liu, Y. Projection of land surface temperature considering the effects of future land change in
the Taihu Lake Basin of China. Glob. Planet Chang. 2018, 167, 24–34. [CrossRef]

28. Shen, C.H.; Hou, H.; Zheng, Y.Y.; Murayama, Y.J.; Wang, R.C.; Hu, T.G. Prediction of the future urban heat island intensity and
distribution based on landscape composition and configuration: A case study in Hangzhou. Sustain. Cities Soc. 2022, 83, 103992.
[CrossRef]

29. Hsu, A.; Sheriff, G.; Chakraborty, T.; Manya, D. Disproportionate exposure to urban heat island intensity across major US cities.
Nat. Commun. 2021, 12, 2721. [CrossRef]

30. Yang, Q.Q.; Huang, X.; Tang, Q.H. The footprint of urban heat island effect in 302 Chinese cities: Temporal trends and associated
factors. Sci. Total Environ. 2019, 655, 652–662. [CrossRef]

31. Yao, L.; Sun, S.; Song, C.X.; Li, J.; Xu, W.T.; Xu, Y. Understanding the spatiotemporal pattern of the urban heat island footprint in
the context of urbanization, a case study in Beijing, China. Appl. Geogr. 2021, 133, 102496. [CrossRef]

32. Adilkhanova, I.; Ngarambe, J.; Yun, G.Y. Recent advances in black box and white-box models for urban heat island prediction:
Implications of fusing the two methods. Renew. Sust. Energ. Rev. 2022, 165, 112520. [CrossRef]

33. Oukawa, G.Y.; Krecl, P.; Targino, A.C. Fine-scale modeling of the urban heat island: A comparison of multiple linear regression
and random forest approaches. Sci. Total Environ. 2022, 815, 152836. [CrossRef]

34. Wang, Q.; Wang, X.N.; Meng, Y.; Zhou, Y.; Wang, H.T. Exploring the impact of urban features on the spatial variation of land
surface temperature within the diurnal cycle. Sustain. Cities Soc. 2023, 91, 104432. [CrossRef]

35. Li, F.; Yigitcanlar, T.; Nepal, M.; Nguyen, K.; Dur, F. Machine learning and remote sensing integration for leveraging urban
sustainability: A review and framework. Sustain. Cities Soc. 2023, 96, 104653. [CrossRef]

36. Lin, J.Y.; Qiu, S.X.; Tan, X.J.; Zhuang, Y.Y. Measuring the relationship between morphological spatial pattern of green space and
urban heat island using machine learning methods. Build. Environ. 2023, 228, 109910. [CrossRef]

37. Du, H.; Wang, D.; Wang, Y.; Zhao, X.; Qin, F.; Jiang, H.; Dai, Y. Influences of land cover types, meteorological conditions,
anthropogenic heat and urban area on surface urban heat island in the Yangtze River Delta Urban Agglomeration. Sci. Total
Environ. 2016, 571, 461–470. [CrossRef]

38. Deilami, K.; Kamruzzaman, M.; Liu, Y. Urban heat island effect: A systematic review of spatio-temporal factors, data, methods,
and mitigation measures. Int. J. Appl. Earth Obs. Geoinf. 2018, 67, 30–42. [CrossRef]

39. Peng, J.; Jia, J.; Liu, Y.; Li, H.; Wu, J. Seasonal contrast of the dominant factors for the spatial distribution of land surface
temperature in urban areas. Remote Sens. Environ. 2018, 215, 255–267. [CrossRef]

40. Yu, Z.; Yao, Y.; Yang, G.; Wang, X.; Vejre, H. Spatiotemporal patterns and characteristics of remotely sensed region heat islands
during the rapid urbanization (1995–2015) of southern China. Sci. Total Environ. 2019, 674, 242–254. [CrossRef] [PubMed]

41. Li, Y.F.; Schubert, S.; Kropp, J.P.; Rybski, D. On the influence of density and morphology on the Urban Heat Island intensity. Nat.
Commun. 2020, 11, 2647. [CrossRef]

42. Xiang, Y.; Huang, C.B.; Huang, X.; Zhou, Z.X.; Wang, X.S. Seasonal variations of the dominant factors for spatial heterogeneity
and time inconsistency of land surface temperature in an urban agglomeration of central China. Sustain. Cities Soc. 2021, 75,
103285. [CrossRef]

43. Lau, T.K.; Chen, Y.C.; Lin, T.P. Application of local climate zones combined with machine learning to predict the impact of urban
structure patterns on thermal environment. Urban Clim. 2023, 52, 101731. [CrossRef]

44. Jato-Espino, D.; Manchado, C.; Roldán-Valcarce, A.; Moscardó, V. ArcUHI: A GIS add-in for automated modelling of the Urban
Heat Island effect through machine learning. Urban Clim. 2022, 44, 101203. [CrossRef]

https://doi.org/10.1038/srep11160
https://www.ncbi.nlm.nih.gov/pubmed/26060039
https://doi.org/10.1016/j.scs.2019.101659
https://doi.org/10.1016/j.ecolind.2021.107845
https://doi.org/10.3390/rs11010048
https://doi.org/10.1016/j.scs.2021.102948
https://doi.org/10.1038/s41598-021-92271-3
https://www.ncbi.nlm.nih.gov/pubmed/34135461
https://doi.org/10.1016/j.buildenv.2019.106527
https://doi.org/10.1016/j.scitotenv.2020.143732
https://www.ncbi.nlm.nih.gov/pubmed/33279193
https://doi.org/10.1016/j.buildenv.2021.108542
https://doi.org/10.1016/j.uclim.2023.101512
https://doi.org/10.1016/j.gloplacha.2018.05.007
https://doi.org/10.1016/j.scs.2022.103992
https://doi.org/10.1038/s41467-021-22799-5
https://doi.org/10.1016/j.scitotenv.2018.11.171
https://doi.org/10.1016/j.apgeog.2021.102496
https://doi.org/10.1016/j.rser.2022.112520
https://doi.org/10.1016/j.scitotenv.2021.152836
https://doi.org/10.1016/j.scs.2023.104432
https://doi.org/10.1016/j.scs.2023.104653
https://doi.org/10.1016/j.buildenv.2022.109910
https://doi.org/10.1016/j.scitotenv.2016.07.012
https://doi.org/10.1016/j.jag.2017.12.009
https://doi.org/10.1016/j.rse.2018.06.010
https://doi.org/10.1016/j.scitotenv.2019.04.088
https://www.ncbi.nlm.nih.gov/pubmed/31004900
https://doi.org/10.1038/s41467-020-16461-9
https://doi.org/10.1016/j.scs.2021.103285
https://doi.org/10.1016/j.uclim.2023.101731
https://doi.org/10.1016/j.uclim.2022.101203


Remote Sens. 2024, 16, 599 20 of 20

45. Hu, Y.F.; Dai, Z.X.; Guldmann, J.M. Modeling the impact of 2D/3D urban indicators on the urban heat island over different
seasons: A boosted regression tree approach. J. Environ. Manag. 2020, 266, 110424. [CrossRef]

46. Han, D.R.; An, H.M.; Cai, H.Y.; Wang, F.; Xu, X.L.; Qiao, Z.; Jia, K.; Sun, Z.Y.; An, Y. How do 2D/3D urban landscapes impact
diurnal land surface temperature: Insights from block scale and machine learning algorithms. Sustain. Cities Soc. 2023, 99, 104933.
[CrossRef]

47. Hou, H.R.; Longyang, Q.Q.; Su, H.B.; Zeng, R.J.; Xu, T.F.; Wang, Z.H. Prioritizing environmental determinants of urban heat
islands: A machine learning study for major cities in China. Int. J. Appl. Earth Obs. 2023, 122, 103411. [CrossRef]

48. Li, L.; Zhan, W.F.; Hu, L.Q.; Chakraborty, T.C.; Wang, Z.H.; Fu, P.; Wang, D.Z.; Liao, W.L.; Huang, F.; Fu, H.Y.; et al. Divergent
urbanization-induced impacts on global surface urban heat island trends since 1980s. Remote Sens. Environ. 2023, 295, 113650.
[CrossRef]

49. He, B.J.; Wang, J.S.; Zhu, J.; Qi, J.D. Beating the urban heat: Situation, background, impacts and the way forward in China. Renew.
Sust. Energ. Rev. 2022, 161, 112350. [CrossRef]

50. Tang, W.B.; Zhou, J.; Ma, J.; Wang, Z.W.; Ding, L.R.; Zhang, X.D.; Zhang, X. TRIMS LST: A daily 1 km all-weather land surface
temperature dataset for China’s landmass and surrounding areas (2000–2022). Earth Syst. Sci. Data 2024, 16, 387–419. [CrossRef]

51. Abercrombie, S.P.; Friedl, M.A. Improving the consistency of multitemporal land cover maps using a hidden Markov model.
IEEE Trans. Geosci. Remote Sens. 2016, 54, 703–713. [CrossRef]

52. Yang, L.Q.; Jia, K.; Liang, S.L.; Liu, J.C.; Wang, X.X. Comparison of four machine learning methods for generating the GLASS
fractional vegetation cover product from MODIS data. Remote Sens. 2016, 8, 682. [CrossRef]

53. Gong, P.; Li, X.C.; Zhang, W. 40-Year (1978–2017) human settlement changes in China reflected by impervious surfaces from
satellite remote sensing. Sci. Bull. 2019, 64, 756–763. [CrossRef]

54. Zhang, X.; Liu, L.L.; Zhao, T.T.; Gao, Y.; Chen, X.D.; Mi, J. GISD30: Global 30m impervious-surface dynamic dataset from 1985 to
2020 using time-series Landsat imagery on the Google Earth Engine platform. Earth Syst. Sci. Data 2022, 14, 651–664. [CrossRef]

55. Amatulli, G.; Domisch, S.; Tuanmu, M.N.; Parmentier, B.; Ranipeta, A.; Malczyk, J.; Jetz, W. A suite of global, cross-scale
topographic variables for environmental and biodiversity modeling. Sci. Data 2018, 5, 180040. [CrossRef]

56. Liang, S.L.; Cheng, J.; Jia, K.; Jiang, B.; Liu, Q.; Xiao, Z.Q.; Yao, Y.J.; Yuan, W.P.; Zhang, X.T.; Zhao, X.; et al. The Global Land
Surface Satellite (GLASS) products suite. Bull. Am. Meteorol. Soc. 2021, 102, E323. [CrossRef]

57. Zhao, H.Z.; Ge, Q.H.; Ni, K. China Urban Construction Statistical Yearbook–2015: National Urban Population and Construction Land by
City; China Statistics Press: Beijing, China, 2015; pp. 52–85.

58. Hu, Z.J.; Wu, W.J.; Xin, Y.N. China Urban Construction Statistical Yearbook–2020: National Urban Population and Construction Land by
City; China Statistics Press: Beijing, China, 2021; pp. 48–83. [CrossRef]

59. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
60. U.S. Environmental Protection Agency. Reducing Urban Heat Islands: Compendium of Strategies. 2008. Available online:

https://www.epa.gov/heat-islands/heat-island-compendium (accessed on 20 October 2023).
61. Wang, Z.H. Reconceptualizing urban heat island: Beyond the urban-rural dichotomy. Sustain. Cities Soc. 2022, 77, 103581.

[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.jenvman.2020.110424
https://doi.org/10.1016/j.scs.2023.104933
https://doi.org/10.1016/j.jag.2023.103411
https://doi.org/10.1016/j.rse.2023.113650
https://doi.org/10.1016/j.rser.2022.112350
https://doi.org/10.5194/essd-16-387-2024
https://doi.org/10.1109/TGRS.2015.2463689
https://doi.org/10.3390/rs8080682
https://doi.org/10.1016/j.scib.2019.04.024
https://doi.org/10.5194/essd-14-651-2022
https://doi.org/10.1038/sdata.2018.40
https://doi.org/10.1175/BAMS-D-18-0341.1
https://doi.org/10.38721/y.cnki.ycjtj.2021.000077
https://doi.org/10.1023/A:1010933404324
https://www.epa.gov/heat-islands/heat-island-compendium
https://doi.org/10.1016/j.scs.2021.103581

	Introduction 
	Materials and Methods 
	Data Sources and Preprocessing 
	Definition of the SUHI Intensity on Each Grid Point in Urban Agglomerations 
	Identifying the SUHI and Non-SUHI Zones in Urban Agglomerations 
	Estimation of the SUHI Intensity on Each Grid Point in Urban Agglomerations 

	Results 
	The SUHI Spatial Pattern and Scale and the Land Surface Thermal Types 
	Estimation of the FVC and LST Backgrounds and the SUHI Intensity 
	Seasonal Variations of the SUHI Intensity in the YRDUA Region 
	Spatial Distribution and Scale of the RF-Estimated SUHI Intensities 
	Relative Importance of the RF-Model Input Features 

	Discussion 
	Potential Applications of the Quantitative Regional SUHIs in Urban Planning and Decision-Making 
	Advantages and Limitations of the Proposed Solution in Quantifying Regional SUHIs 

	Conclusions 
	References

