The Impact of Diurnal Variability of Sea Surface Temperature on Air–Sea Heat Flux Estimation over the Northwest Pacific Ocean
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Multi-Source SST
2.3. Heat Flux Calculation
3. Results
3.1. Comparison of SST DV
3.2. Diurnal Variation in the Instantaneous Flux over the NWPO
3.3. Spatial and Temporal Variation Characteristics
3.3.1. Spatial Characteristics
3.3.2. Seasonal Variation
4. Discussion
4.1. The Factors Influencing SST DV
4.2. Implications
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cronin, M.F.; Gentemann, C.L.; Edson, J.; Ueki, I.; Bourassa, M.; Brown, S.; Clayson, C.A.; Fairall, C.W.; Farrar, J.T.; Gille, S.T.; et al. Air-Sea Fluxes with a Focus on Heat and Momentum. Front. Mar. Sci. 2019, 6, 430. [Google Scholar] [CrossRef]
- Gentemann, C.L.; Clayson, C.A.; Brown, S.; Lee, T.; Parfitt, R.; Farrar, J.T.; Bourassa, M.; Minnett, P.J.; Seo, H.; Gille, S.T.; et al. FluxSat: Measuring the Ocean—Atmosphere Turbulent Exchange of Heat and Moisture from Space. Remote Sens. 2020, 12, 1796. [Google Scholar] [CrossRef]
- Kawai, Y.; Wada, A. Diurnal sea surface temperature variation and its impact on the atmosphere and ocean: A review. J. Oceanogr. 2007, 63, 721–744. [Google Scholar] [CrossRef]
- Sverdrup, H.U.; Johnson, M.W.; Fleming, R.H. The Oceans: Their Physics, Chemistry, and General Biology; Prentice-Hall: New York, NY, USA, 1942. [Google Scholar]
- Stommel, H.; Saunders, K.; Simmons, W.; Cooper, J. Observations of the diurnal thermocline. Deep Sea Res. 1969, 16, 269–284. [Google Scholar]
- Castro, S.L.; Wick, G.A.; Buck, J.J.H. Comparison of diurnal warming estimates from unpumped Argo data and SEVIRI satellite observations. Remote Sens. Environ. 2014, 140, 789–799. [Google Scholar] [CrossRef]
- Karagali, I.; Høyer, J.L. Characterisation and quantification of regional diurnal SST cycles from SEVIRI. Ocean Sci. 2014, 10, 745–758. [Google Scholar] [CrossRef]
- Stuart Menteth, A.C.; Robinson, I.S.; Challenor, P.G. A global study of diurnal warming using satellite-derived sea surface temperature. J. Geophys. Res. Ocean. 2003, 108, C5. [Google Scholar] [CrossRef]
- Tu, Q.; Pan, D.; Hao, Z.; Yan, Y. SST diurnal warming in the China seas and northwestern Pacific Ocean using MTSAT satellite observations. Acta Oceanol. Sin. 2016, 35, 12–18. [Google Scholar] [CrossRef]
- Yan, Y.; Zhang, L.; Song, X.; Wang, G.; Chen, C. Diurnal variation in surface latent heat flux and the effect of diurnal variability on the climatological latent heat flux over the tropical oceans. J. Phys. Oceanogr. 2021, 51, 3401–3415. [Google Scholar] [CrossRef]
- Webster, P.J.; Clayson, C.A.; Curry, J.A. Clouds, Radiation, and the Diurnal Cycle of Sea Surface Temperature in the Tropical Western Pacific. J. Clim. 1996, 9, 1712–1730. [Google Scholar] [CrossRef]
- Fairall, C.W.; Bradley, E.F.; Godfrey, J.S.; Wick, G.A.; Edson, J.B.; Young, G.S. Cool-skin and warm-layer effects on sea surface temperature. J. Geophys. Res. 1996, 101, 1295–1308. [Google Scholar] [CrossRef]
- Parsons, D.B.; Redelsperger, J.; Yoneyama, K. The evolution of the tropical western Pacific atmosphere-ocean system following the arrival of a dry intrusion. Q. J. R. Meteorol. Soc. 2000, 126, 517–548. [Google Scholar]
- Zeng, X.; Dickinson, R.E. Impact of diurnally-varying skin temperature on surface fluxes over the tropical Pacific. Geophys. Res. Lett. 1998, 25, 1411–1414. [Google Scholar] [CrossRef]
- Ward, B. Near-surface ocean temperature. J. Geophys. Res. Ocean. 2006, 111, C2. [Google Scholar] [CrossRef]
- Clayson, C.A.; Bogdanoff, A.S. The Effect of Diurnal Sea Surface Temperature Warming on Climatological Air-Sea Fluxes. J. Clim. 2013, 26, 2546–2556. [Google Scholar] [CrossRef]
- Yan, Y.; Song, X.; Wang, G.; Li, X. Tropical Cool-skin and Warm-layer Effects and their Impact on Surface Heat Fluxes. J. Phys. Oceanogr. 2024, 54, 45–62. [Google Scholar] [CrossRef]
- Moltmann, T.; Turton, J.; Zhang, H.; Nolan, G.; Gouldman, C.; Griesbauer, L.; Willis, Z.; Piniella, Á.M.; Barrell, S.; Andersson, E.; et al. A Global Ocean Observing System (GOOS), Delivered Through Enhanced Collaboration Across Regions, Communities, and New Technologies. Front. Mar. Sci. 2019, 6, 291. [Google Scholar] [CrossRef]
- Lin, J.; Wang, Y.; Pan, H.; Wei, Z.; Xu, T. Uncertainty of CYGNSS-Derived Heat Flux Variations at Diurnal to Seasonal Time Scales over the Tropical Oceans. Remote Sens. 2023, 15, 3161. [Google Scholar] [CrossRef]
- Soloviev, A.; Lukas, R. The Near-Surface Layer of the Ocean: Structure, Dynamics and Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Marullo, S.; Minnett, P.J.; Santoleri, R.; Tonani, M. The diurnal cycle of sea-surface temperature and estimation of the heat budget of the Mediterranean Sea. J. Geophys. Res. Ocean. 2016, 121, 8351–8367. [Google Scholar] [CrossRef]
- Wang, H.; Liu, D.; Zhang, W.; Li, J.; Wang, B. Characterizing the capability of mesoscale eddies to carry drifters in the northwest Pacific. J. Oceanol. Limnol. 2020, 38, 1711–1728. [Google Scholar] [CrossRef]
- Kurihara, Y.; Murakami, H.; Kachi, M. Sea surface temperature from the new Japanese geostationary meteorological Himawari-8 satellite. Geophys. Res. Lett. 2016, 43, 1234–1240. [Google Scholar] [CrossRef]
- Kurihara, Y.; Murakami, H.; Ogata, K.; Kachi, M. A quasi-physical sea surface temperature method for the split-window data from the Second-generation Global Imager (SGLI) onboard the Global Change Observation Mission-Climate (GCOM-C) satellite. Remote Sens. Environ. 2021, 257, 112347. [Google Scholar] [CrossRef]
- Shibata, A.; Imaoka, K.; Koike, T. AMSR/AMSR-E level 2 and 3 algorithm developments and data validation plans of NASDA. IEEE Trans. Geosci. Remote Sens. 2003, 41, 195–203. [Google Scholar] [CrossRef]
- Miyazawa, Y.; Varlamov, S.M.; Miyama, T.; Guo, X.; Hihara, T.; Kiyomatsu, K.; Kachi, M.; Kurihara, Y.; Murakami, H. Assimilation of high-resolution sea surface temperature data into an operational nowcast/forecast system around Japan using a multi-scale three-dimensional variational scheme. Ocean Dyn. 2017, 67, 713–728. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. ERA5 Hourly Data on Single Levels from 1940 to Present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). 2023. Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview (accessed on 15 December 2023).
- Cronin, M.F.; Weller, R.A.; Lampitt, R.S.; Send, U. Ocean reference stations. In Earth Observation; Elsevier: Amsterdam, The Netherlands, 2012; pp. 203–228. [Google Scholar]
- Fairall, C.W.; Bradley, E.F.; Hare, J.E.; Grachev, A.A.; Edson, J.B. Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Clim. 2003, 16, 571–591. [Google Scholar] [CrossRef]
- Hsu, C.W.; DeMott, C.A.; Branson, M.D.; Reeves Eyre, J.; Zeng, X. Ocean Surface Flux Algorithm Effects on Tropical Indo-Pacific Intraseasonal Precipitation. Geophys. Res. Lett. 2022, 49, e2021GL096968. [Google Scholar] [CrossRef] [PubMed]
- Brunke, M.A.; Fairall, C.W.; Zeng, X.; Eymard, L.; Curry, J.A. Which bulk aerodynamic algorithms are least problematic in computing ocean surface turbulent fluxes? J. Clim. 2003, 16, 619–635. [Google Scholar] [CrossRef]
- Edson, J.B.; Jampana, V.; Weller, R.A.; Bigorre, S.P.; Plueddemann, A.J.; Fairall, C.W.; Miller, S.D.; Mahrt, L.; Vickers, D.; Hersbach, H. On the Exchange of Momentum over the Open Ocean. J. Phys. Oceanogr. 2013, 43, 1589–1610. [Google Scholar] [CrossRef]
- Yan, Y.; Wang, G.; Wang, X.H.; Chen, C.; Ling, Z.; Zhang, L. Relationship between subsurface diurnal warming and wind speed. Deep. Sea Res. Part I Oceanogr. Res. Pap. 2023, 199, 104106. [Google Scholar] [CrossRef]
- Yang, Y.; Li, K.; Yu, W.; Zu, Y.; Liu, L. Modulation of observed sea surface temperature variation by the quasi-biweekly oscillation in the tropical western Pacific during boreal summer. Int. J. Climatol. 2022, 42, 3173–3189. [Google Scholar] [CrossRef]
- Ide, Y.; Yoshikawa, Y. Effects of diurnal cycle of surface heat flux on wind-driven flow. J. Oceanogr. 2016, 72, 263–280. [Google Scholar] [CrossRef]
- Yu, L. Global Air-Sea Fluxes of Heat, Fresh Water, and Momentum: Energy Budget Closure and Unanswered Questions. Annu. Rev. Mar. Sci. 2019, 11, 227–248. [Google Scholar] [CrossRef] [PubMed]
Domain | Location | Longitude (°E) | Latitude (°N) | Characteristics |
---|---|---|---|---|
BYS | the Bohai and the Yellow Sea | 117–127 | 35–41 | semi-enclosed sea with relatively shallow water |
JPS | Japan Sea | 127–140 | 35–43 | a marginal sea with a relatively narrow continental shelf and deep basin |
EOJ | East of Japan | 140–150 | 35–43 | influenced by the Kuroshio Extension |
ECS | East China Sea | 117–130 | 25–35 | encompasses a diverse range of coastal features, islands, ocean currents, and ecosystems |
SOJ | South of Japan | 130–140 | 25–35 | Influenced by the East Asian monsoon, typhoons, and Kuroshio Current |
SNWP | subtropical Northwestern Pacific | 125–150 | 17–25 | hot summers and warm winters |
Satellite | Sensor | Orbit | Bands | Spatial Resolution | Temporal Resolution |
---|---|---|---|---|---|
Himawari-8 | AHI | geostationary | infrared | 2 km | 10 min |
GCOM-C | SGLI | sun-synchronous | infrared | 250 m–1 km | twice per day |
Suomi NPP | VIIRS | sun-synchronous | infrared | 750 m | twice per day |
GCOM-W | AMSR2 | sun-synchronous | microwave | 25 km | twice per day |
GPM-Core | GMI | non-sun-synchronous | microwave | 25 km | twice per day |
Coriolis | Windsat | sun-synchronous | microwave | 25 km | twice per day |
Area | ||||||||
---|---|---|---|---|---|---|---|---|
Mean | Max | Mean | Max | Mean | Max | Mean | Max | |
BYS | 0.91 | 62.8 | 0.24 | 26.1 | 0.47 | 10.4 | 1.6 | 94.4 |
JPS | 1.02 | 56.6 | 0.33 | 27.7 | 0.42 | 9.9 | 1.77 | 87.8 |
ECS | 1.07 | 70.9 | 0.40 | 25.2 | 0.37 | 10.3 | 1.84 | 102.7 |
SOJ | 1.43 | 66.4 | 0.41 | 21.7 | 0.37 | 10.0 | 2.22 | 94.1 |
EOJ | 1.85 | 111.1 | 0.50 | 70.1 | 0.42 | 19.4 | 2.78 | 192.9 |
SNWP | 2.93 | 51.7 | 0.74 | 14.5 | 0.58 | 8.2 | 4.27 | 72.2 |
ALL | 1.86 | 61.8 | 0.52 | 25.4 | 0.46 | 10.3 | 2.83 | 93.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tu, Q.; Hao, Z.; Liu, D.; Tao, B.; Shi, L.; Yan, Y. The Impact of Diurnal Variability of Sea Surface Temperature on Air–Sea Heat Flux Estimation over the Northwest Pacific Ocean. Remote Sens. 2024, 16, 628. https://doi.org/10.3390/rs16040628
Tu Q, Hao Z, Liu D, Tao B, Shi L, Yan Y. The Impact of Diurnal Variability of Sea Surface Temperature on Air–Sea Heat Flux Estimation over the Northwest Pacific Ocean. Remote Sensing. 2024; 16(4):628. https://doi.org/10.3390/rs16040628
Chicago/Turabian StyleTu, Qianguang, Zengzhou Hao, Dong Liu, Bangyi Tao, Liangliang Shi, and Yunwei Yan. 2024. "The Impact of Diurnal Variability of Sea Surface Temperature on Air–Sea Heat Flux Estimation over the Northwest Pacific Ocean" Remote Sensing 16, no. 4: 628. https://doi.org/10.3390/rs16040628
APA StyleTu, Q., Hao, Z., Liu, D., Tao, B., Shi, L., & Yan, Y. (2024). The Impact of Diurnal Variability of Sea Surface Temperature on Air–Sea Heat Flux Estimation over the Northwest Pacific Ocean. Remote Sensing, 16(4), 628. https://doi.org/10.3390/rs16040628