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Abstract: Complex-terrain clutter presents serious nonuniformity, which has a significant impact
on radar target detection, communication, and navigation. The accurate acquisition of the clutter
characteristics by measurement or calculation for large and complex terrains has always posed a
challenge due to the high costs of the measurement, as well as the intricate and diverse environmental
factors. To address this challenge, we proposed a research methodology that leverages the similar-
ity of multidimensional terrain features to infer the clutter characteristics of unmeasured regions,
particularly those that are difficult or impossible to measure directly. In order to realize this study
object, we constructed a dataset consisting of multidimensional environmental and clutter data to
quantitatively characterize the complex environmental information in a vast territory. Within the
dataset, we selected two regions with similar terrain characteristics: one region served as the source
data for mining and analyzing features, while the other was designated as the target data region for
method validation. Through the application of prior-knowledge-based classification and multifactor
weight analysis on the dataset, two novel estimation techniques were devised. The first method,
designated as PCKRF, blended prior-knowledge classification, weighted K-means clustering, and the
random forest (RF) algorithm; and the second method, labeled PCKMW, integrated prior-knowledge
classification, weighted K-means clustering, and the minimum weighted distance (MW) approach.
In estimating and validating the clutter data from the source region to the target region, the perfor-
mances of both the PCKRF and PCKMW methods were notably superior to those of the RF, MW,
and K-means minimum weighting (KMW). Specifically, the root-mean-squared error (RMSE) was
enhanced from a range of 7 dB–10 dB to a range of 4 dB–6 dB, while the determination coefficient
(R2) was increased from a range of −1.15–0.09 to a range of 0.25–0.66. The above demonstration
illustrates that the current achievements in the clutter estimation methods offer a viable option for
accurately recognizing clutter characteristics in complex-terrain environments where comprehensive
data collection may be difficult or impossible, with lower human and economic costs.

Keywords: complex terrain; multifactor characterization; prior-knowledge-based classification;
multifactor-weighting analysis; weighted similarity; scattering-coefficient estimation

1. Introduction

Due to the complexity and diversity of ground objects, complex-terrain clutter presents
serious inhomogeneities, which have a significant impact on radar target detection, com-
munication, and navigation [1,2]. In order to grasp the variation patterns between clutter
and various parameters, numerous studies on the characteristics of complex-terrain clutter,
including several special test programs [3–5], theoretical algorithm-based research [6–8],
and empirical modeling [9–11], have been conducted, which are of great significance to the
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knowledge of complex-terrain clutter characteristics. However, different from the scattering
of single-type ground objects in a uniform terrain, which can be effectively modeled as
random rough surfaces [7,12] or multilayer dielectric scattering [13,14], the influence of
complex-terrain parameters on scattering is much more intricate and challenging to corre-
late and represent. The complexity arises from two reasons: the complexity and diversity of
the ground objects cannot be characterized well, and the influence of the environmental fac-
tors on the scattering coefficient presents complex nonlinear relationships that are difficult
to quantify. As a result, the clutter characteristics of complex terrains cannot be accurately
obtained when encountering new ground object environments and test conditions.

In recent years, in order to break though the limitation of previous models and test
results of only categorizing and qualitatively describing terrain clutter [4,10,15], the genera-
tion of mixed-terrain clutter using digital elevation maps (DEMs), land-cover classification
data, image data, and other remote sensing data to assist traditional clutter models has
garnered serious attention. Hellard et al. [16] simulated ground-based radar clutter using
digital topographic-relief and land-cover information. Feng et al. [17] studied a low-grazing-
angle-scattering model using the inductive reasoning method by combining the frequency,
grazing angle, and feature type. Darrah et al. [18] investigated a model that combined
digital terrain elevation data, digital feature analysis data, and the empirical model of
the terrain clutter amplitude to generate an accurate site-specific clutter reflectivity map.
Kurekin et al. [19] proposed a clutter map generation method based on multichannel
images and digital terrain data. Capraro et al. [20] developed techniques for the registra-
tion of radar echo signals and the correction of Doppler and spatial misalignment using
digital terrain classification and elevation data and applied them to improve the perfor-
mance of space–time adaptive processing. Based on their research results and methods,
more research has been conducted on complex-terrain clutter simulations using digital
elevation and traditional models in the last decade. Xie et al. [21] proposed an improved
knowledge-assisted algorithm based on the Morchin clutter model. Li et al. [22] proposed a
method based on DEMs and digital land feature classification data termed the nonuniform
ground clutter simulation method, which selects different scattering models according
to distinctive features to improve accuracy. Oreshkina et al. [23] proposed a method to
optimize the azimuthal sampling interval of digital topographic maps for radar ground
clutter simulations. Luo et al. [24] proposed an optimal searching strategy based on DEMs
to suppress ground clutter and achieve a fast and high-probability search for low-altitude
targets. Kim et al. [25] proposed a method for synthesizing clutter based on an empirical
model by creating and accumulating clutter block by block to predict clutter in unexplored
environments and operational conditions.

Despite the introduction of more accurate terrain and feature classification data, previ-
ous studies still relied on the traditional empirical model, which is based on terrain and
ground object information that is projected onto the corresponding scattering unit to syn-
thesize the clutter map. The traditional model is only a brief representation of the statistical
results and variation rules and does not adequately characterize a complex terrain. In
addition, owing to the lack of a perfect association between the measured clutter data and
geomorphological and environmental elements, these studies did not perform quantitative
analyses of the influencing factors in complex terrains, leading to low accuracy.

Given the nonlinear relationship between complex-terrain clutter and environmental
factors, it is crucial to adopt appropriate data-mining and analysis methods. The random
forest (RF) method [26,27] is a popular machine learning (ML) algorithm. Its internal
estimates can be used to measure the importance of the variables for the analysis of their
multivariate nonlinear weighted influence. In recent years, the RF method has been widely
used in remote sensing image classification, agricultural prediction, regression analysis, and
other research [28–32]. In addition, clustering and classification prediction methods based
on similar parameters, such as k-means clustering and the k-nearest-neighbors (KNN)
algorithm, have also been applied [33,34]. In recent years, several scholars have utilized
deep learning networks to predict the characteristics and parameters of sea clutter [35–37],
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achieving promising results. However, there has been limited research on the application
of similar techniques to ground clutter. In theory, with a sufficiently large dataset covering
a comprehensive range of parameters, both deep learning and machine learning can
be effective in predictive modeling. Nevertheless, this ideal scenario contrasts with the
practical limitations of real-world data acquisition, where it is impossible to achieve full
coverage of all possible scenarios through measured data. The intention of this article is
to develop a method for estimating similar terrain clutter based on actual measured data.
This approach aims to extrapolate the clutter characteristics to unmeasured areas with
comparable terrain features, especially in situations in which costs and data availability
are constraints.

In response to the above research difficulties, we constructed a multifactor-associated
clutter dataset by reconstructing the geometric relationship of the measurement scene,
triangulating the terrain, and matching the illumination areas. The dataset contains S-band-
airborne-radar-measured clutter data, Advanced Land Observing Satellite (ALOS) DEM
data with a resolution of 12.5 m downloaded from the Distributed Dynamic Archive Center
(DAAC) of the Alaska Satellite Facility (ASF) [38], land-cover classification data from Global
Land 30 [39], soil composition data from the Harmonized World Soil Database (HWSD) [40],
normalized difference vegetation index (NDVI) data attributed to the Moderate Resolution
Imaging Spectroradiometer (MODIS) [41], and Google image data. This dataset solves
the problem of quantitative parameter representation in the study of large-scene clutter
characteristics and enables a better analysis and understanding. To overcome the chal-
lenges posed by the large dynamic ranges of the scattering coefficients and numerous
parameters in complex terrains across extensive areas, prior-knowledge-based classification
and multifactor weight coefficient estimation were explored on this dataset. Based on
the aforementioned research, two innovative methods were developed by combining the
techniques of K-means clustering, RF prediction, and the minimum Euclidean distance. The
first method, named PCKRF, integrated pre-classification, weighted K-means clustering,
and RF prediction. The second method, known as PCKMW, incorporated pre-classification,
weighted K-means clustering, and the minimum weighted Euclidean distance. Both meth-
ods aimed to enhance the accuracy and reliability of terrain clutter estimation by leveraging
the strengths of different algorithms. The pre-classification step helped to identify distinct
terrain types, which were then used as inputs for the subsequent clustering and prediction
steps. The weighted K-means clustering took into account the importance of different pa-
rameters, allowing for a more precise grouping of similar terrain characteristics. Compared
to the measured data and evaluated across multiple metrics, such as the mean absolute
error (MAE), root-mean-squared error (RMSE), coefficient of determination (R2), and mean
value error in the pulse dimension (PMVE), the PCKRF and PCKMW methods demonstrate
superior accuracy compared to RF prediction, the minimum weighted distance (MW), and
the K-means-clustering minimum weighted distance (KMW). Despite requiring further
enhancements in scatter plot regression and prediction accuracy, the current methodologies
already possess significant advantages and application value in accurately recognizing
the clutter characteristics of untested areas using limited data. These approaches also
provide considerable support for evaluating the radar performance in complex-terrain
environments where comprehensive data collection may be difficult or impossible.

The remainder of this paper is organized as follows. Section 2 provides details on the
data used and the overall method. Section 3 shows the associative multiparameter dataset
and the results of the weight analysis. Section 4 details similar terrain estimation methods
and discusses the results. Section 5 presents the conclusions.

2. Materials and Methods
2.1. Description of Clutter Measurement and Environmental Data

The results of this study were based on complex-terrain clutter data acquired by
the airborne S-band radar and remote sensing data of multidimensional environmental
elements. The experiments and data are described in detail as follows.



Remote Sens. 2024, 16, 650 4 of 31

2.1.1. Airborne-Radar Clutter Measurement

The research team conducted airborne ground clutter measurement tests in July 2016
and collected clutter data on various terrain types. Airborne-radar clutter data were
acquired using an S-band radar located under an aircraft. The radar was operated with HH
polarization, and the radar resolution was 50 m, with an azimuth beam width of <1.2◦ and
a pitch beam width of <10◦. The flying altitude of the aircraft was approximately 5000 m.
Table 1 lists the main parameters of the radar used during the measurement.

Table 1. Radar parameters.

Parameter Value

Polarization HH
Frequency band S

Depression angle −3◦

Resolution 50 m
Airborne height 5000 m

Pitch beam width <10◦

Azimuth beam width <1.2◦

During the clutter measurement period, an active calibration experiment was per-
formed simultaneously to obtain the system loss of the radar and further derive the scat-
tering coefficients of the measured terrains. Figure 1 shows a geometric diagram of the
calibration test and an image map of the clutter measurement area. The aircraft flew along
a predetermined route, and the radar beam was set to a fixed illumination direction with
a depression angle of 3◦ and an azimuth angle of 45◦ to the heading. According to the
3 dB beam width range of the main beam, an illumination strip was formed on the ground
parallel to the air route, and active radar calibrators (ARCs) were arranged within the
illumination strip. The radar measurement parameters and flight states of the aircrafts
were recorded. In addition, the aircraft has an automatic attitude correction device that
maintains a stable measurement state.

Remote Sens. 2024, 16, x FOR PEER REVIEW 4 of 31 
 

 

2. Materials and Methods 

2.1. Description of Clutter Measurement and Environmental Data 

The results of this study were based on complex-terrain clutter data acquired by the 

airborne S-band radar and remote sensing data of multidimensional environmental ele-

ments. The experiments and data are described in detail as follows. 

2.1.1. Airborne-Radar Clutter Measurement 

The research team conducted airborne ground clutter measurement tests in July 2016 

and collected clutter data on various terrain types. Airborne-radar clutter data were ac-

quired using an S-band radar located under an aircraft. The radar was operated with HH 

polarization, and the radar resolution was 50 m, with an azimuth beam width of < 1.2° 

and a pitch beam width of < 10°. The flying altitude of the aircraft was approximately 5000 

m. Table 1 lists the main parameters of the radar used during the measurement. 

Table 1. Radar parameters. 

Parameter Value 

Polarization HH 

Frequency band S 

Depression angle −3° 

Resolution 50 m 

Airborne height 5000 m 

Pitch beam width <10° 

Azimuth beam width <1.2° 

During the clutter measurement period, an active calibration experiment was per-

formed simultaneously to obtain the system loss of the radar and further derive the scat-

tering coefficients of the measured terrains. Figure 1 shows a geometric diagram of the 

calibration test and an image map of the clutter measurement area. The aircraft flew along 

a predetermined route, and the radar beam was set to a fixed illumination direction with 

a depression angle of 3° and an azimuth angle of 45° to the heading. According to the 3 

dB beam width range of the main beam, an illumination strip was formed on the ground 

parallel to the air route, and active radar calibrators (ARCs) were arranged within the 

illumination strip. The radar measurement parameters and flight states of the aircrafts 

were recorded. In addition, the aircraft has an automatic attitude correction device that 

maintains a stable measurement state. 

Airborne Radar

Flight Course

Calibration Sets

H

Main Beam 

dire
ctio

n

b

d

Irradiated Area

1 2

3

Active Radar 
Calibrator   

(a) (b) 

Figure 1. Geometrical schematic diagram of airborne-radar clutter measurement test and image map
of test area. (a) Geometrical schematic diagram of active radar calibration and clutter measurement.
(b) Air route and image map of measurement areas. The numbers 1⃝ to 3⃝ in (a) and the three green
stars in (b) represent the locations of ARCs.

The marked areas in Figure 1b are the radar test areas, where areas A and B are mainly
the clutter acquisition areas, and area C is the calibration and clutter acquisition area. In
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the test, six valid sorption datasets were obtained, where the total echo and calibrator data
were approximately 10 TB and 1 GB in size, respectively.

2.1.2. Terrain Characteristics of the Measured Area

Figure 2 presents the geographic feature maps of the test area. Figure 2a shows the
distribution image of the land cover sourced from Global Land 30. On this map, red
represents anthropogenic built-up areas, green indicates forested areas, yellow denotes
bare ground surfaces, and blue represents waterbodies. Figure 2b displays the DEM of
the test area, depicting elevation values ranging from 0 to 2000 m above sea level. These
maps provide essential information for understanding the terrain, natural features, and
human-made structures within the designated test region.
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Figure 2. Topographic images of the test area. (a) Distribution image of the land cover, where red
represents anthropogenic built-up areas, green indicates forested areas, yellow denotes bare ground
surfaces, and blue represents waterbodies. (b) DEM of the test area. The marked areas in (a,b) are the
radar test areas.

According to the information in Figure 2, the overall landform is dominated by
mountains and hills, of which mountains with elevations of more than 500 m account
for 36% of the total area, and the highest elevation is approximately 2000 m. Hills with
altitudes of 100–500 m account for 41%, low-relief terrains below 100 m account for 20%,
and waters account for 3%. In addition, the test area is dotted with scattered villages,
towns, and several medium-sized cities. Overall, the terrain in the test area is very complex
and diverse.

2.1.3. Multisource Environmental Data

The ground-cover scattering coefficient is a composite function of multiple factors,
and complex dependencies between them and various environmental factors that need
consideration exist. In particular, for complex-terrain scattering, it is meaningless to study
the clutter without environmental information. Therefore, various environmental factors
were introduced to characterize the terrain parameters and establish a correlation with
the clutter.

To better analyze the influence of the environmental parameters on the clutter charac-
teristics, this study used multisource remote sensing data, including ALOS DEM data with
a 12.5 m resolution downloaded from the DAAC of the ASF, land-cover classification data
from Global Land 30, soil composition data from HWSD, NDVI data from the MODIS, and
Google image data. In this study, ALOS PALSAR public DEM data were used to represent
the surface relief, the Global Land 30 dataset was used to represent the surface-cover type
and distribution, and the soil composition type was used to represent the difference in the
surface soil composition. Finally, remote sensing image data were used for verification.
The relevant data parameters and resolutions are listed in Table 2.
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Table 2. Environmental data and resolutions.

Data Source Type of Representation Data Resolution (m)

ALOS DEM Topographic relief 12.5
Global Land 30 Land-cover type 30

Soil composition Distribution of soil 1000
NDVI of MODIS Coefficient of vegetation cover 900

Google image Distribution of ground objects 17

Because the resolution between the land-cover, soil component, and elevation data
are inconsistent, to facilitate the data association, the land-cover and soil component data
were interpolated, and their resolution was increased to 12.5 m, which was consistent with
that of the elevation data. In this article, we used the geographic information processing
software Global Mapper version 17 to unify the data precision. Global Mapper primarily
uses the method of bilinear interpolation to interpolate images and enhance their resolution.
This approach estimates the value of the point to be interpolated by linearly combining the
values of the four known data points surrounding it. Bilinear interpolation is a commonly
used technique in image processing that can effectively improve the resolution and detail
representation of images. The principle of bilinear interpolation is as follows:

Suppose there is a 2 × 2 grid with four points at coordinates (x0, y0), (x1, y0), (x0, y1),
and (x1, y1), corresponding to function values f (x0, y0), f (x1, y0), f (x0, y1), and f (x1, y1),
respectively. We now want to interpolate the function value f (x, y) at point (x, y). First, we
perform two one-dimensional linear interpolations in the x-direction to obtain the following:

f (x, y0) ≈
(x1 − x) f (x0, y0)

(x1 − x0)
+

(x − x0) f (x1, y0)

(x1 − x0)
(1)

f (x, y1) ≈
(x1 − x) f (x0, y1)

(x1 − x0)
+

(x − x0) f (x1, y1)

(x1 − x0)
(2)

Then, we perform a one-dimensional linear interpolation in the y-direction to obtain
the following:

f (x, y) ≈ (y1 − y) f (x, y0)

(y1 − y0)
+

(y − y0) f (x, y1)

(y1 − x0)
(3)

By substituting the expressions (1) and (2) into (3), the complete expression for bilinear
interpolation based on the four neighboring points can be derived.

2.2. Methods

The proposed method comprises three main parts. The first part constructs a clutter
dataset with multifeature associations, including data-processing and feature representation
association methods. The second part analyzes the weight coefficients of multiple features,
and the third part estimates clutter similar to the terrain. Each method is explained
separately. Figure 3 shows the schematic diagram of the method flow.
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2.2.1. Processing Methods for Clutter Data

The acquired data were processed and classified into calibration and clutter data.
Figure 4 shows the process flow of classifying calibration and clutter data.
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The ultimate goal of radar calibration data processing is to obtain a system constant
such that the radar echo data can be calibrated. According to the radar equation, the
formula for the system constant can be derived as follows:

L =
PtGtGrλ2σc

Pr(4π)3R4
Fr(θd, ∆ϕ)Ft(θd, ∆ϕ) (4)

where Pt is the transmitted power; Gt is the gain of the transmitting antenna of the radar;
Ft(θd, ∆ϕ) is the directivity factor of the transmitting antenna; Gr is the gain of the radar-
receiving antenna; Fr(θd, ∆ϕ) is the directivity factor of the receiving antenna; λ is the
wavelength of the electromagnetic wave transmitted by the radar; θd is the depression
angle; ∆ϕ is the offset azimuth angle; R is the slant distance from the radar to the calibrator,
and the atmospheric refraction effect should be considered when calculating the slant range;
σc is the radar cross section of the active radar calibrator (ARC).
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It is necessary to synchronize the times of the radar and ARC during radar calibration.
When the main beam of the airborne radar is swept across the active calibrator along the
illumination strip shown in Figure 1, the maximum signal received by the calibrator and
the maximum signal transmitted by the radar-receiving calibrator appear. According to the
maximum position and time information combined with the antenna pattern factor, aircraft
flight inertial data, and other information, the system constant of the airborne radar can be
calculated using Equation (4).

When the radar system loss (L) is calculated from the external calibration data accord-
ing to the radar equation, the scattering coefficients of the radar-receiving ground and sea
clutter are as follows:

σ0 =
Pr(4π)3R4L

PtGtGrλ2Fr(θd, ∆ϕ)Ft(θd, ∆ϕ)A
(5)

where A = Rϕaz∆r
(2cosθg)

is the irradiated area, ϕaz is the azimuth beam width of the radar main

beam, ∆r is the radar resolution, and θg is the grazing angle, which is calculated as the
angle between the Earth’s tangent plane and the radar beam, as shown in Figure 5.
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Figure 6 shows the calculated results for the scattering coefficients measured using the
S-band environmental test radar. Figure 6a shows a 2D plot of the scattering coefficient,
where the abscissa represents the flight distance of the aircraft, and the ordinate represents
the test distance of the radar. The test area contains landforms, such as mountains, cities,
waterbodies, arable land, and forests. The scattering coefficient fluctuates significantly due
to the topography and ground feature distribution. Figure 6b shows the variation in the
corresponding mean backscattering coefficient with the grazing angle. Within a grazing
angle from 1◦ to 3◦, the mean value of the scattering coefficient under this terrain ranges
from −28 to −18 dB, with a relatively strong fluctuation, reflecting the complexity of the
ground-cover scattering.

To prove the validity of the test data and calibration results, data on the low-grazing-
angle scattering about the HH polarization of the S-band from [4] were introduced for
verification. In [4], the depression angle was used to represent the angle size. Because
of the fixed-point test adopted in [4], the height of the radar was only tens of meters,
and the influence of the Earth’s curvature could be ignored; thus, the depression angle
in [4] can be approximated as the grazing angle. Figure 7 presents the results of the
comparison. Our data are presented as means ± standard deviations, and the data from [4]
are represented by mean values. The mean values of the measured results of different
ground objects and those obtained from [4] were of the same order of magnitude. The
scattering coefficient of the cities was the strongest, followed by mountains, forests, arable
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land, and waterbodies. Results of the comparison show that the data and processing
methods tested in the experiment were effective.
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2.2.2. Methods for Processing Environmental Data

The result of the clutter data is the average effect of multiple scatterers in a scattering
cell. Therefore, the first step in the association between the environmental elements and
clutter data is to determine the ground object information in the processing unit with
each pulse and resolution cell as the scattering coefficient, especially for the shadowing
information, which is related to the depth of the terrain relief in the radar view direction
and illumination area. Therefore, the occlusion and local-grazing-angle information should
be calculated in a pulse unit. According to the longitude and latitude information corre-
sponding to the effective range gate in the pulse, the ground feature information contained
in each resolution unit in the pulse should be determined from the ground feature informa-
tion representation dataset. In summary, this study adopted the following steps to extract
environmental information:

1. According to the global positioning system (GPS), (Lonm, Latm, Hrm), and radar-beam-
pointing (φi, θdi) information in the inertial data of the aircraft at the time Tm, and
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combined with the width of the radar main beam (ϕaz), the radar beam irradiation
area range from Rn1 to Rn2 was calculated;

2. The GPS information of four vertices in the illuminated areas,
(

Lonn1,− ϕaz
2

, Latn1,− ϕaz
2

)
,(

Lonn1, ϕaz
2

, Latn1, ϕaz
2

)
,
(

Lonn2,− ϕaz
2

, Latn2,− ϕaz
2

)
, and

(
Lonn2, ϕaz

2
, Latn2, ϕaz

2

)
, were marked;

3. The inpolygon function was used to extract the scattering points in the four vertices
containing areas of multiple ground object data, such as DEM, NDVI, and image data;

4. The distance between the extracted points and the radar was calculated, and the
extracted points were assigned to each scattering cell according to the length of the
distance cell.

The inpolygon function uses the ray method to determine whether a point is within a
polygon. Through the above steps, the extraction of the object parameter information in
the radar beam irradiation range was completed.

The terrain relief is an important factor affecting ground clutter, and the shading and
local grazing angle caused by the interaction between the radar viewing direction and
terrain are key parameters. To calculate these parameters, it was necessary to triangulate
the terrain, calculate the normal vector of the surface element, and calculate the shading
and local-grazing-angle information. The steps of the terrain surface element subdivision
were as follows:

1. Coordinate conversion was performed on the elevation data extracted by the radar
beam irradiation, and the latitude and longitude heights were converted to Earth’s
XYZ coordinate system; detailed coordinate conversion methods are available in the
literature [20] and will not be repeated here;

2. The transformed XYZ coordinates were decomposed into triangular surface elements
to obtain the vertex and inner coordinates of each triangle. We assumed that the
three vertices of the number i triangles were Ai = (xi1, yi1, zi1), Bi = (xi2, yi2, zi2), and
Ci = (xi3, yi3, zi3), and the coordinates of the reference point were the center of gravity
or the inner heart, which can be calculated according to the following formula:

Di =
Ai + Bi + Ci

3
=


xi1+xi2+xi3

3
yi1+yi2+yi3

3
zi1+zi2+zi3

3

= (xiD, yiD, ziD) (6)

3. To calculate the tangent plane normal vector, the following formula was used:

→
u = (xi, yi, zi) =

→
AB ×

→
AC∣∣∣∣ →

AB ×
→

AC
∣∣∣∣ (7)

Through this process, the GPS position and normal vector of the interior point of the
subdivision surface element in the illuminated area were obtained. The local-grazing-angle
and shadowing information can be further calculated by combining the radar inertial
navigation information. A schematic diagram of the radar beam and subdivision terrain in
the azimuth and pitch directions is shown in Figure 8. Because each scattered cell contains
multiple DEM data points, to improve the accuracy of the local erasing angle and occlusion
judgment, we divided the beam into 20 parts to save calculation time and data.
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The local grazing angle (θGL) is expressed as the angle between the radar illumination
and normal direction of the tangent plane of a point on the ground; the radar GPS informa-
tion (Lonm, Latm, Hrm) is converted into XYZ coordinate information (xm, ym, zm), and the
elevation angle from the scattering points in the i subdivision plane element of the radar is
as follows:

θd,i = arctan
ziD − zm√

(xiD − xm)
2 + (yiD − ym)

2
(8)

The line-of-sight vector from the radar to the center of the subdivision surface element
is v = (xiD − xm, yiD − ym, ziD − zm), and the local grazing angle is calculated as follows:

θGL,i =
π

2
− arcos

→
u ·→v∣∣∣→u ∣∣∣∣∣∣→v ∣∣∣ (9)

Shadowing judgment: The scattering points in the sub azimuth beam are found and
sorted from small to large according to the slant distance. Whether a scattering point is
shaded by a point in front of the azimuth is determined based on the following principles:

1. The elevation angle between this point and the radar is higher than the minimum

elevation angle of all the preceding points (that is, θd,i > max
{

θd,(i−1)

}
). This was

judged to be obscured by the line of sight, which corresponds to an area with high
fluctuations;

2. If the local grazing angle of the point is ≤0 (that is, θGL,i ≤ 0), it was judged as
self-shading, corresponding to an area with low fluctuations.

If one of the above two conditions is satisfied, the point is judged as an occlusion.
Once we obtain the occlusion, we calculate the depth of the occlusion to represent how
severely the point is occluded:

Sd,i =

{
θd,i − min

{
θd,(i−1)

}
Sheltered line of sight

−θGL,i Self sheltered
(10)

2.2.3. Construction Method for Clutter Dataset Based on Multifeature Representation

After the area matching and shadowing judgment, the corresponding results for
multiple-ground-feature information and one scattering coefficient in each scattering unit
were obtained. For example, if there are 3 × 36 elevation points in a single scattering unit,
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only one scattering-coefficient value is present. Therefore, the parameters of the ground
objects in a single scattering unit can be simplified as follows:

1. The mean elevation (Ht), standard deviation of elevation (SDHt), and extreme de-
viation of elevation (EDHt) were calculated as the variation in the elevation of the
scattering unit to characterize the topographic relief;

2. The shadowing proportion of all scattering points in a scattering unit is considered to
be the shadowing coefficient (Sc) of the scattering unit, and the shadowing depth (Sd)
is characterized by the mean value. These two parameters characterize the shading
intensity of the scattering unit;

3. For the unsheltered scattering points, the local grazing angle (θGL) was divided into
ten intervals according to the size, and the number of local grazing angles in each
interval was counted. The local grazing angle with the highest number of occurrences
was used to represent the local grazing angle of the scattering unit;

4. Subsequent data were processed in the same manner. For example, for land-cover
information, the types with the highest proportion of land cover (LC) of the unshel-
tered scatterers were counted, as well as their percentages (pLC), and they were used
to characterize the land cover in the scattering unit. The same method was used to
obtain the soil type (ST), soil-type percentage (pST), normalized vegetation index
(NDVI), image grayscale (Ig), and RGB channels of the image data (I1, I2, and I3). All
the above information was used to characterize the distribution of the ground objects;

5. The range bin number (Rb) was used to represent the relative distance between the
radar and scattering unit;

6. This information is relevant for the backscattering coefficient (σ0) of the scattering unit.

2.2.4. Multifactor Influence Weight Analysis Method

We comprehensively characterized the relationships among the scattering coefficients,
environmental parameters, and radar parameters in multiple dimensions. Evidently, the
effects of the above parameters on the scattering coefficient differ, and a strong coupling
relationship may exist between the parameters. Therefore, we first used the Pearson
correlation coefficient matrix to select the parameters before the weight analysis. A random
forest regression analysis was further used to perform a nonlinear regression analysis on the
above dataset, and the contribution weight of each parameter to the scattering coefficient
was obtained.

The Pearson correlation coefficient formula is as follows:

ρ =
∑n

i=1(Xi − X)(Yi − Y)√
∑n

i=1 (Xi − X)
2
√

∑n
i=1 (Yi − Y)2

(11)

where the value of the correlation coefficient (ρ) is within the range of [−1, 1], and the
higher the absolute value, the stronger the correlation. A value of 0 indicates no correlation,
and 1 or −1 indicates that a linear representation can be used. A value greater than 0
indicates a positive correlation and a value < 0 indicates a negative correlation.

Figure 9 shows the correlation coefficient heatmap matrix. A certain degree of param-
eter optimization was performed according to the values of the correlation coefficients.
Parameters with strong correlations among themselves were removed, and parameters
with very low correlations with the scattering coefficients were also removed.

The pLC and pST contributed almost zero to the scattering coefficient; therefore, they
were removed. The SDHt was strongly correlated with the EDHt, which, in the Ig, was
strongly correlated with I1, I2, and I3. Therefore, only the SDHt and Ig were retained.
Based on this dimension reduction process, the dimensions of the parameters were reduced
from the original 17 columns to 11 columns.
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The influence of multidimensional parameters on the scattering coefficient is complex
and nonlinear. The above correlation coefficient analysis is a linear analysis, which does
not meet the requirements of weight analysis in a complex terrain. Therefore, based on
the above dataset, we used a variety of ML methods to perform the nonlinear regression
analysis, such as the support vector machine (SVM), k-nearest-neighbor (K-N), RF, and
multilayer perceptron (MLP) methods. The model error was evaluated using the root-
mean-squared error (RMSE). These results are presented in Table 3.

Table 3. Error analysis of machine learning models.

Machine Learning Models SVM K-N RF MLP

RMSE 5.4752 5.5203 4.9302 5.7431

The RF model showed the best prediction, and the out-of-bag error parameters in the
RF method could be used to measure the contribution of the parameter. Therefore, this
study used the RF method for the weight analysis.

Various parameter choices are available for the random forest method, such as the
numbers of trees and leaves. Considering the calculation time and prediction accuracy, we
performed hyperparameter calculations to find the optimal combination of parameters.
The number of trees was preset to 1–1000, and the leaf parameters were 5, 10, 20, 50, 100,
200, and 500. The above combinations were cycled, and a parameter combination with both
calculation efficiency and accuracy was obtained according to the RMSE analysis. Figure 10
shows the prediction error analysis diagram for this combination. The RMSE is the lowest
when the number of leaves is five, unchanged when the number of trees reaches 400, and
maintained at approximately 4.9. Therefore, 400 trees and five leaves were chosen as the
parameters of the random forest.
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During the prediction process by the RF method, we employed 10-fold cross-validation,
taking the average accuracy from the 10 iterations as an estimate of the algorithm’s accu-
racy. Table 4 presents the cross-validation results obtained during one of these prediction
processes. Notably, the results are quite consistent, indicating that the model exhibits
good stability.

Table 4. Error analysis of cross-validation for RF.

Verification Fold Number 1 2 3 4 5 6 7 8 9 10

RMSE 4.6729 4.6907 4.6465 4.6142 4.7826 4.6860 4.6670 4.5026 4.6835 4.7173

Figure 11 shows a comparison between the RF-predicted results of the above parame-
ters and measured data in the training and test sets. The RMSE of the training set was 3,
with a coefficient of determination (R2) of 0.8782, and the RMSE of the test set was 4.6663,
with a determination coefficient (R2) of 0.7056. The comparison shows that the RF model
has better convergence and accuracy for the dataset used in this study.

Using the RF model, the out-of-bag parameter error (εi) was obtained as the contri-
bution of each parameter to the scattering coefficient. In view of the complexity of the
ground-cover scattering, the out-of-bag parameter error (εi) and correlation coefficient (ρi)
may be missing to some extent. Moreover, there are significant differences in the results
between the ρi and εi. Therefore, by combining relevant methods of comprehensive weight
calculation [42,43], the comprehensive weight coefficients of the ρi and εi were fused to
characterize the multifactor influence in this study:

Qi =

√
ρiεi

∑
√

ρiεi
(12)

From the examples encountered in this study, it was evident that the results obtained
by utilizing the Qi exhibited higher accuracies compared to utilizing the ρi or εi individually.
Certainly, the formulation of this approach involves a significant degree of subjective judg-
ment, and it could be continuously refined based on practical considerations. Apparently,
this is also an area worthy of further in-depth study.
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Figure 11. Comparison between RF prediction results and measured data. (a) Training set. (b) Test
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2.2.5. Clutter Estimation Methods

The clutter estimation method used in this study was based on measured data and
regional similarity. Measured data in region B, shown in Figure 1b, were used as source
data, and region A was used as the estimated target region. In other words, the scattering
unit with the closest parameters to each scattering unit in region A was found in region
B, and the scattering-coefficient value of the scattering unit was assigned to the scattering
unit in region A. Finally, the accuracy of the method was verified by comparing it with the
measured results in region A. Figure 11 shows a flowchart of the estimation method.

Because the clutter estimation method presented in this article is based on similar
terrain features, which should be exhibited in both the category and data ranges, the overall
similarity of the terrain features was first judged using the Bhattacharyya coefficient. During
the development of the estimation method, we explored several approaches. One approach
involved training an RF model on the source data and using it to predict clutter for the
target area by inputting environmental parameters. This is referred to as the RF prediction
method in Figure 12. Another approach involved calculating the weight coefficients of the
influencing factors and using a multiparameter weighted nearest-neighbor principle to
estimate the clutter data of the target area from the source data. This is known as the MW
prediction method in Figure 12. Upon comparing the results of these initial methods with
the measured data, it was found that their performance was not satisfactory. As a result,
the K-means-clustering method was introduced to form the KMW prediction method with
the MW method, as shown in Figure 12. Although the result showed some improvement,
it still did not meet the requirements. Building upon these methods, we implemented a
priori-knowledge-based pre-classification. Weighted clustering was then applied to the
classified sub-datasets, and the weight coefficient calculation method was improved. This
ultimately led to the development of the PCKRF and PCKMW prediction methods, which
showed significant improvements compared to the previous three methods. Overall, the
figure illustrates the process of the iterative improvement in and increasing prediction
accuracy of the clutter estimation method presented in this article. The following sections
provide a detailed description of the specific methods employed.
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• Regional similarity judgment method

Before performing a data-based estimation, it is necessary to verify the closeness of
the source dataset to the target dataset using multiple parameters. The Bhattacharyya
coefficient (BC) method was used to characterize the overall approximation:

BCi(pi, qi) = ∑
√

pi(x)qi(x) (13)

where p and q are the probability distributions of the variables at the same position on the
histogram. The BC range was 0–1, where 0 was completely different and 1 was completely
identical. The scattering of land cover is significantly affected by the terrain relief and
ground-cover distribution, and the BC method can better measure the overall similarity
of different regions based on the proximity of the probability distribution value of each
parameter;

• Prior-knowledge-based classification

Terrain scattering has a significantly wide dynamic range and nonuniformity, and the
weight of the influence on the ground-cover scattering changes significantly under different
distribution states of the land cover. To improve the estimation accuracy, ground objects
are pre-classified based on prior knowledge, and ground objects with similar scattering
mechanisms are gathered together to form multiple datasets. For example, based on the
prior knowledge of the shading coefficient, elevation fluctuation degree, image map, and
other prior knowledge, source data are classified into six categories, as follows: the ordinary
shading area, mountainous shading area, mountainous illumination area, woodland, town,
and other types. On this basis, RF classification training was performed, the target area
was classified, and the calculated data labels corresponding to the target area and source
data were obtained;
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• The weighted-k-means-clustering method

The k-means-clustering method is commonly used for data processing and analysis.
Based on the traditional k-means method, this paper introduces the weight coefficient
obtained previously and then clusters the dataset. The value of the clustering parameter (k)
is determined according to the elbow method, and the value of the k is 12;

• Estimation methods

In the study of the scattering-coefficient estimation of similar features in different
regions, we tried the following methods:

1. The RF estimation method. RF regression prediction was performed on the source
data area, and the environmental parameter values of the target area were introduced
into the trained RF model to obtain the scattering coefficients;

2. The minimum weighted distance (MW) method. This method utilizes the compre-
hensive weighted coefficient (Q) to calculate the multiparameter weighted Euclidean
distance between the scattering units in the target region and source data region.
It identifies the scattering unit in the source data region with the multiparameter
weighted minimum distance and assigns the scattering coefficient of this unit to the
target region. The overall scattering coefficient was obtained by traversing all the
scattering elements in the target area;

3. The K-means-clustering minimum weighted distance (KMW) method. The weighted-
k-means-clustering method was used to semi-supervise all the data in the source data
region, and the comprehensive weighted coefficient (Q) was used as the weighting
coefficient. The scattering coefficient was added to the comprehensive weighted
coefficient, and the weight of the scattering coefficient was set to 30%. The number
of clusters was determined to be 12 according to the elbow method. The weighted
minimum distance method was then used to determine the clusters to which the
scattering units in the target region belonged. Subsequently, the minimum weighted
distance between the scattering units in the target area and source data in each cluster
was calculated, and the scattering-coefficient value of the scattering units in the source
data region was assigned to the target region;

4. The prior-knowledge classification + weighted k-means clustering + RF prediction
(PCKRF) method. According to the above classification method and the k-means-
clustering method, data of the source and target areas were divided into
6 × 12 clustering datasets. Subsequently, the RF regression prediction was trained on
the source data region, and the weight coefficients of each cluster were obtained. The
environmental data of the target area were input into the trained RF model to obtain
the scattering coefficient of the target area;

5. The prior-knowledge classification + weighted k-means clustering + minimum weighted
distance (PCKMW) method. According to the classification of the influence weight
coefficient and the 6 × 12 clustering results obtained by the PCKRF method, all
scattering units in the target area were cyclically calculated, and the multiparameter
weighted distances between each scattering unit and the scattering units in the source
area of the corresponding class were calculated. A scattering unit with the minimum
weighted distance was determined, the scattering coefficient was replaced, and the
overall scattering coefficient of the target area was obtained.

3. Results
3.1. Associative Multiparameter Clutter Datasets

Through the data processing and construction methods of the clutter dataset with
multiparameter associations described in the previous section, the clutter dataset associated
with multiple parameters based on each pulse and each resolution unit can be obtained
by processing the data of the test area. Figure 13 shows the constructed clutter dataset
associated with multiple elements, where columns 1–6 represent the terrain relief and
shadowing effects, columns 7–15 represent the surface-cover type and distribution, column
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16 represents the radar test range, and column 17 represents the corresponding scattering-
coefficient value of the scattering unit. anm is a single scattering unit, where n corresponds
to the number of range gates and m corresponds to the number of pulses.
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Figure 13. Illustration of the clutter dataset represented by multifeatured association.

Figure 14 shows range–pulse 2D images of the typical parameters in test area B. The
cell range was 1200–3120, and the number of pulses was 360. These three 2D images
correspond to the 2D image of the clutter, as shown in Figure 6a. If this corresponds to
data in the list form in Figure 13, the amount of data in region B reaches 691,200 × 17. The
amount of data in test area A is consistent.
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Figure 14. Range–pulse 2D images of typical parameters in measured region B. (a) Mean value of
DEM (Ht). From blue to yellow represents increasing height, with blue indicating lower heights and
yellow indicating higher heights. (b) Shadowing coefficient (Sc). From yellow to blue, it indicates a
progressive increase in the degree of shading. (c) Google image data.

In this study, region B was used as the source data region, which was primarily used
for data mining, analyzing the influence weights under complex terrain, and training the
RF model. Region A was used as the target region, and the scattering coefficient of region B
was extrapolated to region A by the correlation between the parameters, which was verified
using measured data for region A.

3.2. Results of Influence Weight Coefficient

As shown in Figure 8, after the correlation coefficient analysis based on Equation (8),
the dimensions of the dataset were reduced to 11 columns, and the environmental pa-
rameters were only 10. RF regression analysis was performed on the source dataset after
dimensionality reduction to determine the contribution of each parameter to the scattering
coefficient. Figure 15 shows the contribution weights of multiple elements, in which the
range cell number and NDVI contributed the most, followed by the Ht and Sc. The result
is quite different from the result of the correlation coefficient matrix shown in Figure 8.
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Considering the complexity of the ground-cover scattering, these two weight measurement
methods may be missing to some extent. Therefore, the comprehensive weight coefficients
of the ρi and εi were fused to characterize the multifactor influence using Equation (9).
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Figure 15. Results of multiple-feature weighting.

Table 5 shows the results of the multiparameter weight calculation, where ρi represents
the correlation coefficient weight and εi represents the RF contribution weight. Qi is the
fusion weight obtained from Equation (9). It can be observed that there is a significant
difference in the weight representation between the ρi and εi, and the Qi reduced this
discrepancy. The last column of Table 4 presents a comparison of a certain example’s results
in terms of the RMSE, demonstrating that the Qi performs relatively better. Thus, the
Qi was used to measure the influence of multiple factors on the scattering coefficients in
this study.

Table 5. Results of multiple-feature weighting.

Parameters Ht SDHt Sc Sd θGL LC ST NDVI Ig Rb RMSE

ρi (%) 2.11 15.88 47.90 13.44 1.67 1.85 0.24 0.06 8.05 8.80 11.7357

εi (%) 9.65 4.11 9.38 6.57 6.25 5.15 8.90 19.46 8.37 22.16 11.1538

Qi (%) 6.08 10.88 28.57 12.66 4.35 4.16 1.97 1.46 11.06 18.81 10.8299

Terrain scattering has a significantly wide dynamic range and nonuniformity, and the
weight of the influence on the ground-cover scattering changes significantly under different
land-cover distribution states. It is difficult to apply a set of weight coefficients to all
ground-cover types. Therefore, this is a more reliable and accurate method for classifying
ground objects into different types and calculating the influence weights of the parameters
on the scattering coefficients for each type.

As stated earlier, according to prior knowledge of the shading coefficient, the source
data were classified into six types. The influences of the parameter weights on the scattering
coefficients for each type were calculated. Figure 16 shows the label image of the classifica-
tion results and the multiparameter weight coefficient results for each type. In Figure 16a,
M2, M2, M3, M4, M5, and M1 represent the ordinary shaded, mountain shelter, mountain
illumination, woodland, town, and other areas, respectively. Because the label results of
the classification were approximate to the land-cover parameter, they were dropped from
the weight analysis of the classified regions. Therefore, there are only nine parameters in
Figure 16b. A comparison of the weight coefficients in different regions shows that the
influence of each parameter on the scattering coefficient changed significantly with changes
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in the types of regional ground features. Table 6 presents the influence weight coefficients
for each type, which were used in the scattering-coefficient estimation that is described later.
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(a) Classification label image. (b) Weighting coefficients of each type.

Table 6. Results of multiple-feature weighting for different classifications.

Parameters Ht SDHt Sc Sd θGL ST NDVI Ig Rb

Qi (%)

M1 11.94 13.63 19.27 11.01 6.66 10.44 6.49 11.56 9.02
M2 14.93 8.89 14.70 20.18 5.87 7.38 7.46 13.31 7.28
M3 22.66 11.50 14.88 19.30 1.36 10.01 5.53 6.35 8.41
M4 16.63 12.18 23.60 5.37 6.18 7.99 7.43 13.17 7.45
M5 5.01 12.17 22.31 3.91 9.26 13.49 12.70 15.07 6.07
M6 4.92 7.12 28.36 12.01 7.04 3.28 18.77 7.13 11.38

RF classification training was performed on the source region data in Figure 16a. The
environmental parameters of the target region were introduced into the RF classification
model of the source region to obtain the label classification map of the target region, as
shown in Figure 17. In Figure 17a, the accuracy of each label classification in the target
region is given. Compared to the actual classification result, the total accuracy of the
label classification reached 98%. The results shown in Figure 17b were used in the a
priori-knowledge classification extrapolation of the scattering coefficients.
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3.3. Results of Scattering-Coefficient Estimation for Target Area

The purpose of the scattering-coefficient estimation method is to mine the clutter data
of the tested area, determine the influencing mechanisms of the environmental parameters
on the clutter characteristics, and estimate the clutter characteristics of the untested area
according to the association of the multidimensional environmental parameters between
regions. This method can realize the clutter cognitive requirements of complex areas
with accuracy and fully use existing data to reduce the test cost, and hence, it has signifi-
cant engineering application. Figure 18 presents a flowchart of the scattering-coefficient
estimation method.
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Figure 18. Flow diagram of the method for the estimation of the scattering coefficient of the target area.

3.3.1. Analysis of Similarity between Source and Target Regions

In this study, the similarity between the source and target regions was measured using
the BC method, as shown in Equation (10). The amplitude distribution statistics of the
corresponding parameters of the source and target regions were obtained and used in
Equation (10) to obtain the BCs of the two regions under each parameter. The average of
the BCs of all the parameters is the similarity between the two regions.

Figure 19 shows the results of the BC calculations for the target and source regions
for multiple parameters. Figure 19a shows the probability distribution of the Ht, and
Figure 19b shows the multiparameter results. By averaging the BCs of all the parameters,
the overall similarity between the two regions was estimated at 0.87, which indicated that
the source and target regions had similar characteristics in terms of multiple parameters.
Data from the source region can be used to evaluate the target region.
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3.3.2. Evaluation Index of Prediction Results

Several metrics were used to evaluate the prediction results, including the mean
absolute error (MAE), root-mean-squared error (RMSE), coefficient of determination (R2),
and pulse dimension mean value error (PMVE).

The MAE is the average of the absolute errors and is denoted by the following equation:

MAE =
1
k

k

∑
i=1

|σi − σ̂i| (14)

where σi is the measured data, σ̂i is the predicted result, and the dimensions of both are the
same. k is the total amount of data.

The RMSE represents the difference between the predicted value of the model and
measured data, and it is used to measure the prediction accuracy of the model. This is
expressed by the following equation:

RMSE =

√
∑k

i=1(σi − σ̂i)
2

k
(15)

The R2 indicates the model’s ability to explain the dependent variable and ranges
from −∞ to 1; when it is closer to 1, it indicates a better fit of the model to the data:

R2 = 1 − ∑k
i=1 (σi − σ̂i)

2

∑k
i=1 (σi − σ)2 (16)

The measured and predicted data were transformed into a range cell–pulse matrix, as
shown in Figure 6a, and the mean value of the data in the pulse dimension was calculated
using the mean value curve shown in Figure 6b. The mean value error is calculated
as follows:

PMVE =
1
n

n

∑
i=1

∣∣σi − σ̂i
∣∣ (17)

In the study of scattering characteristics, the PMVE is a commonly used evaluation
parameter.

3.3.3. Estimation Results

Several estimation methods were used in this study, such as the RF, MW, KMW,
PCKRF, and PCKMW methods. These methods have been described previously; however,
the choice of the weight coefficients is explained here. Weighting was applied to the MW
method based on the weights shown in Table 4. The results listed in Table 5 were used for
the weighted clustering and weighted distance calculations in the PCKMW and PCKRF.

Figure 20 shows a 2D image of the scattering coefficient of the target area and the
change curve of the mean scattering coefficient with the grazing angle. The results of the
extrapolation methods were compared with the measured data.

Figure 21 shows the calculation results for each method, including the 2D images and
scatter plots. The prediction results of the RF are close to the measured data in the two-
dimensional image; however, most of the RF prediction results are concentrated between
−20 and −40 dB (Figure 21b), and the estimation of the high and low values is not very
ideal. The results predicted by the MW method can be spread over the dynamic range;
however, a significant difference between the predicted and measured data is observed in
the two-dimensional image. The regression of the scatter plot for the MW method was poor
and discrete. The KMW method was superior to the MW method, and the predicted and
measured data were relatively close; however, the scatter plot was still very discrete. The
above three methods are relatively simple and not ideal in terms of the overall 2D image
approximation and regressivity of the scatter plot. From the differences between these and
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the measured data, the ground-cover scattering is very complex, and it is difficult to obtain
good results for clutter prediction in unknown areas using traditional methods.
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Figure 20. Range–pulse 2D image of the scattering coefficient in the target area and the variation
in the mean scattering coefficient with the grazing angle. (a) Range–pulse 2D image. (b) Mean
scattering coefficient.
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Figure 21. Comparison of prediction results of multiple estimation methods. (a) Range–pulse 2D image
of RF results. (b) Scatter plots between RF results and measured data. (c) Range–pulse 2D image of
MW results. (d) Scatter plots between MW results and measured data. (e) Range–pulse 2D image of
KMW results. (f) Scatter plots between KMW results and measured data. (g) Range–pulse 2D image of
PCKRF results. (h) Scatter plots between PCKRF results and measured data. (i) Range–pulse 2D image
of PCKMW results. (j) Scatter plots between PCKMW results and measured data. In subfigure (b,d,f,h,j),
the red dashed line represents the regression line, while the data is presented in the form of scatter plot
density, with red indicating areas of high scatter density and blue indicating areas of low scatter density.
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As shown in Figure 21g,h, the PCKRF method is significantly better than the above
three methods. First, the two-dimensional scattering coefficient is very close to that of the
measured data. Second, the predicted result of the PCKRF method has a wider dynamic
range (from −45 to −15 dB) compared to that of the RF method. Third, the overall scatter
plot is closer to the regression line. This shows that the pre-classification method combined
with clustering and ML regression prediction has a good effect on ground-cover-scattering
prediction in unknown areas.

Finally, the prediction results of the PCKMW method are shown in Figure 21i,j. The
two-dimensional image of the predicted results is very close to that of the measured data,
and the dynamic range is from −50 to −15 dB. The scatter plot is much closer to the
regression line than those of the above four methods, indicating that the prediction is
comparatively better. However, depending on the clustering method used, some of the
predicted data points had the same or similar values.

Figure 22 compares the mean scattering coefficients of the considered estimation
methods. The overall comparison shows that the maximum difference between the mean
predicted scattering coefficients of the five methods and measured data was no more than
10 dB, which is relatively close, and the trends of variation with the fluctuation in the
grazing angle were in agreement. The predicted results of the RF and PCKRF were very
close to the mean scattering coefficient, but their values were lower than the measured data.
In addition, the prediction accuracy was better for undulating terrain corresponding to
grazing angles from 1.5◦ to 3.4◦, and worse for flat terrain with grazing angles from 1◦ to
1.5◦. The prediction results of the MW and KMW are relatively close, and they are in good
agreement with the measured data in the grazing-angle range from 1.5◦ to 2.8◦; however,
the results are poor at other angles. The mean predicted result of the PCKMW had the
highest degree of agreement with the measured data, particularly when the grazing angle
was <2◦.
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Table 7 presents a comparison of the evaluation indices for the multiple estimation
methods. The two estimation methods that applied pre-classification based on prior
knowledge were superior to the RF, MW, and KMW methods for all indicators, and the
PCKMW method in particular was much better. The results showed that the accuracy
of the estimation method for an unknown region was significantly improved after pre-
classification and clustering.
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Table 7. Comparison of evaluation indexes of multiple estimation methods.

Estimation Method RF MW KMW PCKRF PCKMW

MAE (dB) 5.5231 8.6095 7.4796 4.9319 3.3610
RMSE (dB) 7.0330 10.8299 9.4703 6.3942 4.3214

R2 0.0915 −1.1541 −0.6472 0.2491 0.6570
PMVE (dB) 2.5735 2.2444 1.9740 1.8290 0.7263

4. Discussion

This study is based on airborne-radar data of a large area with complex-terrain clut-
ter combined with ALOS DEM, Global Land 30, HWSD soil distribution, MODIS NDVI,
Google image, and other environmental remote sensing data. A dataset of the association
and matching between the clutter and environmental parameters was constructed by re-
constructing the geometric relationship of the test scene, dividing the terrain, and matching
the illuminated areas. Compared with previous clutter data [22,25], the dataset constructed
in this study has the characteristics of wide coverage and many ground object parameters.
This dataset overcomes the problem of quantitative parameter representation in the study
of large-scene clutter characteristics and enables a better analysis and understanding.

Based on this dataset, aiming to solve the practical problems of the high cost of tradi-
tional clutter testing in large areas, difficult testing in remote and complex terrain, and lack
of understanding of clutter characteristics, this study attempted to use measured data and
the underlying logic of similar associations of multidimensional parameters between differ-
ent regions to implement clutter estimation methods for similar terrains. This included a
weight analysis of the influences of the complex terrain and multiple environmental pa-
rameters on the clutter, RF regression prediction, prior-knowledge classification, clustering,
and hybrid estimation using multiple-method superposition.

Figures 11 and 21b show the significant differences between the predictions of the RF
model in the training set, test set, and unknown regions. The RMSE of the training set was
only 3, the R2 was 0.8782, and the dynamic range in the scattering coefficient was from
−50 to −10 dB, which are relatively ideal indicators in cases of such high amounts of data
and numbers of multidimensional parameters. For the corresponding test set, the RMSE
reached 4.67, the R2 was 0.7, and the dynamic range was from −44 to −18 dB, which is in
line with the expectations. However, in the prediction of the target area, all the evaluation
indexes deteriorated: the RMSE was 7, the R2 was only 0.09, and the scatter plot of the
scattering coefficients was concentrated in the range from −40 to −20 dB. This comparison
shows that the RF model is inefficient in clutter prediction in unknown regions.

The logic of scattering-coefficient extrapolation for untested areas based on data is
somewhat different from traditional ML or DL prediction [39]. First, ML or DL was used to
shuffle the entire dataset, most of which was used as the training set to train the model,
while a small part was used as the test set to verify the model [30,31]. The data sources for
the test and training sets were the same. In this study, the data for the source and target
areas were different. Although they were in similar environments, they were not located
in the same test area. Second, the high complexity of ground-cover scattering increases
the data cost of ML prediction models. For example, the data of the target area were
not involved in the training process for the ML prediction. The RF scattering-coefficient
prediction (Figure 21b) was not ideal because of the lack of scattering coefficients for the
target area. It is reasonable to train the ML model by mixing the target region with data of
the source region to improve its prediction accuracy in the target region; however, this is
contrary to the precondition that the scattering coefficient of the target region is unknown.
Therefore, if we want to rely on complete ML modeling to predict unknown regions, we
need a large number of datasets from different regions for training and learning, which will
lead to high costs and difficulty in measurements in remote areas. Therefore, the purpose
of this study was to use existing data or a low amount of test data to achieve the rapid and
accurate cognition of unknown regions.
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Based on data calculations, it is believed that the closer the environmental parameters,
the more similarity is required in the scattering characteristics. Therefore, after calculating
the influence weight of the source area, the MW method was used to match and assign
the scattering units of the target and source areas (Figure 21c,d). The 2D plot is close to
the measured data, but the scatter plot has poor regression, with an RMSE of 10.83 and
an R2 of −1.154, indicating that the estimation method is not appropriate. The KMW
first classified the source data into several clusters and used the MW method to estimate
the corresponding clusters (Figure 21e,f). Compared with the MW, the KMW shows a
certain improvement, but the regression is not sufficiently good; the RMSE is 9.47 and the
R2 is −0.6472.

The prediction results of the RF, MW, and KMW methods are not ideal, mainly because
ground-cover scattering is very complex; in particular, the weight coefficient of each
parameter that affects the scattering changes significantly with the change in ground cover.
For example, in mountainous areas, the shading coefficient is a relatively large parameter,
whereas, in flat terrains, the distribution of ground objects such as towns, woodlands,
and arable land is the main influencing factor. In addition, the dynamic range of the
scattering coefficient in a complex terrain is large, and in many cases, the parameters of the
ground objects are close to the measured results; however, the scattering coefficient varies
significantly, leading to the insufficient regression of the prediction method.

To overcome these problems, based on a previous method, this study used prior
knowledge to classify the source data into six classes, calculate the weight coefficient
of each class of data, and perform weighted clustering. In the process of the weighted
clustering, the scattering coefficient was also used as one of the clustering parameters,
and the weight of the scattering coefficient was set to 30% to increase the influence of the
scattering coefficient in the clustering algorithm. Therefore, a dataset of 6 × 12 groups was
obtained, and RF and MW predictions were performed for each dataset, namely, the PCKRF
and PCKMW datasets. The PCKMW method uses a weighted minimum distance judgment
when judging the category of the target data, and the weights include only those of the
environmental parameters. From the comparison results in Figure 21 and the evaluation
indicators in Table 6, these two methods were significantly improved compared to the other
three methods. Compared with the RF, the two-dimensional plot of the PCKRF is closer
to that of the measured results, and the dynamic range reaches from −50 to −15 dB. The
regression of the scatter plot also improved to a certain extent, with an RMSE of 6.394 and
an R2 of 0.2491, which are better. The RMSE of the PCKMW method was 4.321 with an
R2 of 0.657, the mean value is very close to that of the measured results, and the PMVE
is 0.726 dB; therefore, all the indicators are better than those of the other methods. The
results of the comparison of the methods show that the PCKRF and PCKMW provide
better clutter estimation in unknown regions after pre-classification and superimposed
weighted clustering. However, owing to the adoption of the data-clustering method with
an increasing proportion of scattering coefficients, a considerable part of the prediction
results of the PCKMW have many concentrated values, which has a negative impact on
the regression.

In summary, the terrain clutter estimation method presented in this paper is in the early
stages of research, with several areas warranting improvement. For example, the dataset
construction relies on the statistical results of the scattering-unit parameters. However,
in fact, a scattering unit should be made into a dataset associated with multiple sub-
units for research rather than statistical results. In addition, DL neural networks and
hyperparameter optimization algorithms [35] should be applied to improve the estimation
methods in the future. Furthermore, by converting multidimensional parameter data into a
two-dimensional range–pulse map, image recognition and prediction algorithms could be
applied to estimate the range–pulse map of scattering coefficients. The verification dataset,
derived from the target area, closely aligns with the test lot and parameters of the source
area, demonstrating typicality. However, to extend applicability to a broader range of areas
and datasets, further research is essential.
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5. Conclusions

For the complex-terrain clutter in a vast territory, the complexity and diversity of the
ground objects cannot be characterized well, and the influence of environmental factors
on the scattering coefficient presents complex nonlinear relationships that are difficult to
quantify. As a result, the clutter characteristics of complex terrain cannot be accurately
obtained when encountering new ground object environments and test conditions. To
address the aforementioned challenges, this study undertook the following research efforts.
Firstly, a clutter dataset association with multisource environmental data was established.
Secondly, through data mining employing various methods, two novel clutter estimation
techniques for similar terrains were developed.

In this study, combining the measured clutter data, DEM data, land-cover classifi-
cation data, soil composition data, NDVI data, and Google image data, we constructed
a multifactor-associated clutter dataset by reconstructing the geometric relationship of
the measurement scene, triangulating the terrain, and matching the illumination areas.
There are as many as 16 types of parameters involved in this dataset, which quantitatively
characterize the complex environmental information from various aspects, such as the
terrain relief, shadowing effects, and surface-cover types and their distribution. Taking
the dataset of area B as an example, it covers an extensive region of 90 km × 70 km and
contains 691,200 rows and 17 columns. In terms of both the richness of the parameter infor-
mation and the size of the covered area, the association dataset established in this study
is unparalleled. This dataset not only solves the problem of the associated quantitative
parameter representation of large-scene clutter, but it also provides a foundation for the
development of clutter estimation methods for similar terrains.

Based on the multifactor-associated clutter dataset, to overcome the challenges posed
by the large dynamic ranges of scattering coefficients and compound effects of multiple
parameters on clutter, two innovative clutter estimation methods, designated as PCKRF
and PCKMW, were developed by combining multiple techniques, such as prior-knowledge-
based classification and multifactor weight coefficients, K-means clustering, RF prediction,
and the minimum Euclidean distance. We compared the prediction results of the PCKRF
and PCKMW with the measured data from multiple aspects, including the range–pulse,
scattering-coefficient, two-dimensional image, scatter plot of scattering coefficients, and
mean-scattering-coefficient curve. And multiple metrics, such as the MAE, RMSE, R2, and
PMVE, were used to validate the accuracies of the algorithms. The results showed that
the performances of both the PCKRF and PCKMW methods in predicting the scattering
coefficient were notably superior to those of the RF, MW, and KMW. Specifically, compared
with the RF, the two-dimensional plot of the PCKRF was closer to that of the measured
results, and the dynamic range reached from −50 to −15 dB. The regression of the scatter
plot also improved to a certain extent, with an RMSE of 6.394 dB and an R2 of 0.2491, which
were better than those of the RF. Even more impressive was that all the indicators of the
PCKMW method surpassed those of the other methods, with an RMSE of 4.321 dB, a PMVE
of 0.726 dB, and an R2 of 0.657.

The above demonstration illustrates that prior-knowledge-based classification and
weighted coefficient calculation are particularly beneficial for overcoming the challenges
posed by the large dynamic ranges of scattering coefficients and numerous parameters in
complex terrains across extensive areas, ultimately enhancing the prediction accuracy. The
pre-classification classifies source data into six classes with similar features, which helps
to calculate more accurate weight coefficients for each data class. And, in the process of
weighted clustering for source data, the scattering coefficient is also used as one of the
clustering parameters, and the weight of the scattering coefficient is set to 30% to increase
the influence of the scattering coefficient in the clustering algorithm. In addition, by com-
prehensively considering the correlation coefficient and the RF out-of-bag parameter error,
a comprehensive weight coefficient was formed to characterize the multifactor influence,
which was found to be superior to the fitting effects of using either of these two factors
individually. Through the aforementioned operations, a large and complex dataset was
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divided into 6 × 12 clusters. Each cluster contained elements that were similar in terms of
their influence on the scattering coefficient. Subsequently, by applying the RF and MW, a
relatively good prediction performance was achieved. The current achievements in clutter
estimation methods offer a viable option for accurately recognizing clutter characteristics
in complex-terrain environments where data collection may be difficult or impossible, with
lower human and economic costs.

Despite the certain effectiveness of the current clutter estimation methods, they still re-
quire considerable time and effort to refine and optimize the algorithms to further improve
their accuracy, robustness, and applicability. In the future, we plan to make improvements
in the following aspects. Firstly, we aim to enrich and optimize the clutter dataset as-
sociated with multiple elements, making it closer to real-world scenarios and providing
more comprehensive representations of the element information. Secondly, we intend to
apply deep learning networks to the data training and prediction, which will leverage their
ability to learn complex patterns and relationships from large datasets, thereby enhancing
the accuracy of the algorithms. Thirdly, we plan to enrich the knowledge information of
the pre-classification, making the classification method of terrain features more detailed
and accurate. This will enable us to develop more fine-grained classification schemes
that can distinguish between different types of terrain features more precisely, leading
to more accurate clutter estimations. Lastly, we intend to consider broader principles for
weight coefficient computation and to optimize the methodology for determining these
weights. By addressing these areas, we can expect to see significant advancements in clutter
estimation techniques in the coming years.
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