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Abstract: This paper presents a pioneering study in the application of real-time surface landmine
detection using a combination of robotics and deep learning. We introduce a novel system integrated
within a demining robot, capable of detecting landmines in real time with high recall. Utilizing
YOLOv8 models, we leverage both optical imaging and artificial intelligence to identify two common
types of surface landmines: PFM-1 (butterfly) and PMA-2 (starfish with tripwire). Our system
runs at 2 FPS on a mobile device missing at most 1.6% of targets. It demonstrates significant
advancements in operational speed and autonomy, surpassing conventional methods while being
compatible with other approaches like UAV. In addition to the proposed system, we release two
datasets with remarkable differences in landmine and background colors, built to train and test the
model performances.

Keywords: deep learning; artificial intelligence; optoelectronic sensors; landmine; UXO; detection;
surface landmine

1. Introduction

The use of landmines and other explosive ordnance is a huge humanitarian demining
problem continuously fed by the increasing number of conflicts around the world as
reported yearly in [1]. The estimate of land and urban territories where antipersonnel (AP)
and antitank (AT) mines and other unexploded ordnances (UXOs) are buried or abandoned,
says that with current detection and clearance technologies, it will require decades to release
the land to civil use [2]. The complexity of the problem involves sustainable solutions for
detection, clearance, and victim assistance. For the detection of buried plastic and metal
case AP and AT landmines, there are standard sensors based on metal detectors [3–5], and
subsurface ground penetrating radar [6], whic are also combined in dual mode handheld
equipment [7–9]. More recently, the inspection of large areas has been achieved by antenna
arrays of microwave radar [10], optical or infrared cameras [11,12], and magnetometers [13]
mounted on UAVs [14–16] or mounted on robotic vehicles [17–19]. In addition to buried
landmines, there are surficial explosive ordnances that are abandoned on the surface or
deployed by cluster munition [20]. For the specific task of detection and classification of
surficial UXOs, there are electronic (sensors) and informatic (AI) technologies that can help
to design autonomous systems for the detection and positioning/mapping such threats.
In particular, portable and wearable high resolution cameras can provide video streaming
that can be analyzed in real time by AI based models, trained with custom data containing
the targets in different environments. The present work focus on the innovation of the
application of optical images and AI for the detection of visible surficial UXOs based on
a prototype system that includes a remotely controlled sensorized robotic platform. This
approach is completely safe, not subject to random detection errors due to tiredness, and
can work for long periods (hours) depending on the battery charge storage capacity. An
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important requirement considered in this research is the real-time detection of the surface
threats for maneuvering the robotic platform around the detected threats. The two targets
selected in this work are two small plastic landmines largely found on the ground of
post-conflict areas and potentially lethal for kids or adults: PFM-1 (“Butterfly”) and PMA-2
(“Starfish”) landmines (see Figure 1a and Figure 1b, respectively).

(a) (b)
Figure 1. The two landmines taken into consideration in this study. (a) PFM-1 “Butterfly” landmine,
(b) PMA-2 “Starfish” landmine.

Furthermore, the quest for more effective landmine detection solutions has led to
the exploration of cutting-edge technologies, particularly in the field of deep learning.
Object detection has emerged as a pivotal tool in addressing the challenges associated with
identifying and localizing landmines, including unexploded ordnances (UXOs). In object
detection, the primary goal is to enable machines to recognize and delineate specific objects
within a given scene or image. This technology has found extensive application in diverse
domains, ranging from autonomous vehicles [21] and surveillance systems [22,23] to medi-
cal imaging [24] and, more recently, the domain of humanitarian demining [25,26]. In the
context of landmine detection, object detection models, based both on convolutional neural
networks (CNNs) and transformers (ViT), have demonstrated remarkable capabilities in
discerning objects from the surrounding environment. Despite all of these models being
able to process high-resolution optical images, not all can provide real-time analysis, forcing
a choice between faster models and higher accuracy. As we will see in Section 2.2, we chose
the YOLO family, due to its properties of fast processing, lightweight, and portability. In
Section 3.1.1, we introduce the infrastructure of our real-time landmine detection system in-
tegrated with the robotic platform, and further present possible integrations with additional
platforms such as UAV. To the best of our knowledge, our research represents a pioneering
effort in designing a real-time, lightweight, and high-recall landmine detection system
within the constraints of the resources and platforms at our disposal [19,27]. Our work
fills a critical gap in landmine detection research, where real-time deployment remains a
challenge. In this context, we present a practical and efficient solution for surface landmine
detection with a focus on real-time applicability, expanding the possibilities for operational
deployment in diverse scenarios.

2. Related Works

To contextualize the advancements in our field, we examine a diverse array of method-
ologies and technologies in the next sections. This includes an exploration of optical
imaging, dynamic thermography, and various analytical approaches such as image pro-
cessing and neural networks. While our study specifically utilizes optical imaging, neural
network analysis, and real-time remote interfacing, this comparative overview serves to
highlight the contributions of different techniques and provides a broad perspective on the
current innovations and practices in the field.

2.1. Data

Traditional landmine detection methods have limitations, particularly in terms of speed
and accuracy. In this section, we delve into the utilization of data-driven approaches, specifi-
cally optical imaging, as promising means for the real-time detection of surface landmines.
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2.1.1. Optical Imaging

In recent conflicts, scatterable landmines are often used for covering large areas with
a short deployable time. The detection of such surface explosive ordnances over large
areas is more productive when optical sensors are mounted on UAVs. In [28], the authors
propose a solution with two cameras in the VIS and NIR spectrum and the combination by
data fusion. The approach is interesting and some preliminary results on the successful
detection of small M14 (6 cm diameter) plastic landmines stimulate further developments.
This work also points out some of the limitations of the solution for the data fusion, which
are the acquisition of VIS and NIR visible images (350–1000 nm) at different times and
spatial positions. Moreover, the operating distance of the UAV must be short enough
(few meters) to obtain the best optical quality of the images, but the effect of the UAV
motors on the vegetation can make the image fusion process more difficult as the grass
is moving under the wind pressure. The image sensor is a Sequoia multispectral camera
and generates a 1280 × 960 pixel resolution image with a capturing interval of 2 s. A
similar sensor arrangement was also used on a UAV in [29]. This work was calibrated on a
common scatterable landmine, largely used in Afghanistan, that is the PFM-1, also called
the “butterfly”. The work concentrates on analyzing the detection performance for different
backgrounds: grass, snow, and low vegetation. In [11], the authors focus on the same targets
(PFM-1) but use thermal imaging for investigating alternative methods to VIS images that
are influenced by variable environmental conditions (shade, sun light irradiance). The
detection of surface explosive remnants of war (ERW) by remote sensing technologies opens
the possibility of integrating different sensor types on different platforms. This concept
has been investigated in a special issue [30] where optical images, radar, and LIDAR data
can be generated by different platforms and correlated. In our work, we propose to use a
COTS sensor for optical imaging mounted on a robotic platform for landmine detection and
positioning. The sensor is an iPhone 13 pro where a video camera and a LIDAR provide
data during the movement of the robot that is surveying an area. The acquisition of images
can also be achieved with other sensors, but the choice of a COTS can be an advantage due
to its ease of replacement. The detection of surface landmines with this robot allows the
definition of a clear and safe path for a robot swarm where other robots are equipped with
other sensors (radar, metal detectors, etc.) [19].

2.1.2. Dynamic Thermography

An alternative method to optical images used for surface landmines is based on
the thermal properties of landmines that differ from the scene. The early experiments
on modeling the thermal response of landmines are published in [31]. The temperature
gradients were analyzed during thermal transients, and the main equations of dynamic
thermography based on infrared sensors were reported. Later, in [32], the application of
chaotic neural networks was applied to discriminate a plastic case PMN shallow-buried
in sandy soil within an investigated area in the order of a square meter. The problem
of creating a large dataset for the testing algorithm was tackled by a model simulation
approach in [33]. A review of the research undertaken on infrared thermography [34]
made clear the issue of discriminating shallowly buried AP mines in inhomogeneous
soil with a limited false alarm rate. Moreover, the computational costs of the thermal
model of the landmines and the soil were analyzed in [35]. More recently the need for fast
detection methods and the availability of hyperspectral sensors installed on UAV flying
over a scene have been proposed for creating large databases down streaming the data by
fast and efficient communications [36]. This method was demonstrated for detecting PFM-1
landmines by using the optical and IR images acquired with flights at different times at
sunset [11]. The acquisition of IR images is still a limiting factor for fast detection, but the
use of AI and large databases [37] will certainly improve the performance of this method.
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2.2. Analysis Approach

The methods employed for surface landmine detection can be broadly categorized
into two main classes: image-processing techniques and neural network-based approaches.
These methods play a pivotal role in the development of effective landmine detection sys-
tems, each offering unique capabilities and advantages. In this section, we delve into these
methodologies and their respective subcategories, shedding light on their contributions
and applications within the field of landmine detection.

2.2.1. Image Processing

Image processing methods have long been a cornerstone of surface landmine detection,
aiding in the analysis of sensor data and the extraction of valuable information. Within this
category, the earlier subcategory is represented by thresholding, a common approach in
landmine detection often used in combination with data from metal detectors and other
sensors. The method involves setting a specific threshold for different types of landmines
at various distances based on prior analysis. Yoo et al. [13] employed thresholding, where
operators, after analyzing conditions in a training set, established thresholds for different
landmine types at varying distances. Takahashi et al. [3] utilized information about soil
properties and conditions, such as magnetic susceptibility, electrical conductivity, dielectric
permittivity, water content, and heterogeneity, to perform thresholding analyses that
exhibited effectiveness across different soil conditions. Another group of techniques play
a crucial role in handling the raw data obtained from various sensors: algorithmic and
signal processing. Common methods include correlation functions, cross-correlation with
simulated samples, and least mean squares (LMS) or their variants. Tesfamariam et al. [38]
discussed the application of correlation functions in landmine detection, while Gonzalez-
Huici et al. [39] explored cross-correlation with simulated samples. LMS methods, including
2D and 3D variants, were investigated by Dyana [40].

2.2.2. Neural Networks

Neural networks have emerged as a transformative force in landmine detection,
offering powerful tools for pattern recognition and classification tasks. Within this cate-
gory, early works explored statistical machine learning, techniques that gained promi-
nence in landmine detection, providing advanced approaches to handle sensor data.
Deiana et al. [41] discussed the use of statistical approaches, while Shi et al. [42] explored
AdaBoost classifiers. Gader et al. [43] applied hidden Markov models in their work. Nunez-
Nieto et al. [44] used logistic regression and neural network techniques (Multilayer Percep-
tron, MLP) to calculate the probability of the presence of buried explosives. However, their
work focused on relatively larger landmines in sandy soil, which may not be representative
of all scenarios. Silva et al. [45] employed a fusion approach, combining multilayer percep-
tron (MLP), support vector machines (SVM), decision trees (DT), and k-nearest neighbors
(kNN). They achieved high accuracy; however, their experiments were based on surface
images of colored landmines on sand, which might not reflect real-world conditions. More
recently, deep learning has gained traction in surface landmine detection, offering the
capability to automatically learn intricate patterns from sensor data. Several studies have
utilized deep learning architectures to enhance the accuracy and efficiency of landmine
detection. Following the footsteps of Silva et al. [45], Pryshchenko et al. [46] adopted a
fusion approach, analyzing signals with fully connected neural networks (FCNN), recur-
rent neural networks (RNN), gated recurrent unit (GRU), and long short-term memory
(LSTM) models for ultrawideband GPR antennas. The results of these models were fused
for improved performance. Baur et al. [29] employed a faster R-CNN architecture in UAV-
based thermal imaging for landmine detection, introducing the power of deep learning
into this context. Bestagini et al. [47] trained an autoencoder convolutional neural network
(AE-CNN) for anomaly detection using GPR data from landmine-free regions. Their model,
trained exclusively on “good” scans representing soil without landmines, achieved an
impressive accuracy of 93% with minimal data pre-processing and training. It is worth
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noting that the train set and test set had the same distribution (both on sand) and that they
were relatively homogeneous and free of clutter, which makes it easier to detect anomalies.

These different image processing and neural network-based methods represent the
core of the techniques utilized in surface landmine detection. In the subsequent sections,
we provide insights into the tools and methodologies that enable real-time applications,
as well as the experimental results and discussions that arise from the implementation of
these methods.

2.3. Real-Time Applications

In the context of landmine detection, real-time capabilities are paramount for practical
deployment, enabling timely responses to potential threats. While there exist several notewor-
thy works in the field of landmine detection, most of them are in a laboratory condition [47],
are not tested on out of distribution (OOD) data [13,47], only considered navigation prob-
lems [17], and are, in general, not optimized for real-time applications [29,45–47]. Our research
is primarily motivated by the need for real-time landmine detection in diverse scenarios. We
acknowledge that the landscape of landmine detection research predominantly focuses on
various methods, datasets, and models, but few prioritize real-time applicability.

3. Tools and Methods

In this section, we illustrate the tools involved in the study (the robot and the camera)
in Section 3.1, as well as a more in-depth description of the proposed system integration
(Section 3.1.1). Then, we describe the two important elements for a machine learning
algorithm: the data (Section 3.2) and the model choice (Section 3.3).

3.1. Robot Configuration

Our research is conducted in the context of the “Demining Robots” project, which
involves a fleet of robots designed for various roles related to landmine detection and
demining. Within this project, one of our robots, named UGO-first, plays a crucial role
in the detection of surface landmines. UGO-first [19,27] is equipped with an array of
advanced sensors, making it a versatile platform for our research. These sensors include
LiDAR, holographic radar, accelerometers, and high-precision GPS with a remarkable 5 cm
positional accuracy and many cameras (RGB and depth). Some robots within our swarm
are equipped with trip-wire detection systems, as certain landmines (i.e., “starfish”) are
connected to nearly invisible tripwires that can trigger detonation. A complete description
of the robot swarm functionalities is shown in Figures 2 and 3. To achieve real-time detection
of surface landmines, we leverage the capabilities of a simple RGB camera mounted on
the robot.

(a) Demining robot on-board GPS system. (b) Demining robot scanning test field.
Figure 2. Details of demining robot. On the (left), is the robot with the on-board GPS system and
off-board GPS tower. On the (right), a panoramic view of the robotic platform scanning the test field.
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Figure 3. Details of UGO-first robot and architecture schema. On the (left), is the communication
schema between the robotic platform and the remote server, remote terminal, and joystick control
for remote driving. On the (right), an innovative Industry 4.0 paradigm schema is applied to the
demining procedure.

3.1.1. System Architecture

In this work, we introduce a lightweight system that can run on mobile devices
controlled by remote personnel, far from the dangerous fields. The model’s run speed
depends on the user’s device capability as it runs completely on the user’s browser. The
architecture system is shown in Figure 4. From the image, we can appreciate the flexibility
of the system, which only requires a Python backend to run on the robot device, which
connects to the mobile camera. In our case, the sensor is an iPhone 13 pro where a video
camera provides data during the movement of the robot that is surveying an area. The
backend provides a streaming video from the camera input and it waits for the frontend to
connect. The frontend downloads from different sources the YOLO ONNX weights and
processes the input streaming with the model. The image, together with the detection, are
then shown on the display, as we can see from the tablet and smartphone images on the
top left of Figure 4.

3.2. Data Collection

To create a comprehensive dataset (called “SurfLandmine”) for training and testing our
real-time surface landmine detection system, we collected data in various environmental
conditions that simulate real-world scenarios. The collected data include examples in
different conditions, such as:

• Environment: We considered both grass and gravel terrains to account for variations in
surface characteristics.

• Weather: Our data collection covered different weather conditions, including cloudy,
sunny, and shadowy settings, as these factors can influence image quality and land-
mine visibility.

• Slope: Different slope levels (high, medium, and low) were considered to assess how
the angle of the camera relative to the ground affects detection performance.

• Obstacles: We accounted for the presence of obstacles, such as bushes, branches, walls,
bars, trees, trunks, and rocks, which can obscure landmines in a real-world scenario.

In terms of landmine selection, we opted for two common surface landmine types: the
PFM-1 (butterfly) and PMA-2 (starfish with tripwire) illustrated in Figure 1a and Figure 1b,
respectively. These landmines were chosen due to their prevalence in real-world scenarios,
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with PFM-1 often being dropped from airplanes and PMA-2 designed for surface placement.
In total, we collected 47 videos, each with an average duration of 107 s, recorded at a frame
rate of 6 frames per second (FPS). Approximately 25% of the frames contained at least one
landmine, resulting in a total of 6640 annotated frames out of 29,109 frames in the dataset.
Additional information about the dataset is provided in Tables 1 and 2.

Figure 4. The proposed system architecture. The components of the camera, backend, and frontend
are independent of the moving vehicle used. This flexibility makes it possible to be used both on
robot (left) and UAV (right) vehicles.

Table 1. Data statistics. Values are rounded averages over the 47 ITA videos (IID), and 11 USA
videos (OOD).

Split Duration (s) Ann. (%) Frames Ann. Frames

Train 112 25 154 669
Val 87 24 113 522
Test (IID) 104 24 140 624

Test (OOD) 74 80 352 443

Table 2. Data categories. Values were calculated over the 47 ITA videos (IID), and 11 USA
videos (OOD).

Environment Weather Slope
Split Grass Gravel Sunny Shadow Cloudy High Medium Low

Train 26 8 15 12 7 11 1 22
Val 3 2 1 3 1 0 1 4
Test (IID) 4 2 2 3 2 2 0 4

Test (OOD) 11 0 8 1 2 3 2 6

The annotation process was carried out using the computer vision annotation tool
(CVAT) [48], a widely used framework for image annotation. Figure 5 shows examples of
annotated frames in different conditions.
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Figure 5. Examples of annotated data using CVAT [48].

3.3. Model Selection

Given our need for real-time processing in landmine detection, we adopted a single-
step object detection method. There are two primary approaches in object detection:
single-stage and multi-stage. Multi-stage methods, like the R-CNN family (R-CNN [49],
Fast R-CNN [50], Faster R-CNN [51]), first propose potential object regions, then detect
objects in these regions. In contrast, single-stage methods, such as YOLO [52,53], directly
detect objects without a separate region proposal step.

We chose YOLOv8 [54] for its real-time performance and efficiency, crucial for de-
tecting surface landmines. After converting YOLOv8 models to the ONNX format, they
became significantly lightweight (approximately 3MB for the “nano” version and 11 MB
for the “small” version), enabling smooth operation on various platforms, including web
browsers, smartphones, and iPads. This lightweight nature does not significantly burden
computational resources. Additionally, YOLOv8’s requirement for a smaller annotated
dataset for fine-tuning suited our objectives for efficient and effective landmine detec-
tion. A more in-depth description of YOLOv8 with an architecture illustration is given in
the Appendix A.

4. Experimental Setup

To rigorously assess the performance of our landmine detection system, we have
established a set of metrics that allow us to evaluate the precision, recall, and overall
effectiveness of the model under different conditions. These metrics are crucial for ensuring
that the system minimizes false negatives, as the detection of every landmine is imperative
for safety reasons.

4.1. Metrics

For evaluating our object detection model, we focus on the following key metrics:

Precision =
TP

TP + FP
Recall =

TP
TP + FN

F1 = 2 × Precision × Recall
Precision + Recall

IoU =
Area of Overlap
Area of Union

mAP =
1
n

n

∑
i=1

APi

• Precision: The ratio of correctly predicted positive observations to the total predicted
positives. High precision correlates with a low false positive rate.

• Recall: The ratio of correctly predicted positive events to all actual positives. Crucial
for minimizing the risk of undetected landmines.

• F1 Score: The weighted average of Precision and Recall, a measure of the model’s accuracy.
• Intersection over Union (IoU): Measures the accuracy of an object detector on a dataset

by calculating the overlap between the predicted and actual bounding boxes.
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• Mean Average Precision (mAP): Averages the precision scores across all classes and
recall levels, providing an overall effectiveness measure of the model.

These metrics are calculated on a validation set that is separate from the training data
to ensure an unbiased evaluation of the model’s performance. These formulas provide a
quantitative framework to evaluate the performance of the object detection model, with a
particular focus on minimizing the occurrence of false negatives, which is critical in the
context of landmine detection.

4.2. Training

The YOLOv8 model training was conducted on a dataset named “SurfLandmine”,
which we collected and annotated. The training process involved:

• Pre-trained model: The model was initially trained on the “ImageNet” dataset, which
contains RGB image data and corresponding annotations of 1000 classes, gathered
from the internet. This step in necessary to learn important image features such as
colors, shapes, and general objects.

• Initial fine-tuning: The model was fine-tuned on the “SurfLandmine” dataset, which
contains RGB video data and corresponding annotations of landmines under various
conditions captured in Italy. The video data are treated as single image-data frames,
and shuffled. The dataset encompasses diverse weather conditions, soil compositions,
and environmental settings to provide a robust training foundation.

• Validation: A subset of the data was used to validate the model performance periodi-
cally during training, ensuring that the model generalizes well to new, unseen data.

• Augmentations: Following the YOLO augmentation settings, we employed a series of
7 augmentations, which are listed in Table 3 and described below.

Table 3. Image augmentation parameters. Not listed parameters were assigned a coefficient of 0.0, so
are not used for augmenting the images.

Key Value Description

hsv_h 0.015 image HSV-Hue augmentation (fraction)
hsv_s 0.7 image HSV-Saturation augmentation (fraction)
hsv_v 0.4 image HSV-Value augmentation (fraction)
translate 0.1 image translation (+/−fraction)
scale 0.5 image scale (+/−gain)
fliplr 0.5 image flip left-right (probability)
mosaic 1.0 image mosaic (probability)

To better understand the sets of augmentation used, as research has shown augmen-
tations play a crucial role in model performances and generalization, we report some
examples in Figure 6. From the figure, we can see a group of 24 images. In the images, we
can appreciate the overlapping of some of the augmentations; i.e., almost all the images are
composed of multiple patches arranged as a 2 × 2 grid. This is called “mosaic”, and it is
the seventh augmentation we listed in Table 3. Additionally, when an image is shifted, this
is the effect of “translation”, while a distortion of color is an effect of “saturation”, “value”,
and “hue” augmentations. The values represented in the Table 3 are the probability that an
augmentation is applied, from 0 to 1. As we can see, mosaic is always applied while hue
augmentation is less probable. In Figure 6, most of the augmentations are applied at the
same time, showing complex layouts.

The initial training aimed to create a strong baseline model capable of detecting
landmines with high recall in environmental conditions similar to those found in Italy.
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Figure 6. Examples of advanced augmentations of YOLOv8.

5. Results

The YOLOv8 model’s effectiveness in landmine detection was rigorously evaluated
using independent and identically distributed (IID) data as well as out of distribution
(OOD) data. The results are encapsulated in the confusion matrices for the YOLOv8-nano
and YOLOv8-small models, provided in Tables 4 and 5, respectively.

5.1. IID Data Evaluation

According to Table 4, the YOLOv8-nano model exhibited high precision in identifying
“butterfly” (97.69%) and “starfish” (99.4%) mines. However, the model showed a lower
precision (35.47%) as the false positive rate for “background”, where non-target objects
were misclassified as targets. In particular, despite the low false negative rate (2.31% and
0.59% for “butterfly” and “starfish”, respectively), which is fundamental in landmine
detection applications, the model had a false positive rate of approximately 27% when
detecting “butterfly”, and 47% when detecting “starfish”, which can be appreciated in the
“Background” row (bottom) of Table 4 and the red percentages in column “Butterfly” and
“Starfish”, respectively.

Table 5 shows that the YOLOv8-small model performed similarly, with a slight im-
provement in the false positive rate (33.48%). The recall for “butterfly” and “starfish”
was recorded at 97.4% and 98.85%, respectively. The false positive rate for “butter-
fly” was slightly reduced compared to the nano model, but it remained a concern for
practical applications.

Table 4. Confusion matrix for YOLOv8-nano. In black, absolute values of landmines detection; in
blue, percentages calculated horizontally, which refer, approximately, to false negatives, and in red,
percentages calculated vertically, which refer to false positives.

Butterfly Starfish Background

Butterfly 254 → 98%
↓ 72%

0 → 0%
↓ 0%

6 → 2%
↓ 85%

Starfish 0 → 0%
↓ 0%

168 → 99%
↓ 56%

1 → 1%
↓ 15%

Background 98 → 42%
↓ 28%

134 → 58%
↓ 44%

0 → 0%
↓ 0%
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Table 5. Confusion matrix for YOLOv8-small. In black, absolute values of landmines detection; in
blue, percentages calculated horizontally, which refer, approximately, to false negatives, and in red,
percentages calculated vertically, which refer to false positives.

Butterfly Starfish Background

Butterfly 263 → 97%
↓ 75%

0 → 0%
↓ 0%

7 → 3%
↓ 78%

Starfish 0 → 0%
↓ 0%

172 → 99%
↓ 57%

2 → 1%
↓ 22%

Background 89 → 41%
↓ 25%

130 → 59%
↓ 43%

0 → 0%
↓ 0%

In Figure 7, we present the six scenarios derived from Tables 4 and 5, encompassing
detected landmines, missed detections, and false positive landmines. The initial images
demonstrate that, despite variations in lighting, the model is capable of detecting objects
both near and far. The second row of images shows instances of false positives, where
shadows and specific parts of the image, which are actually background elements, are
mistakenly identified as landmines, labeled as “starfish” and “butterfly”, respectively.
Lastly, the third row illustrates missed detections. These account for only 1.6% of the total
landmines (ground truth). Missed targets are indicated with a purple circle in the image.

Figure 7. Example of correct (top), wrong (middle), and missing (bottom) detection for “starfish”
(left) and “butterfly” (right). Detected objects are shown with a red rectangle, wrongly detected
background for landmines in yellow, and missed landmines circled in purple.
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5.2. Out-of-Distribution (OOD) Data Evaluation

Regarding the data collected in the USA, named Test (OOD) in Tables 1 and 2, we
noticed rather different performances. A first analysis must be undertaken regarding the
composition of the terrain. The soil appears filled with grass, both long and short, and the
long grass sometimes occluded the landmines. The detail is shown in Appendix B. Another
difference between IID and OOD is that in the latter, the “butterfly” is presented in a
different tone of green while the “starfish” is presented in green and blue, while in IID only
in green. Despite having been used in the augmentations’ various color changing functions
(see Figure 6 and Table 3), further analysis should address additional augmentations
(i.e., greyscale, or saturating the green channel, among others). Due to these presented
difficulties, both our models struggle to detect our landmines. However, in our context,
missing many of the ground truths (when filtered with an IoU threshold of 0.5) enforces the
value and difficulty of the OOD dataset proposed, making it out of distribution, indeed.

5.3. Summary of Findings

The detailed analysis of the model’s performance on the proposed datasets suggests
that the YOLOv8 models are capable of high recall and precision within the distribution
of the training data, obtained running in a smartphone browser at 2 FPS (frames per
second), underlying the potential of such a lightweight model to run on almost any device
due to its portability (3 MB for the nano model and 11 MB for the small). The results
underline the high shift in the data distribution between the IID and OOD, which adds
value to the SurfLandmine dataset, making it difficult to detect any object and having a
high false negative rate observed in the OOD data evaluation. In this context, the necessity
for continued refinement of the model is noticeable, potentially through methods such as
targeted data augmentation, specialized training on edge cases, and further hyperparameter
optimization to bolster the model’s generalization capabilities.

6. Discussion

The IID data testing demonstrates that both “nano” and “small” YOLOv8 models
have a strong capacity for detecting objects similar to those in the training set. Nonetheless,
the relatively high false positive rates suggest that further optimization is required. One
important feature that is worth noticing is that the model can detect 98.4% of the existing
objects in the test set, thus only missing 1.6%. These metrics, however, are punctual metrics
and do not consider time in the equation. This means that while 1.6% of targets are not
detected, this does not mean that one target is “always” not detected in a multi-frame
video. As a consequence, it is possible that while the robot is moving, and the camera too,
the target becomes visible from a different perspective. We speculate that despite being
already low as a false-negative rate, this value can result in a better score if tackled from
the point of view of tracking. Finally, the over 30% of false positives, which lower the
accuracy of our models, is not to be considered a weakness. The real-time application of
our model is intended to be a fast attention-driver for the human behind the screen of the
robotic platform control. The system is not thought to be used for autonomous navigation,
hence having “some degree of false positives” (30%) is tolerable. Future work will focus
on refining the models to improve their accuracy, particularly in reducing false positives,
and on conducting thorough OOD testing to ensure the models’ robustness in diverse
operational environments.

7. Conclusions

In this study, we have developed and presented a novel real-time surface landmine
detection system, integrated within a demining robot. This system is distinguished by
its ability to function in real-time, achieving a processing speed of 2.6 frames per second.
Notably, it is designed for accessibility and ease of use, being operable via both web
browsers and smartphone devices. Our system demonstrates a high recall rate, making it a
significant advancement in the field of landmine detection.
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To our knowledge, this is the first instance where surface landmine detection has been
addressed with an emphasis on operational speed. This focus has yielded a system with
extended operational duration, a notable improvement over alternative methods such as
unmanned aerial vehicles (UAVs), which are generally limited by battery life.

A crucial aspect of our system is its handling of false positives, a common challenge
in detection systems. While both YOLOv8-nano and YOLOv8-small models exhibit a
relatively high rate of false positives, we posit that in the context of landmine detection, it is
preferable to err on the side of caution. The false positives generated by our system can be
quickly and efficiently assessed by a human operator using a smartphone. This approach
significantly reduces the risk of overlooking actual threats, thereby minimizing potential
damage to both the robot and human operators.
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Abbreviations

The following abbreviations are used in this manuscript:

Radar and Methodologies:
ATI Apparent Thermal Inertia
COTS Commercial-Off-The-Shelf
DATI Differential Apparent Thermal Inertia
ERW Explosive Remnants of War
GPR Ground Penetrating Radar
HSI Hyperspectral Imaging
IRT Infrared Thermography
MLP Multi-Layer Perceptron
NDE Non-Destructive Evaluation
NIR Near-Infrared
RTK Real-Time Kinematic
SAR Synthetic Aperture Radar
UAV Unmanned Aerial Vehicles
UWB Ultra-Wide-Band
UXO Unexploded Ordnance

https://www.github.com/miccunifi/SULAND-Dataset
https://www.github.com/miccunifi/SULAND-Dataset
https://www.github.com/miccunifi/RT-SULAND
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Artificial Intelligence and deep learning:
AE AutoEncoder
AI Artificial Intelligence
ANN Artificial Neural Networks
CNN Convolutional Neural Networks
DL Deep Learning
FCNN Fully-Connected Neural Networks
GRU Gated Recurrent Unit
LSTM Long Short-Term Memory
OOD Out Of Distribution
R-CNN Region-based CNN
RNN Recurrent Neural Networks

Appendix A. YOLOv8 Details

Ultralytics YOLOv8 model, created by Ultralytics, is cutting edge and state of the
art (SOTA). It builds on the success of earlier YOLO versions and adds new features and
enhancements to increase performance and versatility further. YOLOv8 is an excellent
option for various object recognition, picture segmentation, and image classification jobs
since it is quick, precise, and simple. An overview of the architecture is shown in Figure A1.
Among the YOLO family models, YOLO v8 includes various critical features that can
be summarized in four main components: (i) improved accuracy and speed compared
to previous versions of YOLO; (ii) an updated backbone network based on EfficientNet,
which improves the model’s ability to capture high-level features; (iii) a new feature fusion
module that integrates features from multiple scales; (iv) enhanced data augmentation
techniques, including MixUp and CutMix.

Figure A1. YOLOv8 architecture from MMYolo (https://github.com/open-mmlab/mmyolo/tree/
main/configs/yolov8, accessed on 9 February 2024).

https://github.com/open-mmlab/mmyolo/tree/main/configs/yolov8
https://github.com/open-mmlab/mmyolo/tree/main/configs/yolov8


Remote Sens. 2024, 16, 677 15 of 17

Appendix B. Out of Distribution

In Figure A2, we can appreciate a few examples of short, medium, and long grass.
These are very different compared to the training data presented in Figure 5. Although,
intuitively, we can see the second field as easier, we should consider that the networks never
encountered anything similar, in terms of grass shape and length. One additional point that
is worth mentioning is that in the Test OOD data, the landmines are of a different color.

Figure A2. Examples of OOD data. From left: short, medium, long (butterfly), and long (starfish).
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