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Abstract: Radar Automatic Target Recognition (RATR) based on high-resolution range profile (HRRP)
has received intensive attention in recent years. In practice, RATR usually needs not only to recog-
nize in-library samples but also to reject out-of-library samples. However, most rejection methods
lack a specific and accurate description of the underlying distribution of HRRP, which limits the
effectiveness of the rejection task. Therefore, this paper proposes a novel rejection method for HRRP,
named Deep Multi-modal Support Vector Data Description (DMMSVDD). On the one hand, it
forms a more compact rejection boundary with the Gaussian mixture model in consideration of the
high-dimensional and multi-modal structure of HRRP. On the other hand, it captures the global
temporal information and channel-dependent information with a dual attention module to gain
more discriminative structured features, which are optimized jointly with the rejection boundary. In
addition, a semi-supervised extension is proposed to refine the boundary with available out-of-library
samples. Experimental results based on measured data show that the proposed methods demonstrate
significant improvement in the HRRP rejection performance.

Keywords: high-resolution range profile; rejection; Gaussian mixture model; dual attention; semi-
supervised

1. Introduction

Nowadays, radar realizes all-weather observation without relying on ambient ra-
diation and is widely applied in remote sensing, such as ship detection and instance
segmentation [1,2] and target tracking [3–5]. Radar Automatic Target Recognition (RATR)
came into being to satisfy the growing demands of military surveillance, civil monitoring
and environmental assessments. RATR is usually implemented based on high-resolution
range profiles (HRRP) [6], synthetic aperture radar images [7–9], and inverse synthetic
aperture radar images [10]. HRRP is more accessible and reflects physical structure informa-
tion, such as the size of the target and the distribution of scattering points, which receives
extensive attention in RATR [6]. The construction of a database containing complete target
classes is the basis for RATR. However, it is incapable of guaranteeing the completeness of
the HRRP database due to the difficulty of obtaining HRRPs of non-cooperative or even
hostile targets in advance, like aircraft that mistakenly intrude and invade airspace. In
such a situation, a false alarm or missed alarm will emerge when the target to be identi-
fied comes from an unknown class. Therefore, rejecting these targets before recognition,
called out-of-library target rejection, is one of the most important yet difficult issues in the
practical application of the RATR system.

The rejection task has the following unique problem complexities: (1) missing out-of-
library samples are associated with unknown spatial distribution; and (2) the data structure
of various in-library samples is complicated. The aforementioned problems give rise to
several challenges in designing reasonable rejection models.
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Conventional rejection models, such as One-Class Support Vector Machine (OC-
SVM, [11]), Support Vector Data Description (SVDD, [12]), and Isolated Forest (IF, [13]),
have been applied in the field of RATR. These models have relatively simple shallow struc-
tures and demonstrate stable rejection performance. However, the conventional rejection
model can no longer accomplish the rejection task well due to the high-dimension and
multi-modality characteristics of HRRP.

Deep learning has shown tremendous capabilities in learning expressive represen-
tations of such complexly distributed datasets, so deep rejection methods have been ad-
vancing to further satisfy practical requirements. Initially, well-trained neural networks are
only used to extract features from high-dimensional samples, and then these features are
fed into conventional rejection models [14,15]. Such hybrid methods exploit the powerful
nonlinear mapping capability of deep networks and reduce the information loss in feature
extraction. Nevertheless, they mostly ignore the unique and multi-modal distribution of
HRRP. The optimization criteria for feature extraction and rejection boundary learning are
usually inconsistent in two-phase procedures, resulting in extracting sub-optimal features
for rejection [16]. Hence, many studies explore methods that can unify feature extraction
with rejection models. The mainstream is divided into three categories, i.e., deep rejection
methods based on reconstruction, self-supervised learning, and one-class classification.
The first category has been proposed in the literature [17–20], which is inspired by the
Auto-encoder (AE) and the Generative Adversarial Network. Such methods assume that
in-library samples can be reconstructed well, so samples with larger reconstruction errors
are rejected as out-of-library samples. Therefore, they usually regard reconstruction error as
the rejection criterion and train a well-behaved generator of in-library samples. However,
these methods are often irrespective of common features between in-library samples and
out-of-library samples that benefit the reconstruction of out-of-library samples. Thus, they
may be sub-optimal [16]. And they are weak in the utilization of multi-modal information
of HRRP. Recently, self-supervised learning has been proven to be effective in feature extrac-
tion, and deep methods based on self-supervised learning have emerged endlessly [21–23].
Nevertheless, similar to the first category, most of them leave the latent overlap and multi-
modality out of consideration. In addition, they usually have requirements for data types
and are more suitable for image data [16]. Deep rejection methods based on one-class
classification achieve an integrated design of feature extraction and rejection, such as Deep
Support Vector Data Description (DSVDD, [24]). The core idea is similar to the traditional
SVDD, with the difference that neural networks instead of kernel functions are leveraged
to map in-library samples into a hyper-sphere in the feature space. And it outperforms
conventional rejection methods and deep hybrid rejection methods. However, it assumes
that all of the in-library samples follow the same distribution, which is unsuitable for de-
scribing the multi-modal structure of HRRP [25]. Therefore, Ghafoori et al. [25] embedded
in-library samples into multiple hyper-spheres, but this still cannot effectively portray the
anisotropic structure of HRRP and has limited performance on rejection.

To address the above problems, this paper proposes a novel rejection method for
HRRP, named Deep Multi-modal Support Vector Data Description (DMMSVDD). It mainly
contains a data preprocessor, a feature extractor with a dual attention module, and a
rejector with a more compact rejection boundary. The data preprocessor aims to address
the sensitivity problems specific to HRRP. The feature extractor with the dual attention
module obtains distinguishing features with global temporal information and channel-
dependent information. Based on the high-dimensional and multi-modal structure of
HRRP, the rejector is competent to adaptively fit the complicated underlying distribution
of in-library samples with an adjustable Gaussian mixture model (GMM). In the geometric
sense, multiple closed hyper-ellipsoids are substituted for hyper-spheres in the existing
SVDD-like methods design, which is conducive to constructing a tighter and more explicit
rejection boundary. In the proposed method, the feature extraction and rejection boundary
learning are jointly optimized under the unified distance-based rejection criterion. It can
achieve a high matching between features and the rejection boundary and provide the
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foundation for improving rejection performance. Moreover, to deal with the situation in
which limited out-of-library samples are available, a semi-supervised method is extended
to tighten the rejection boundary with those out-of-library samples.

The contributions of this paper are summarized as follows:

• An efficient rejection method for HRRP is proposed, which jointly optimizes feature
extraction and rejection boundary learning under a unified distance-based criterion;

• The dual attention module in the feature extractor is capable of capturing the global
and local structure information of HRRP, which further strengthens the feature dis-
crimination between the in-library and out-of-library samples.

• Considering the high-dimensional and multi-modal structure of HRRP, a more com-
pact and explicit rejection boundary is formed with an adjustable GMM;

• A semi-supervised method is extended to take advantage of available out-of-library
samples to assist rejection boundary learning;

• Experiments demonstrate that the proposed methods can significantly promote the
rejection performance on the measured HRRP dataset.

The rest of this paper is organized as follows: Section 2 describes the major related
rejection methods; Section 3 provides the framework of the proposed methods; the experi-
mental results are presented and analyzed in Section 4; and finally, Section 5 summarizes
this paper.

2. Related Work

For the sake of notational uniformity, xn ∈ X(n = 1, 2, · · · , N) with X ⊂ Rd denotes
an in-library sample, where N denotes the total number of in-library samples. This section
provides a brief introduction to several typical rejection methods.

2.1. Support Vector Data Description

Inspired by the support vector classifier, Tax and Duin propose SVDD [12], in which
in-library samples are mapped into a hyper-sphere by a kernel function in the feature
space, whereas the projected out-of-library samples are located outside the hyper-sphere.
The compactness of the hyper-sphere is guaranteed by minimizing the volume of the
hyper-sphere, and the cost function of SVDD is as follows:

min
R,c,ξ

R2 + 1
vN

N
∑

n=1
ξn

s.t. ∥φ(xn; o)− c∥2 ≤ R2 + ξn
ξn ≥ 0, n = 1, 2, · · · N

(1)

where R and c are the radius and center of the hyper-sphere in the feature space, respectively,
v is a penalty factor to balance the sample classification error with the complexity of the
algorithm, ξn is a relaxation factor, and φ(·; o) is a kernel function with a parameter o.

2.2. Deep Support Vector Data Description

DSVDD, proposed by Ruff et al. [24], employs neural networks to extract features in-
stead of kernel functions in SVDD. The powerful expressiveness of neural networks breaks
through the limitations of traditional kernel mapping and improves the differentiation
between in-library and out-of-library samples in low-dimensional space. Similar to SVDD,
it minimizes the volume of the hyper-sphere in the feature space so that the features of the
in-library samples mapped by the neural network are contained inside the hyper-sphere as
much as possible, while the features of the out-of-library samples are as far away from the
hyper-sphere as possible, and the loss function of Deep SVDD is as follows.

min
R,W

R2 + 1
vN

N
∑

n=1
max

{
0, ∥ϕ(xn; W)− c∥2 − R2

}
+ λ

2

L
∑

l=1

∥∥∥Wl
∥∥∥2

F
(2)
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where ϕ(·; W) is a neural network with parameters W, λ is a regularization parameter, L is
the number of network layers, and Wl is l-th layer network parameters.

The training samples for the rejection task are mostly in-library samples, so this
problem is ordinarily regarded as a one-class classification. Consequently, Ruff et al. [24]
further simplify the above model by directly minimizing the mean distance between the
features of training samples and the center, which is equivalent to minimizing the volume
of the hyper-sphere.

min
W

1
N

N
∑

n=1
∥ϕ(xn; W)− c∥2 + λ

2

L
∑

l=1

∥∥∥Wl
∥∥∥2

F
(3)

2.3. Deep Multi-Sphere Support Vector Data Description

Deep Multi-sphere Support Vector Data Description (DMSVDD) proposed by Ghafoori
et al. [25] further improves the rejection performance by mapping in-library samples from
different distributions to multiple hyper-spheres in the feature space.

min
W,R

1
K

K
∑

k=1
R2

k +
1

vN

N
∑

n=1
max

(
0, ∥ϕ(xn; W)− ci∥2 − R2

i

)
+ λ

2

L
∑

l=1

∥∥∥Wl
∥∥∥2

F
(4)

where K denotes the number of hyper-spheres in the feature space, and Rk and ck denote
the radius and center of the k-th hyper-sphere, respectively. i = argmink∥ϕ(xn; W)− ck∥2.

3. The Proposed Method

Considering the complex distribution of radar HRRP with high-dimension and multi-
modality structure characteristics, this paper proposes a specific HRRP rejection method.
As shown in Figure 1, the framework of the proposed method is mainly divided into a data
preprocessor, a feature extractor, and a rejector. Firstly, data preprocessing alleviates the
sensitivity problems of HRRP. Secondly, the convolution module and the dual attention
module jointly realize the feature extraction of HRRP. The convolution module aims to
extract the local spatial features of HRRP envelopes, and the dual attention module further
obtains the global temporal and channel-dependent information ignored by the convolution
module. Finally, the rejector fits the complex distribution of various in-library samples with
the GMM. In-library samples are projected into multiple hyper-ellipsoids in the feature
space, and out-of-library samples fall outside hyper-ellipsoids; therefore, a more delicate
and closed rejection boundary is formed.

3.1. Data Preprocessor

Taking two HRRP samples as an example, the pre-processing procedure is shown in
Figure 2. In particular, it mainly includes normalization and alignment, which alleviate the
amplitude-scale and time-shift sensitivity of HRRP, respectively.

In practice, the received HRRP data contain amplitude information and phase infor-
mation of targets, but the phase is greatly affected by the range variation. Hence, the phase
of the target echo is usually ignored, and only the amplitude is preserved. Unfortunately,
the amplitude is influenced by the radar antenna gain, target distance, target size, and
other factors [26]. In order to alleviate the amplitude-scale sensitivity of HRRP, the L-2
normalization is usually used to erase the amplitude difference among samples and only
retain their shape information. For an HRRP {x(r), r = 1, 2, · · · , R}, where x(r) denotes
the echo signal amplitude in the r-th range cell and R denotes the number of range cells, its
normalized result can be expressed as:

x’(r) =
x(r)√
R
∑

u=1
x(u)

, r = 1, 2, · · · , R (5)
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An HRRP is usually obtained by sliding the range window and intercepting part of
the echo containing the target signal with a certain margin. As a result, the support area
of the moving target may produce different degrees of shifting within the window. The
center of gravity alignment is utilized to impair the impact of shifting support area on
rejection [26]. Specifically, circular translation is operated to move the center of HRRPs to
the center of gravity, i.e.,

G = ∑R
r=1 r

∣∣∣x’(r)
∣∣∣2/∑R

r=1

∣∣∣x’(r)
∣∣∣2 (6)

3.2. Feature Extractor

The feature extraction network is divided into two convolution modules and a dual
attention module. The convolution module can well reflect the local spatial information
of targets [27]. A convolution module consists of several blocks, and one block includes a
convolution layer, a batch-norm layer, a Leaky ReLU activation layer, and a pooling layer.

However, Ristea N C et al. [23] showed that stacked convolution layers aggregate
low-level local features into high-level semantic features without comprehending the global
arrangement. Specifically, given features from different channels, the convolution operation
ignores their inter-dependencies and directly concatenates them. Given features from one
channel, the convolution operation cannot acquire long-range dependency among all range
cells of HRRP within the limitation of the local receptive field size. Attention modules have
been widely applied in radar to solve the above-mentioned problems [28–31]. In this paper,
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the dual attention module [32] is added between convolution modules to further grasp the
long-range and channel dependencies, respectively.

As illustrated in Figure 3, a dual attention module consists of a position attention
module and a channel attention module.
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The channel attention module adaptively recalibrates channel-wise features by a
self-attention mechanism. Specifically, given a local feature A ∈ RC×L, where C denotes
convolution channels and L denotes the feature dimensions, inter-dependencies among
channels, called the channel attention map S, are calculated by applying a softmax layer to
the matrix multiplication result of the transpose of A and itself, i.e.,

sij =
exp

(
ai·aj

)
∑C

c=1 exp
(
ac·aj

) (7)

where sij denotes the impact of the i-th channel on the j-th channel, and ai denotes the
feature of the i-th channel in the local feature A. Then, the feature A and the channel
attention map S are matrix multiplied with a scale factor α, and finally, the result is element-
wise added with the local feature A to obtain the feature map E1, i.e.,

E1
j = α·

C

∑
i=1

(
sijai

)
+ aj (8)

where E1
j denotes the feature map of the j-th channel obtained by the channel attention module.

Differently, the position attention module first feeds A into three convolutional layers
to get three new feature maps B ∈ RC×L, C ∈ RC×L, and D ∈ RC×L. Then, the position
attention map P ∈ RL×L is computed by the feature map B and C, i.e.,

pij =
exp

(
bi·cj

)
∑L

l=1 exp
(
bl ·cj

) (9)

where pij denotes the impact of the i-th dimensional feature on the j-th dimensional
feature, bi denotes the i-th dimensional feature of the feature map B, and cj denotes the j-th
dimensional feature of the feature map C. The feature map E2 is calculated as

E2
j = β·

L

∑
i=1

(
pijdi

)
+ aj (10)
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where E2
j denotes the feature map of the j-th dimension obtained by the position attention

module, and di denotes the i-th dimensional feature of the feature map D.
The final feature map E is a fusion of the E1 from the channel attention module and

E2 from the position attention module. The dual attention module enables the support
area of HRRP with plentiful target information to gain more attention and strengthens the
feature discrimination. Moreover, the dynamic capture induces the affection of the shifting
support area within HRRP on the rejection task.

3.3. Rejector

The key to rejecting out-of-library samples is to form an accurate distribution of in-
library samples. The study [33] manifests that each range cell of HRRP is non-Gaussian and
statistically correlated with others in high-dimensional space, which results in anisotropy
and multi-modality characteristics of various in-library samples. Hence, it is unreasonable
to curtly push them to obey one or several standardized Gaussian distributions. It is known
that the GMM is competent at depicting the underlying distribution with the appropri-
ate number of Gaussian components selected [34]. As shown in Figure 4, the left figure
briefly depicts the probability distribution of HRRP, and the GMM with three components
describes the distribution of in-library samples more accurately. In the geometric sense,
the GMM fitting the in-library sample distribution means multiple closed hyper-ellipsoids
wrapping in-library samples inside while excluding out-of-library samples outside. Com-
pared with the other SVDD-like methods, the proposed method can better adapt to the
non-uniformity and discontinuity of the in-library sample distribution. Note that a sample
is considered to affect only one Gaussian component for efficiency. As for details of the
structure selection and parameter estimation of the GMM, please refer to Section 3.5.
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3.4. Objective Function

As mentioned above, we hope that the GMM can fit the distribution of in-library
samples as closely as possible, which is interpreted in geometric terms to push the in-
library samples into their nearest hyper-ellipsoids in the feature space as tightly as possible,
so that out-of-library samples that deviate from this distribution are excluded from hyper-
ellipsoids. Consequently, the goal of modeling the distributions turns to minimize the
volume of every hyper-ellipsoid. Thus, the objective function is defined as:

min
θ,µk ,Σk ,K

1
N

N
∑

n=1
min

k=1,2,··· ,K

{
(ϕ(xn;θ)− µk)

TΣk
−1(ϕ(xn;θ)− µk)

}
+ λ

2

P
∑

p=1
∥θp∥2

F (11)

where ϕ(· ;θ) denotes the feature extractor with parameters θ, K denotes the number
of Gaussian components, µk and Σk denote the mean and covariance matrix of the k-th
Gaussian component, respectively, λ denotes a non-negative hyperparameter that controls
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the trade-off between compact loss and regularization, P denotes the number of layers of the
feature extractor, and θp denotes the p-th layer network parameters. The first term in (11)
minimizes the volume of hyper-ellipsoids, and the second term ensures the generalization
performance and lessens the risk of over-fitting.

The curse of rejection is that there is no prior knowledge about out-of-library samples.
The rejection boundary only relies on limited in-library samples and could be inexplicit,
which leads to insufficient rejection performance. To tackle the issue, it is urgent to exploit
available out-of-library samples as much as possible. In recent years, semi-supervised
rejection methods with outlier exposure [35–37] come into being. These methods attempt
to regard out-of-library samples as negative samples to adjust the rejection boundary and
obtain performance gains.

Based on DMMSVDD, we designed a semi-supervised method called Deep Multi-
modal Semi-supervised Anomaly Detection (DMMSAD) for the HRRP rejection task. It
makes use of the out-of-library samples to aid in learning a more explicit rejection boundary.
The new objective function is defined as:

min
θ,µk ,Σk ,K

1
N+M

N
∑

n=1
min

k=1,··· ,K

{
(ϕ(xn;θ)− µk)

TΣk
−1(ϕ(xn;θ)− µk)

}
+ η

N+M

M
∑

m=1

[
min

s=1,··· ,K

{(
ϕ
(~

xm;θ
)
− µs

)T
Σs

−1
(

ϕ
(~

xm;θ
)
− µs

)}]−1
+ λ

2

P
∑

p=1
∥θp∥2

F

(12)

where
~
xm denotes an out-of-library sample, M denotes the total number of out-of-library

samples, and η denotes a non-negative hyperparameter that balances the effects of in-library
and out-of-library samples on the boundary optimization. Compared with (11), the added
term in (12) constrains out-of-library samples to be excluded from their nearest hyper-
ellipsoids and further guarantees the compactness and clarity of the rejection boundary, as
shown in Figure 5.
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3.5. Training

The training procedure is explained in this section, including initializing and updating
parameters.

3.5.1. Initializing

The initialization of the feature extractor parameters and the GMM parameters are
described below.

• Initialization of feature extractor

The proposed method uses in-library samples for initializing, and the optimization
may get stuck in local optima due to the lack of constraints on the distribution of out-of-
library samples [38]. To improve the convergence, the network parameters are initialized
with the AE, for which the structure is shown in Figure 6.
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Assuming that fe(·) : X → Z is the encoder and fd(·) : Z → X is the decoder, both
form an AE, where the encoder structure is consistent with the feature extractor structure.

Given a sample xn ∈ X, its reconstructed sample
^
xn is obtained by the AE, i.e.,

^
xn = fd( fe(xn;θe);θd) (13)

where θe and θd denote the parameters of the encoder and decoder, respectively. During
the training, the above AE is optimized using the mean square error as the loss function, i.e.,

min
θe ,θd

1
N

N
∑

n=1

∥∥∥∥xn −
^
xn

∥∥∥∥2

2
(14)

The training ends when the loss of AE converges. Then, the encoder parameters
initialize the feature extractor parameters.

• Initialization of GMM

The parameters of GMM contain the number of Gaussian components K, the corre-
sponding mean µk, and the covariance matrix Σk of each Gaussian component. The number
of Gaussian components is selected empirically, and the mean and covariance matrix are
initialized by K-means clustering [39].

3.5.2. Updating

Considering the different scales of the network parameters θ, mean µk and covariance
matrix Σk, it is difficult to update them directly using SGD [25], so we alternatively optimize
Equation (11).

Step 1: Given the network parameters, the parameters of the GMM are optimized.
Firstly, the number of Gaussian components of the GMM is selected. When the compo-
nent number is too large, the redundant components could describe superfluous noise
information and decrease the generalization performance. While the component number
is too small, the GMM is incapable of delicately portraying the multi-modal distribution.
Therefore, in order to select a fitted model structure, we adopt the ISODATA algorithm [40]
to adaptively adjust the number of Gaussian components according to Equation (15).

K = ∑K
k=1 1{nk>=ν·max{n1,n2,··· ,nK}} (15)

where nk is the sample number corresponding to the k-th Gaussian components, and
ν controls a fraction of hyper-ellipsoids to be abandoned. Secondly, the mean µk and
covariance matrix Σk are estimated using Gaussian mixture clustering [41].

Step 2: Parameters of the GMM are fixed, Equation (11) is optimized using the Adam
optimizer [42], and the backpropagation algorithm updates the network parameters.
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3.6. Theoretical Analysis

Essentially, parameter optimization is meant to maximize the log-likelihood of all
samples in the Expectation-Maximization framework [43], regarding the GMM as latent
variables. To be specific, the objective function is to maximize the log-likelihood of all
samples, i.e.,

max
N
∑

n=1
log p(xn;θ) (16)

In the GMM, the objective function can be further expressed as

max
N
∑

n=1

K
∑

k=1
p(µk, Σk; xn,θ)· log p(xn,µk, Σk;θ) (17)

E-step: Estimate the posterior probability p(µk, Σk; xn,θ). Given the parameters of the
GMM, we apply a hard shrinkage operation on the posterior probability, i.e.,

p(µk, Σk; xn,θ) = 1k=i (18)

where i = argmin
k

{(ϕ(xn;θ)− µk)
T

Σk
−1(ϕ(xn;θ)− µk)}.

M-step: Maximize the log-likelihood. Under the assumption of a uniform prior over
Gaussian components, we have

p(xn,µk, Σk;θ) = p(xn;µk, Σk,θ)·p(µk, Σk;θ)
= 1

K ·
1

(2π)
d
2 |Σk |

1
2
· exp

(
− 1

2 (ϕ(xn;θ)− µk)
TΣ−1

k (ϕ(xn;θ)− µk)
)

(19)

Substituting Equations (18) and (19) into (17) and ignoring the constant term, the
objective function can be expressed as

min
N
∑

n=1

K
∑

k=1
1k=i

[
(ϕ(xn;θ)− µk)

TΣk
−1(ϕ(xn;θ)− µk)

]
(20)

which is consistent with (11).

3.7. Rejection Criterion

In theory, in-library sample distribution fits closely, and the samples that deviate
from the distribution are the out-of-library samples. Geometrically, the in-library samples
are compactly wrapped inside hyper-ellipsoids in the feature space, while out-of-library
samples fall outside. Therefore, the location of the test sample in the feature space can
determine its category according to (21).

C(x) =
{

in-library samples, dist(x) < distthreshold
out-of-library samples, otherwise

(21)

where dist(x) = min
k=1,2,··· ,K

{
(ϕ(x; θ)− µk)

TΣk
−1(ϕ(x; θ)− µk)

}
, and distthreshold denotes

the distance threshold, which can be set according to the false alarm probability designed
by the recognition system.

4. Results

In this section, we verify the rejection performance of proposed methods on the
measured HRRP dataset. First, we briefly describe the details of the dataset. Then, im-
plementation details are presented to ensure the reproduction of experiments. Next, we
provide the definition and meaning of evaluation metrics. Finally, four experiments are
conducted to exhibit the superior rejection performance of the proposed methods.
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4.1. Dataset

The experimental radar transmits linear frequency modulation signals with a signal
bandwidth of 400 MHz. The collected dataset consists of measured HRRPs of 10 types of
aircraft targets. The training set contains 6000 HRRPs for every type, and the test set also
contains 6000 HRRPs for every type. In order to verify the generalization performance of
the method, the pitch angles of targets in the test set are slightly different from those in the
training set.

4.2. Implementation Details

In this section, the performance of the proposed method is compared with conventional
rejection methods and newly developed deep rejection methods. Traditional methods,
including one-class SVM (OCSVM), isolated forest (IF), and kernel density estimation
(KDE), and deep methods such as AE [44], VAE [45], MPN [46], HRN [47], NeuTraLAD [48],
DSVDD, and DMSVDD, all use pre-processed HRRPs as inputs. The main structure and
parameter settings of the feature extractor and decoder in the AE are shown in Table 1,
and the encoder in the AE is consistent with the feature extractor. The initial number of
Gaussian components is set to 10, and the hyperparameters η, λ, and v are set to 0.1, 10−5,
and 0.1, respectively. The learning rate of the Adam optimizer is set to 10−5. To be fair,
we use the same convolution modules and deconvolution modules in other convolutional
deep rejection methods.

Table 1. Main structure and parameter settings of our method.

Module Layer Output Size Normalization/Activation

Feature
Extractor

Convolution
Module 1

Conv1D 8 × 256 BN/Leaky ReLU

Max Pooling 8 × 128 -
Conv1D 16 × 128 BN/Leaky ReLU

Max Pooling 16 × 64 -

Dual Attention
Module

Channel Attention 16 × 64 -
Position Attention 16 × 64 -

Convolution
Module 2

Conv1D 8 × 64 BN/Leaky ReLU
Max Pooling 8 × 32 -

Flattening 1 × 256 -
Conv1D 1 × 32 -

Decoder

Deconvolution
Module 1

Reshape 2 × 16 -
Upsample 2 × 32 -
Deconv1D 8 × 32 BN/Leaky ReLU
Upsample 8 × 64 -
Deconv1D 16 × 64 BN/Leaky ReLU
Upsample 16 × 128 -

Dual Attention
Module

Channel Attention 16 × 128 -
Position Attention 16 × 128 -

Deconvolution
Module 2

Deconv1D 8 × 128 BN/Leaky ReLU
Upsample 8 × 256 -
Deconv1D 1 × 256 BN/Leaky ReLU
Sigmoid 1 × 256 -
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4.3. Evaluation Metrics

In order to compare the rejection performance of different methods, we use the Re-
ceiver Operating Characteristics (ROC) curve and Area Under the Curve (AUC) for evalu-
ation [24]. The ROC curve is obtained by plotting the true positive rate (TPR) versus the
false positive rate (FPR), and they are defined as follows:

TPR = TP
TP+FN

FPR = FP
FP+TN

(22)

where TP denotes the total number of in-library samples being identified correctly in the
test set, FN denotes the total number of in-library samples being misjudged, FP denotes the
total number of out-of-library samples being misjudged, and TN denotes the total number
of out-of-library samples being identified correctly. Obviously, the closer the ROC curve is
to the upper left region, the larger the AUC and the better the rejection performance. In
addition, following the previous works [48], we also use the F1-score as the evaluation
indicator, which is calculated according to Equation (23), and the larger the F1-score, the
better the rejection performance.

Precision = TP
TP+FP

Recall = TP
TP+FN

F1 = 2·Precision·Recall
Precision+Recall

(23)

4.4. Experiment with All Training Samples

In this section, we study how the methods deal with the HRRP rejection task. We
randomly select 6 classes from 10 classes as in-library, and the remaining classes are
treated as out-of-library. The above operations are repeated 4 times, corresponding to four
experimental settings, and each experiment is repeated 10 times. Figure 7 shows the ROC
curves of different methods, and Table 2 gives the corresponding AUC and F1-score.
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Table 2. AUC and F1-score of different methods under different experiment settings, with the best 
results bolded and the second-best underlined. 

Method 
AUC/F1-Score 

Setting I Setting II Setting III Setting IV Average 
OCSVM 50.80/41.07 83.98/73.52 59.03/46.38 61.88/50.46 63.92/52.86 

IF 52.62/43.31 80.58/63.59 54.91/45.22 51.82/42.66 59.98/48.70 
KDE 47.06/38.10 81.88/69.66 53.91/41.40 55.67/45.38 59.63/48.64 
AE 52.06/42.25 64.55/53.19 54.56/43.93 68.02/54.93 59.80/48.58 

VAE 48.30/39.09 67.62/56.70 48.28/38.95 48.40/37.76 53.15/43.13 
MPN 64.15/53.23 78.64/67.01 59.58/47.64 70.16/57.05 68.13/56.23 
HRN 56.55/46.09 68.87/57.64 54.60/44.64 59.43/49.13 59.86/49.38 

NeuTraLAD 62.96/51.18 81.55/68.28 56.25/45.45 65.60/53.39 66.59/54.58 

Figure 7. ROC curves of different methods under different experiment settings. (a) Experimental
setting I; (b) experimental setting II; (c) experimental setting III; (d) experimental setting IV.
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Table 2. AUC and F1-score of different methods under different experiment settings, with the best
results bolded and the second-best underlined.

Method
AUC/F1-Score

Setting I Setting II Setting III Setting IV Average

OCSVM 50.80/41.07 83.98/73.52 59.03/46.38 61.88/50.46 63.92/52.86
IF 52.62/43.31 80.58/63.59 54.91/45.22 51.82/42.66 59.98/48.70

KDE 47.06/38.10 81.88/69.66 53.91/41.40 55.67/45.38 59.63/48.64
AE 52.06/42.25 64.55/53.19 54.56/43.93 68.02/54.93 59.80/48.58

VAE 48.30/39.09 67.62/56.70 48.28/38.95 48.40/37.76 53.15/43.13
MPN 64.15/53.23 78.64/67.01 59.58/47.64 70.16/57.05 68.13/56.23
HRN 56.55/46.09 68.87/57.64 54.60/44.64 59.43/49.13 59.86/49.38

NeuTraLAD 62.96/51.18 81.55/68.28 56.25/45.45 65.60/53.39 66.59/54.58
DSVDD 62.82/51.08 82.07/69.46 67.32/55.10 66.69/54.76 69.73/57.60

DMSVDD 66.07/53.98 86.77/74.81 67.79/55.63 67.01/55.23 71.91/59.91
DMMSVDD

(ours) 74.77/62.46 90.64/79.57 80.79/68.25 69.04/56.19 78.81/66.61

DMMSAD
(ours) 75.41/62.39 91.16/81.09 81.01/68.50 76.03/64.00 80.90/68.99

We can draw the following conclusions from the experiment results in Figure 7 and
Table 2. Firstly, the rejection performance under the four settings is different. This means
that the performance is associated with the classes of out-of-library samples, and some
classes are difficult to reject. Secondly, the rejection performance of deep rejection methods
is generally better than that of traditional methods. Limited by the shallow structure,
features extracted by traditional methods, such as OCSVM, IF, and KDE, cannot effectively
distinguish multi-class in-library samples and out-of-library samples. In contrast, deep
rejection methods use neural networks to nonlinearly project high-dimensional samples to
the feature space, where in-library samples are well separated from out-library samples.
Finally, the results also illustrate the superiority of the proposed methods in most situations.
As shown in Figure 7, the ROC curves of the proposed methods are closer to the upper left
region, corresponding to larger AUC and F1-score in Table 2. In the HRRP rejection task,
in-library samples are usually multi-class, which makes the multi-modal characteristic more
prominent. MPN and NeuTraLAD aim to learn latent features of the in-library samples
by data reconstruction or self-supervised learning, and HRN addresses the output bias
to in-library samples with a gradient penalization. However, it weakens performance
by neglecting the influence of multi-modal information on features. The reason for the
decreasing performance of DSVDD and DMSVDD is that they restrict the in-library samples
to obey the Gaussian distribution with zero mean and unit variance, which is obviously
inconsistent with the multi-modality characteristic of in-library samples. The GMM in
our methods fits closely to the complex distribution of multi-class in-library samples
and tightens the rejection boundary. The dual attention module in the feature extractor
optimizes the integration of convolutional features so that the support area of HRRP
attracts more attention, which reflects the abundant physical structure information of
the targets. Meanwhile, the dual attention module automatically focuses on the shifting
target support area within HRRP and weakens the influence of the time-shift sensitivity
on the performance to some extent. Furthermore, available out-of-library samples assist
the optimization to a more explicit boundary, and the rejection of unknown out-of-library
samples is more effective.

4.5. Experiment with Different Training Sample Sizes

Considering the difficulty of acquiring HRRPs in practice, the rejection performance of
DMMSVDD is evaluated on several small sample sets without out-of-library samples. Four
training sets are constituted from the aforementioned training set by uniform sampling, and
the number of samples of each class target is 6000, 3000, 1500, and 750. For each training
set, five classes are randomly selected as in-library targets, and the remaining classes are
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treated as out-of-library targets. The test set is kept constant. Each experiment is repeated
10 times, and Table 3 shows the AUC and F1-score of each method with different training
sample sizes.

Table 3. AUC and F1-score of different methods with different training sample sizes, with the best
results bolded and the second-best underlined.

Method
Training Sample Sizes (AUC/F1-Score)

3750 7500 15,000 30,000

OCSVM 79.54/73.93 79.59/73.76 79.63/74.01 79.67/77.46
IF 75.91/71.32 76.07/71.41 76.15/71.45 76.18/71.54

KDE 75.50/71.72 75.79/71.98 75.80/72.01 75.83/73.76
AE 73.93/67.96 77.46/70.44 78.19/70.79 79.01/70.54

VAE 64.83/61.54 64.91/61.57 64.95/61.62 65.13/61.85
MPN 68.75/63.84 73.26/66.83 78.40/71.49 78.77/71.89
HRN 68.12/62.88 71.09/65.41 71.44/66.32 72.19/66.47

NeuTraLAD 78.26/71.14 78.49/71.58 79.01/71.76 79.26/71.93
DSVDD 78.00/71.54 78.19/71.68 78.85/72.09 81.25/74.16

DMSVDD 78.85/71.84 79.86/72.79 80.27/73.09 83.87/73.77
DMMSVDD (ours) 83.06/76.06 84.97/78.08 86.49/79.99 87.70/79.88

Traditional rejection methods work stably yet poorly, and the AUC of OCSVM, IF, and
KDE remains at 79%, 76%, and 75%, respectively. Although their shallow structure does not
require too many training samples to maintain performance, it limits the feature extraction
ability of high-dimensional HRRP. As the training sample size decreases, the performance of
most deep rejection methods weakens, but the proposed method still achieves remarkable
performance. When the number of training samples drops from 30,000 to 3750, the AUC of
AE, MPN, and DMSVDD declines to 73%, 68%, and 78%, respectively, whereas the AUC of
DMMSVDD remains above 83%, which is the highest among all rejection methods. This is
because the dual attention module grasps more comprehensive information and enhances
feature discrimination by dynamically focusing on the HRRP support area. Moreover, the
GMM characterizes the anisotropic and multi-modal structure of HRRP, which is beneficial
to a more compact and delicate rejection boundary. In summary, the proposed method can
cope with the HRRP rejection task in the case of a limited number of samples.

5. Discussion

In this section, we analyze the effectiveness of the proposed method by ablation study
and visualization.

5.1. Ablation Study

The effectiveness of different components in the proposed method is evaluated in this
section. The experimental setting is the same as in Section 4.4, and the results are shown in
Table 4. The performance comparison between DMMSVDD and DMMSVDD-GMM verifies
the significance of the rejection boundary formed with the GMM. DMSVDD-GMM eases
restrictions of DMSVDD on the mean and covariance of the spatial distribution, which
means the in-library samples are more compactly wrapped with multiple hyper-ellipsoids,
then the rejection boundary tightens up. It significantly promotes the rejection performance,
and the AUC increases from 66.07% to 73.77%. To quantify the effectiveness of the dual
attention module, we add the channel attention module and the position attention module
stage by stage to DMSVDD-GMM. Compared with DMSVDD-GMM, DMSVDD-GMMCA
adopts the channel attention module, taking the dependency of different channel features
into account. DMMSVDD further employs the position attention module, which obtains
and utilizes the global temporal information among range cells within HRRP. Both attention
modules enlarge the feature distinction between in-library and out-of-library samples and
improve the performance. Further, the results of DMMSVDD and DMMSAD illustrate
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the rational leverage of out-of-library samples is indeed a simple but effective way for
performance enhancement. The rejection boundary is more explicit with some out-of-library
samples; therefore, the AUC of DMMSAD increases to 75.41%.

Table 4. Impact of different modules on AUC, with the best results bolded and the second-best
underlined.

Method GMM Channel
Attention

Position
Attention

Out-of-Library
Samples AUC

DMSVDD 66.07
DMSVDD-GMM

√
73.77

DMSVDD-GMMCA
√ √

74.22
DMMSVDD (ours)

√ √ √
74.77

DMMSAD (ours)
√ √ √ √

75.41

5.2. Visualization
5.2.1. Visualization of Separability

To demonstrate the feature extraction ability explicitly, Figure 8 visualizes the features
of different methods. As these high-dimensional features are difficult to display directly, we
visualize them by using the t-SNE [49] technique to reduce the dimension. The experimental
setting is the same as in Section 4.4. Compared with other methods, features extracted
by the proposed method show more regularity. The proposed method can obtain more
compact features of multi-class in-library samples, while the features of other methods
are relatively scattered. At the same time, there is less overlap between the features of
in-library samples and out-of-library samples, so the proposed method can distinguish in-
library samples well from out-of-library samples. This explains why the proposed methods
outperform others.
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5.2.2. Visualization of Position Attention Maps

To illustrate the effectiveness of the position attention module explicitly, Figure 9
visualizes measured HRRPs and the corresponding position attention maps of three types
of targets with different sizes. The horizontal and vertical coordinates in measured HRRPs
are range cell and magnitude, and the horizontal and vertical coordinates in position
maps are both feature dimensions. Measured HRRPs in Figure 9 demonstrate that the
wider target support area within an HRRP represents the larger actual size of the target.
Obviously, the HRRP of target-A has the narrowest target support area, indicating that its
actual size is the smallest, and the actual size of target-B and target-C is increasing. Figure 9
also shows the discrepancy among the position attention maps of three targets, with the
relevant area in the position attention map of target-B being longer than that of target-A
and shorter than that of target-C. In conclusion, the position attention map relates to the
target support area within its HRRP, similarly reflecting the actual size of the target. The
position attention module is capable of adaptively identifying the region where the target
support area is located and assigning more weight to features in this region. It is conducive
to strengthening the influence of the support area on the rejection performance and thus
learning more discriminative features.
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6. Conclusions

In this paper, a novel method named DMMSVDD is proposed to solve the HRRP-
based rejection problem. The core ideas are to obtain more discriminative features with an
attention module and form a more compact and explicit rejection boundary with the multi-
modality of HRRP. Firstly, the data preprocessor is designed to alleviate the sensitivity
problems of HRRP. Then, the feature extractor with a dual attention module is responsible
for refining convolutional features with the global-dependency and channel-dependency
information, which is effective in capturing abundant information in the support area
of HRRP. Next, the rejector takes the anisotropy and multi-modality characteristics of
HRRP into account and forms a more compact rejection boundary of multiple closed
hyper-ellipsoids. The rejector is jointly optimized with the feature extractor under a
unified rejection criterion. Moreover, its semi-supervised version, named DMMSAD, is
extended to take advantage of out-of-library samples to obtain a more explicit boundary.
Experiments demonstrate the promising performance of the proposed methods on the
HRRP rejection task.

In applications, the HRRP database can be continuously expanded by merging accu-
mulated out-of-library samples. And the users need to update the rejection model in a
timely manner to improve the rejection performance. However, retraining a new rejection
model every time is costly. Hence, in the future, we will introduce continual learning
methods to update the existing model online based on newly acquired data, which is more
efficient and cost-effective.
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