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Abstract: Polar sea ice extent exhibits a highly dynamic nature. This paper investigates the sea ice
extent retrieval on a fine (6.25 km) grid based on the 12.5 km sampling data from the China France
Ocean Satellite Scatterometer (CSCAT), which is generated by an adapted Bayesian sea ice detection
algorithm. The CSCAT 12.5 km sampling data are analyzed, a corresponding sea ice GMF model is
established, and the important calculation procedures and parameter settings of the adapted Bayesian
algorithm for CSCAT 12.5 km sampling data are elaborated on. The evolution of the sea ice edge and
extent based on CSCAT 12.5 km sampling data from 2020 to 2022 is introduced and quantitatively
compared with sea ice extent products of Advanced Microwave Scanning Radiometer 2 (AMSR2)
and the Advanced Scatterometer onboard MetOp-C (ASCAT-C). The results suggest the sea ice extent
of CSCAT 12.5 km sampling data has good consistency with AMSR2 at 15% sea ice concentration.
The sea ice edge accuracy between them is about 7 km and 10 km for the Arctic and Antarctic regions,
and their sea ice extent difference is 0.25 million km2 in 2020 and 0.5 million km2 in 2021 and 2022.
Compared to ASCAT-C 12.5 km sampling data, the sea ice edge Euclidean distance (ED) of CSCAT
12.5 km data is 14 km (2020 and 2021) and 12.5 km (2022) for the Arctic region and 14 km for the
Antarctic region. The sea ice extent difference between them is small except for January to May 2020
and 2021 for the Arctic region. There are significant deviations in the sea ice extents of CSCAT 12.5 km
and 25 km sampling data, and their sea ice extent difference is 0.3–1.0 million km2.

Keywords: scatterometer; CSCAT; sea ice extent; sea ice edge

1. Introduction

The observation and characterization of the polar cryosphere are crucial for under-
standing the changes in the Earth’s climate system. The polar cryosphere is composed
mainly of surfaces covered by glaciers, sea ice, and open ocean. The properties of sea ice
(i.e., extent, variability, physical characteristics) have profound impacts on the climate and
can respond quickly to changes in atmospheric and oceanic forces. Because of the large
spatial coverage, spaceborne sensors are an effective means of monitoring polar sea ice. At
present, polar sea ice is observed through a series of active and passive microwave sensors,
as well as a wide range of electromagnetic spectra [1]. The passive microwave sensors (or
radiometers) have provided global sea ice monitoring data over four decades. In recent
years, the global observations of sea ice mainly relied on Advanced Microwave Scanning
Radiometer for EOS (AMSR-E) from 2002 to 2011 and Advanced Microwave Scanning
Radiometer 2 (AMSR2) since 2012. These two sensors offer much higher resolution data
than other radiometers due to their larger antenna reflector diameters. For AMSR2, the
average resolution for each frequency channel is 49 km (6.93/7.3 GHz), 33 km (10.65 GHz),
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18 km (18.7 GHz), 15 km (23 GHz), 10 km (36.5 GHz), and 4 km (89.0 GHz) [2]. As the
frequency increases, the resolution also improves. The sea ice extent product is usually
generated from sea ice concentration data from microwave radiometers. The grid reso-
lution of the available sea ice concentration data is 25 km, 12.5 km, 10 km, 6.25 km, and
3.125 km [3–5]. A high grid resolution is achieved by increasing the operating frequency of
the radiometers. However, high frequencies increase the sensitivity of brightness tempera-
ture to atmospheric factors such as clouds, liquid water, and comprehensive water vapor,
which in turn affects the accuracy of sea ice extent retrieval [6]. Therefore, researchers
proposed the active and passive multiple polarization sea ice detection scheme to improve
the accuracy of sea ice extent retrieval [7]. The active microwave sensors include Synthetic
Aperture Radars (SARs), altimeters, and scatterometers, where SARs and altimeters are not
suitable for large-scale polar sea ice extent retrieval. For scatterometers, the retrieved sea
ice extents are on the grids of 25 km and 12.5 km [8–12]. Therefore, this paper investigates
the application of the existing scatterometer data to generate sea ice extent mapping with
higher grid resolution (i.e., 6.25 km).

Since the 1990s, a series of C-band and Ku-band scatterometers have been launched.
Table 1 shows the spaceborne scatterometers launched from 2016 to the present. These
scatterometers can be divided into two types by the antenna beam: pencil beam scatterom-
eters (such as Oceansat Scatterometer, OSCAT; and HY-2 Scatterometer, HSCAT) and fan
beam scatterometers (such as Advanced Scatterometer, ASCAT; China French Ocean Satel-
lite Scatterometer, CSCAT; and Wind Radar, WindRad). The pencil beam scatterometers
typically operate in the Ku band, providing diversity in azimuth measurements through
antenna rotation, but with limited incident angles. The fan beam scatterometers allow for
measurements of multiple incident angles (28–53◦ in mid beams and 37–64◦ in front/after
beams for ASCAT; 28–51◦ for CSCAT; 36–45◦ in the C band and 37–43◦ in the Ku band
for WindRad) and multiple azimuth angles (six fixed antennas in different directions for
ASCAT, rotating antennas for CSCAT and WindRad) [10,13,14]. Compared with the pencil
beam scatterometers, the sampling data of the fan beam scatterometers, such as ASCAT,
CSCAT, and WindRad (Ku band), have higher-resolution sampling data, with a maximum
value of 12.5 km [15,16]. That is because the spatial resolution of these fan-shaped beams is
about 10 km. It is worth noting that this spatial resolution is equivalent to that of AMSR2
at 36.5 GHz, but the corresponding operating frequency of the scatterometers is much
lower. The high-resolution (12.5 km) sampling data of the fan beam scatterometers (ASCAT,
CSCAT, and WindRad in the Ku band) provide the possibility to retrieve large-scale sea ice
extents on a 6.25 km grid.

Table 1. The spaceborne scatterometers launched since 2016.

Year Satellite Sensor Frequency Views Sampling Swath

2016– ScatSat-1 OSCAT 13.5 GHz, Ku band 2–4 50/25 km 1400/1800 km
2018– HY-2B

HSCAT 13.25 GHz, Ku band 2–4 50/25 km 1350/1700 km2020– HY-2C
2021– HY-2D
2018– MetOp-C ASCAT 5.255 GHz, C band 3 25/12.5 km 2 × 550 km

2019–2023 CFOSAT CSCAT 13.26 GHz, Ku band 2–16 25/12.5 km >1000 km
2021– FY-3E WindRad 5.4 GHz, C band

13.256 GHz, Ku band 2–16 25/12.5 km >1200 km

Different from ASCAT, CSCAT and WindRad adopt a novel rotating fan beam obser-
vation geometry and operate in dual polarization (vertical-transmit and vertical-receive,
VV; and horizontal-transmit and horizontal-receive, HH) [17]. The rotating fan beams pro-
vide a greater diversity of incident angles and azimuth angle samplings. In our previous
work [12], a Bayesian sea ice detection algorithm based on the Geophysical Model Function
(GMF) approach was established for the rotation fan beam scatterometer, and the CSCAT
25 km sampling data were applied to validate. This paper investigates the sea ice extent
retrieval on a 6.25 km grid using the 12.5 km sampling data from the rotating fan beam
scatterometer. CSCAT shares a similar system architecture with WindRad while providing
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longer data records (over three years), so we apply the CSCAT 12.5 km sampling data to
study the sea ice extent retrieval. In addition, considering that ASCAT operates in the C
band and is different from CSCAT in the Ku band, we compare the sea ice extent retrieval
results of CSCAT and ASCAT data at a sampling resolution of 12.5 km to investigate the
sea ice detection differences between Ku-band and C-band scatterometer data.

The objective of this study is twofold: (1) to investigate the sea ice extent retrieval on a
6.25 km grid using CSCAT 12.5 km sampling data; (2) to evaluate the different capabilities
of two types of fan beam scatterometers (Ku-band rotating fan beam CSCAT and C-band
fixed fan beam ASCAT) in sea ice detection. A comparison between the sea ice edge and
extent on a grid size of 6.25 km of CSCAT and AMSR2 is therefore performed during
their overlapping mission period (2020–2022). The sea ice extent on the fine (6.25 km)
grid of the CSCAT 12.5 km sampling data is generated by an adapted Bayesian algorithm.
A similar comparison is made between ASCAT and AMSR2. A quantitative evaluation
between Ku-band CSCAT and C-band ASCAT is also made. Additionally, a comparison of
sea ice extent retrieval is conducted on two different sampling resolutions (12.5 km and
25 km) of CSCAT data. Considering the highly dynamic nature of polar sea ice [18], the fine
(6.25 km)-grid sea ice extent from CSCAT is beneficial for obtaining local characteristics
of polar sea ice distribution and accurate sea ice edges and expanding the ability to link
fine-scale sea ice conditions with climate models. As a valuable supplement to the sea
ice extent product of AMSR2 on the 6.25 km grid, the results can also be incorporated
into the active and passive sea ice detection schemes of AMSR2 to explore any possible
improvement in sea ice product.

The paper is organized as follows: Section 2 describes the Bayesian algorithm for the
CSCAT 12.5 km sampling data; Section 3 introduces the verification and analysis of the
distribution of polar sea ice edges and extents between CSCAT, ASCAT, and AMSR2; and
Section 4 summarizes our research findings.

2. Bayesian Algorithm for CSCAT 12.5 km Sampling Data

In scatterometry, GMF is commonly used for ocean wind retrieval, which describes
the measured backscatter data as a function of one or more physical parameters. Based on
the GMF approach, a Bayesian sea ice detection algorithm for the rotation fan beam scat-
terometer was established [12]. In this section, an adapted Bayesian algorithm for CSCAT
12.5 km sampling data is introduced. In this section, the CSCAT 12.5 km sampling data are
analyzed, and a sea ice GMF model for the CSCAT 12.5 km sampling data is established.
We remove duplicate analysis processes and highlight the important calculation procedures
and parameter settings of the adapted Bayesian algorithm for the CSCAT 12.5 km sampling
data in the paper.

In the Bayesian model, Bayesian statistics are used for decision theory and only assume
two types (sea ice and open water) with prior probabilities of p0(ice) and p0(water) = 1 −
p0(ice). Then, the Bayesian theorem can be used to calculate the posterior probability of ice

p
(

ice
∣∣∣σ0

)
=

p
(

σ0
∣∣ice

)
p0(ice)

p(σ0|ice)p0(ice) + p(σ0|water)(1 − p0(ice))
(1)

where σ0 represents backscatter measurements in the CSCAT measurement space [12].
p
(

σ0
∣∣ice

)
and p

(
σ0

∣∣water
)

represent the conditional probability of sea ice and open water,
respectively.

Using the 12.5 km sampling data of CSCAT as the input and a 55% threshold of the
posterior sea ice probability in Equation (1), the Bayesian algorithm updates the CSCAT sea
ice mask on each pass and generates a sea ice extent map once a day on a polar stereo grid
of 6.25 km. To determine the Bayesian probability of ice, it is necessary to determine the
values of p0(ice), p

(
σ0

∣∣water
)
, and p

(
σ0

∣∣ice
)
, which will be calculated sequentially below.
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2.1. p0(ice)

To start, set the prior probability p0(ice) to a climate value of 0.5 and then update it
daily based on the previous day’s p

(
σ0

∣∣ice
)
. The p0(ice) is given by

p0(ice) =
{

0.5, if p(ice
∣∣σ0) > 0.30

0.15, if p(ice
∣∣σ0) < 0.30

(2)

2.2. p
(

σ0
∣∣water

)
The conditional probability p(σ0|water) can be calculated by

p(σ0|water) = p(MLEwind) (3)

where MLE (Maximum Likelihood Estimator) is defined as the normalized square distance
between backscatter and GMF, and MLEwind refers to the distance for the open water [19].

The value of MLEwind is obtained from the element data named “max_likelihood_est”
in CSCAT Level 2B data. For the CSCAT 12.5 km sampling data, the probability distribution
of MLEwind can also be fitted as a Gamma distribution [12]. Figure 1 shows two examples
of the probability distributions of MLEwind for CSCAT 12.5 km sampling data in 2021. The
colored curves in each subgraph represent the histogram contour lines of MLEwind with the
same N (number of polarization pairs) but a different Wind Vector Cell (WVC). The bold
black curve is the fitted Gamma distribution with shape parameter α and rate parameter β.
It is noted that the observed MLEwind distribution is basically consistent with the expected
Gamma distribution for both the Arctic and Antarctic regions.
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Figure 1. The probability distribution of MLEwind for different N: (a) Arctic region on 10 March 2021;
(b) Antarctic region on 10 September 2021. In each subgraph, the colored curves correspond to the
histogram contours of MLEwind for different WVCs, and the bold black curve is the fitted Gamma
distribution with specific parameters of α and β.

From the available CSCAT 12.5 km sampling data, the data from 2020 to 2022 were
chosen as our research scope. The daily CSCAT 12.5 km sampling data were utilized to
derive the fitting parameters of MLEwind. We found that the value of α can be generally set
to N/2, and the value of β varies with different dates of CSCAT 12.5 km data. And a general
conclusion on the values of β can be obtained through data analysis, as shown in Table 2.
We note that there are different β values for the CSCAT data over the three years. In 2020
and 2021, the value of β varies with different months. That is because CSCAT data have a
certain degree of instability, which leads to some differences in the fitting parameters.

Table 2. The values of parameter β applicable to CSCAT 12.5 km sampling data.

Year Month N = 3 N = 4 N = 5 N = 6 N = 7 N = 8

2020

1–2 1.22 0.92 0.71 0.61 0.51 0.47
3 0.53 0.40 0.31 0.26 0.22 0.2

4–8 0.72 0.54 0.42 0.36 0.3 0.28
9–12 0.62 0.47 0.36 0.31 0.26 0.24

2021

1–3 0.72 0.54 0.42 0.36 0.32 0.30
4–5 0.48 0.36 0.28 0.24 0.22 0.20
6, 8 0.90 0.68 0.52 0.45 0.41 0.38

7 1.68 1.26 0.98 0.84 0.76 0.7
9–12 1.08 0.81 0.63 0.54 0.49 0.45

2022 1–12 0.72 0.54 0.42 0.36 0.32 0.3
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The final conditional probability p(σ0|water) can be calculated by

p(σ0|water) = Ga(
N
2

, β) =
1

β
N
2 Γ(N

2 )
MLEwind

N
2 −1e−MLEwind/β (4)

where the parameter β is detailed in Table 2.

2.3. p
(

σ0
∣∣ice

)
Similar to open water, the conditional probability of ice, p(σ0|ice), is calculated by

p(σ0
∣∣∣ice) = p(MLEice) (5)

where MLEice denotes the normalized square distance between sea ice backscatter and sea
ice GMF, which can be expressed as

MLEice = ∑
i
[
(

σ0
i − σ0

ice,i − µi(σ
0
ice,i)

)
/std(σ0

ice,i)]
2
, i = 1, . . . , N (6)

Here, i is the exponent of one of N (2–8) corresponding to a set of backscatter mea-
surements for each WVC. σ0

i is the measured backscatter, σ0
ice,i is the corresponding sea ice

GMF backscatter, and σ0
i − σ0

ice,i is proven to be a normal distribution with parameters of
mean µ(σ0

ice,i) and standard deviation std(σ0
ice,i) [12].

For the CSCAT 12.5 km sampling data, the corresponding sea ice GMF is derived in
Section 2.3.1, and then the normal distribution parameters of the distance σ0

i − σ0
ice,i are

estimated in Section 2.3.2.

2.3.1. Sea Ice GMF for CSCAT

Considering the backscatter characteristics of sea ice, an empirical sea ice GMF defined
in the CSCAT measurement space can be derived, and the expression of the sea ice GMF
can be written as

σ0
ice,HH(θ) = Slope(θ)× σ0

ice,VV(θ) + Intercept(θ) (7)

where σ0
ice,HH(θ) and σ0

ice,VV(θ) are HH and VV measurements for the incident angle θ.
Different incident angles correspond to different linear functions.

Figure 2 shows the slope and intercept distributions of sea ice GMF for different
incident angles, which were obtained from daily CSCAT 12.5 km backscatter data. In the
figure, “W”, “S”, “S”, and “F” sequentially represent winter (January to March), spring
(April to June), summer (July to September), and fall (October to December). The incident
angles of 28–29◦ and 50–51◦ were rejected as they lead to significant variations in sea ice
GMF for different WVCs. Note that the sea ice GMF model in the winters has the smallest
fluctuations, while the sea ice GMF model from mid-spring to early summer has the largest
fluctuations, attributed to mixed surface conditions such as sea ice melting. We chose the
wintertime data as the most representative data for 100% sea ice concentration and took the
average values of the winter parameters as the sea ice GMF model for the CSCAT 12.5 km
data.
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Figure 2. The distribution of sea ice GMF parameters (slope and intercept) at different incident angles
for the CSCAT 12.5 km sampling data in the Arctic region.

Figure 3 shows the sea ice GMF of CSCAT 12.5 km sampling data. For ease of reference,
the sea ice GMF for CSCAT 25 km sampling data is also illustrated. The slopes of sea ice
GMF for CSCAT 12.5 km and 25 km sampling data are basically the same at incident angles
of 33–47◦, with a maximum slope difference of 0.1 for other incident angles. Overall, the
slope of sea ice GMF for CSCAT in 2020 and 2022 is approximately 1, and it is 0.8 in 2021.
The deviation between the slopes in 2021 and the other two years is due to calibration
issues with the CSCAT data in 2021. Unlike the slope, there is a certain difference in the
intercepts between the CSCAT 12.5 km and 25 km sampling data except at an incident
angle of 40◦. When the incident angle of 40◦ is used as a reference point, the intercept
difference increases with the increased (or decreased) incident angle. In addition, there are
significant differences in the intercepts over the past three years.
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2.3.2. Normal Distribution Parameters (µ and std) for σ0
i − σ0

ice,i

Using the established sea ice GMF and CSCAT 12.5 km backscatter observations, the
backscatter distance from the sea ice to the sea ice GMF, σ0

i − σ0
ice,i, can be calculated, and the

histogram distribution of the distances approaches the normal distribution. The detailed
analysis process is similar to our previous work [12], so this paper does not elaborate
further. Figure 4 shows the normal distribution parameter estimation results for different
incident angles of CSCAT 12.5 km sampling data from 2020 to 2022. Note that the values of
µ corresponding to three different years are similar. The values are almost 0 dB at incident
angles of 36–43◦, and the variation range is ±0.2 dB for different incident angles. The
std value gradually decreases with an increase in incident angle, and the corresponding
std value in 2020 is relatively smaller than those in 2021 and 2022. The certain difference
between std in 2020 and 2021 (or 2022) may be caused by the instability of CSCAT data in
2021 and 2022.
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of σ0

i − σ0
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2.3.3. p(MLEice)

As mentioned above, the distribution of the normalized distance of σ0
i − σ0

ice,i is ap-
proximately a standard normal distribution. Then, MLEice follows a chi square distribution
with N degrees of freedom, which can be written as

p(MLEice) = χ2
N(MLEice) =

1
2N/2Γ(N/2)

MLEice
N/2−1e−MLEice/2 (8)

Figure 5 shows an example of the probability distribution of the MLEice. Here, one
day’s data are used to evaluate the histogram contours of MLEice for all WVCs with the
same observation pair N. For each subgraph, the colored curves represent the contours for
different WVCs, and the bold black one is the corresponding fitted chi square distribution.
The statistical distribution of MLEice generally follows the chi square distribution with
parameter N for both the Arctic and Antarctic regions.
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3. Results

By utilizing the Bayesian algorithm described in Section 2, the sea ice extent of CSCAT
12.5 km sampling data is generated daily on a high-resolution grid with a pixel spacing of
6.25 km. In this section, the sea ice extent maps generated from CSCAT 12.5 km sampling
data are validated and analyzed.

In order to evaluate the capability of CSCAT 12.5 km sampling data in mapping polar
sea ice extents and investigate the differences in sea ice detection of Ku-band and C-band
scatterometers at a sampling resolution of 12.5 km, comparisons are made with sea ice
extent maps obtained by AMSR2, ASCAT onboard MetOp-C (ASCAT-C) 12.5 km sampling
data, and CSCAT 25 km sampling data. The sea ice extent maps here are all in polar stereo
projections of the National Snow and Ice Data Center (NSIDC) [20]. For AMSR2, the sea ice
extent is obtained by setting a 15% threshold onto a sea ice concentration product generated
by the ASI ice concentration algorithm [21]. The sea ice concentration product is provided
by the University of Bremen and has two different grid sizes (3.125 km and 6.25 km) [22].
In our study, the sea ice concentration product with a grid size of 6.25 km is used. For
ASCAT, the sea ice extent maps are generated through an ice screening process based on
the Bayesian algorithm detailed in [9]. The grid size of the sea ice extent maps is the same
as the resolution of the corresponding sampling data. For the ASCAT-C 12.5 km sampling
data, the sea ice extent maps are on the 12.5 km grid [23]. The sea ice extent maps of the
CSCAT 25 km sampling data are located on the 12.5 km grid [12].

Figure 6 shows two ice-masked image samples of the CSCAT 12.5 km sampling data
when the sea ice extents in the Arctic and Antarctic regions approach their maximum values.
The corresponding sea ice edges are represented as red outlines. The sea ice edge estimates
of AMSR2 at 15% sea ice concentration (black contours), ASCAT-C 12.5 km sampling data
retrieved sea ice edges (green contours), and CSCAT 25 km sampling data-derived sea
ice edges (blue contours) are superimposed on each frame as well. For the convenience
of sea ice edge comparison, the sea ice extent maps of ASCAT-C 12.5 km sampling data
and CSCAT 25 km sampling data are interpolated into the 6.25 km grid. It is observed that
the sea ice edges of CSCAT 12.5 km sampling data usually track the edges of AMSR2 at
15% sea ice concentration and CSCAT 25 km sampling data, and there are some differences
from the edges of ASCAT-C.
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Additionally, Figure 7 shows a quantitative comparison of the Euclidean distance (ED)
of the sea ice edges in Figure 6 [24]. In the figure, the spatial and statistical distributions of
sea ice edge ED between CSCAT 12.5 km data and AMSR2 at 15% sea ice concentration,
ASCAT-C 12.5 km data and AMSR2 at 15% sea ice concentration, CSCAT 12.5 km data and
ASCAT-C 12.5 km data, and CSCAT 12.5 km data and CSCAT 25 km data are illustrated,
respectively. It is noted that the sea ice edges of CSCAT 12.5 km data and AMSR2 at 15%
sea ice concentration are highly correlated and match each other within the mean ED of
approximately 1 pixel (6.25 km) and 1.5 pixels (9.4 km) in the Arctic and Antarctic regions
accordingly. For the sea ice edge ED between ASCAT-C 12.5 km data and AMSR2 at 15%
sea ice concentration, the larger ED values are distributed at the junction of ice and land.
Meanwhile, for the Antarctic region, the ASCAT-C sea ice edge differs significantly from
that of AMSR2 at 15% sea ice concentration when compared to the results of CSCAT 12.5 km
data versus AMSR2 at 15% sea ice concentration. That is because the sea ice edge area
usually corresponds to the area with lower sea ice concentration, and the sensitivity of
C-band and Ku-band scatterometry to sea ice with low sea ice concentration is different.
Due to the short wavelength of the Ku band, the backscatter contrast between sea ice
and open water is higher than that of the C band. Ku-band scatterometry also shows
lower penetration and more sensitivity to the sea ice [25]. There are large proportions
of significant differences (ED > 3 pixels) occurring at the sea ice edges between CSCAT
12.5 km data and ASCAT-C 12.5 km data. Furthermore, for the Arctic region, the mean
ED value of the sea ice edges between CSCAT 12.5 km and 25 km data is the largest at
approximately 2.4 pixels (15 km). In the Antarctic region, the ED value is around 1.8 pixels
(11 km). It is obvious that large ED values appear at the junction of ice and land for both
Arctic and Antarctic regions. The different sampling resolutions of CSCAT data can lead to
different sea ice edges, especially for the Arctic region.
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Again, the monthly average ice edge ED distributions of (a) CSCAT 12.5 km data
versus AMSR2 at 15% sea ice concentration, (b) ASCAT-C 12.5 km data versus AMSR2 at
15% sea ice concentration, (c) CSCAT 12.5 km data versus ASCAT-C 12.5 km data, and
(d) CSCAT 12.5 km data versus CSCAT 25 km data are plotted in Figure 8. We notice that
the sea ice edges of CSCAT 12.5 km data and AMSR2 at 15% sea ice concentration match the
best, with a mean edge ED of around 7 km and 10 km in the Arctic and Antarctic regions. In
the Arctic region, the mean and standard deviation of the sea ice edge ED increase during
the summer period (from August to October). The reason for this phenomenon is that
the sea ice concentration derived from the passive microwave brightness temperatures
is affected by the surface wetness during the melt season, typically underestimating the
summer sea ice concentration [26]. Furthermore, the fluctuations in the Antarctic region
are less than those of the Arctic region. That is because the sea ice in the Arctic region is
far more sensitive to climate change than that in the Antarctic region [27]. Meanwhile, the
sea ice edges of ASCAT 12.5 km data and AMSR2 at 15% sea ice concentration match each
other within mean EDs of about 12.5 km and 15 km in the Arctic and Antarctic regions.
These results indicate that CSCAT 12.5 km data can provide a better estimation of sea ice
edges than ASCAT 12.5 km data. The reason is that the shorter wavelength of the Ku band
can provide greater ice/water contrast but reduced penetration and greater atmospheric
sensitivity than the C band [25]. Additionally, the sea ice edge ED values between CSCAT
12.5 km data and ASCAT C 12.5 km data are calculated, and the results show the mean ED
value in the Arctic region is about 14 km for 2020 and 2021 and 12.5 km for 2022. In the
Antarctic region, the mean ED values in different months are similar, and the mean ED
distributions over the three years almost overlap. The mean ED is about 14 km. Unlike the
Antarctic region, there is a significant fluctuation of ED values from July to October in the
Arctic region. Moreover, the sea ice edge ED between CSCAT 12.5 km and 25 km data is
approximately 13 km in the Arctic region. In the Antarctic region, the corresponding ED is
about 10 km for 2020 and 2022, and 11 km for 2021.
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As shown in Figure 8, the distribution of ED in the Arctic region exhibits significant
seasonal fluctuations, especially in summer. And it can also be seen from Figure 6 that the
increase in the proportion of large EDs (ED > 3 pixels) leads to a larger mean value of the
ED. Therefore, we analyze the spatial distribution of EDs larger than 3 pixels in the Arctic
region from May to October 2020. We notice that the large ED values between CSCAT
12.5 km data and AMSR2 at 15% sea ice concentration data are mainly located at the sea
ice edge area near Greenland. Furthermore, there is a significant distribution of large EDs
at the sea ice edge in September. That is because large uncertainties have been revealed
in passive microwave sea ice extent products in the marginal ice zone during the melting
season [28]. By comparing Figure 9a,b, it is noted that the ED values between ASCAT-C
12.5 km data and AMSR2 at 15% sea ice concentration data are larger. It indicates that
the Ku-band backscatter measurements have a better performance in sea ice monitoring
compared to the C band. At the same time, we also noticed that there is an extensive
distribution of large ED values at the junction of land and sea. Furthermore, it can be seen
in Figure 9c,d that large EDs are mainly distributed at the junction of sea and land.

The evolution of the sea ice extent of CSCAT 12.5 km sampling data is also studied.
The results are compared with the corresponding trends derived from AMSR2 and ASCAT.
The pixels marked as ice in the sea ice extent map are summed up every day, and the
total extent is calculated using the pixel size of polar stereo projection. The pixel sizes of
sea ice extent maps are 6.25 km for CSCAT 12.5 km sampling data and AMSR2 15% sea
ice concentration, and 12.5 km for ASCAT-C 12.5 km data and CSCAT 25 km sampling
data. The total sea ice extent results from 2020 to 2022 are shown in Figure 10. These
plots illustrate the overall seasonal and annual changes in sea ice extent over a three-year
period. We find that the agreement between CSCAT 12.5 km data and AMSR2 15% sea
ice concentration derived sea ice extent is good throughout the year. There is a significant
difference between the 12.5 km and 25 km sampling data of CSCAT, and the 25 km data
can lead to overestimation of the sea ice extent. In the Arctic region, the sea ice extent in
the CSCAT 12.5 km data and the ASCAT-C 12.5 km data is similar in summer and autumn,
but there are certain differences in winter and early spring. That is because there is a large
amount of land and sea areas in the Arctic region, and the 6.25 km gridded sea ice extent
map of CSCAT 12.5 km data is more conducive to calculating the sea ice extent over these
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areas compared to the 12.5 km gridded sea ice extent map obtained from ASCAT-C 12.5 km
data. In addition, the higher atmosphere sensitivity of the Ku-band frequency compared to
the C-band frequency can also lead to the differences between them. In the Antarctic region,
the ice extent of ASCAT 12.5 km data shows the closest correlation to the result of CSCAT
12.5 km. The reason is that the sea ice in the Antarctic region is very stable throughout the
year.
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Figure 9. The spatial distribution of EDs larger than 3 pixels in the Arctic region from May to October
2020: (a) CSCAT 12.5 km vs. AMSR2 15%; (b) ASCAT-C 12.5 km vs. AMSR2 15%; (c) CSCAT 12.5 km
vs. ASCAT-C 12.5 km; (d) CSCAT 12.5 km vs. CSCAT 25 km. Each row in the figure represents
the same date but different ED comparisons, and each column in the figure represents the same ED
comparison but different dates.
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where the solid and dashed lines represent the Arctic and Antarctic regions.

Figure 11 compares the monthly average sea ice extent differences between CSCAT
12.5 km data and AMSR2 at 15% sea ice concentration, ASCAT-C 12.5 km data and AMSR2
at 15% sea ice concentration, CSCAT 12.5 km data and ASCAT-C 12.5 km data, and CSCAT
125 km data and CSCAT 25 km data. The mean and standard derivation of the sea ice
extent differences for each month over three years are presented in the figure. We observe
that the maximum difference between the CSCAT 12.5 km data and AMSR2 records occurs
during rapid sea ice advance or retreat. The difference is within 0.25 million km2 for 2020
and 0.5 million km2 for 2021 and 2022. The instability of CSCAT data in 2021 and 2022
leads to the larger sea ice extent difference. The sea ice extent difference in the Antarctic
region is smaller than that in the Arctic region, while the monthly average of ice extent
between ASCAT-C 12.5 km data and AMSR2 records shows a larger difference. This further
indicates that the Ku-band scatterometer performs better than the C-band scatterometer
in estimating sea ice extent. Furthermore, the sea ice extent difference between CSCAT
12.5 km data and ASCAT-C 12.5 km data is small except for January to May 2020 and 2021
for the Arctic region. This may be due to the different grid sizes of them and the varying
sensitivity of different detection frequencies to the presence of sea ice. In addition, in the
Antarctic region, the sea ice extent difference between CSCAT 12.5 km data and ASCAT-C
12.5 km data is almost negative, indicating that ASCAT has a slightly larger estimated
value compared to CSCAT, and the overestimation is generally less than 0.25 million km2.
Moreover, compared with the CSCAT 12.5 km sampling data, the overestimation of sea ice
extent retrieved from the CSCAT 25 km sampling data is basically 0.3–1.0 million km2.
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Figure 11. Monthly average of sea ice extent difference among CSCAT 12.5 km sampling data, AMSR2
at 15% sea ice concentration, ASCAT-C 12.5 km sampling data, and CSCAT 25 km sampling data.

To further illustrate the comparison of the sea ice extent between the scatterometer
12.5 km sampling data and radiometer sea ice concentration data, the seasonal average
differences in polar sea ice extent between CSCAT/ASCAT-C 12.5 km data and AMSR2
at 15% sea ice concentration data are shown in Figure 12. Due to the lack of data for the
second half of 2022 from CSCAT, the chart only shows the results of 2020 and 2021. It is
worth noting that the sea ice extent difference is relatively low in autumn and winter but
higher in spring and summer, and the sensitivity of passive microwave (AMSR2) products
to melting sea ice conditions is lower than that of the scatterometer.
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4. Conclusions

The high-resolution (12.5 km) sampling data of the fan beam scatterometers provides
the possibility to retrieve large-scale sea ice extents on a 6.25 km grid. Considering the
highly dynamic nature of polar sea ice, the fine (6.25 km)-gridded sea ice extent is beneficial
for characterizing the local distribution of sea ice, obtaining accurate sea ice edges, and
expanding the ability to link fine-scale sea ice conditions with climate models. This paper
investigates the sea ice extent retrieval on a 6.25 km grid using the CSCAT 12.5 km sampling
data. Meanwhile, the sea ice detection capabilities of the Ku-band rotating fan beam CSCAT
and C-band fixed fan beam ASCAT are evaluated. Using the CSCAT 12.5 km sampling data,
the sea ice extent map on the 6.25 km grid is generated by an adapted Bayesian algorithm.
In this paper, the CSCAT 12.5 km sampling data are analyzed, a corresponding sea ice GMF
model is established, and the important calculation procedures and parameter settings of
the adapted Bayesian algorithm for CSCAT 12.5 km sampling data are elaborated on. A
comparison of the sea ice edge and extent among CSCAT 12.5 km sampling data, AMSR2,
ASCAT-C 12.5 km sampling data, and CSCAT 25 km sampling data is performed during
their overlapping mission period (2020–2022).

The results show that the sea ice extent of CSCAT 12.5 km sampling data is consistent
with the sea ice extent of AMSR2 at 15% sea ice concentration. The sea ice edge accuracy
is about 7 km and 10 km for the Arctic and Antarctic regions, and the difference in sea
ice extent is 0.25 million km2 for 2020 and 0.5 million km2 for 2021 and 2022. The sea ice
extent difference in the Antarctic region is smaller than that in the Arctic region. The sea ice
edge ED and extent between ASCAT 12.5 km sampling data and AMSR2 at 15% sea ice
concentration are calculated. The sea ice edge EDs between them are 12.5 km and 15 km
for the Arctic and Antarctic regions, respectively. The sea ice extent differences between
them are larger than those of CSCAT 12.5 km sampling data and AMSR2 at 15% sea ice
concentration. These indicate that CSCAT 12.5 km sampling data show a better estimation
of polar sea ice extents than ASCAT 12.5 km sampling data. This may be due to the fact that
backscatter observations in the Ku band can present a larger ice/water contrast than those
in the C band. The sea ice edge ED between CSCAT 12.5 km sampling data and ASCAT
C 12.5 km sampling data is 14 km in 2020 and 2021 and 12.5 km in 2022 for the Arctic
region, and 14 km for the Antarctic region. In the Arctic region, the corresponding sea ice
extent difference between them is small except for January to May in 2020 and 2021. That is
because of their different grid sizes and the different sensitivities to the presence of sea ice.
The sea ice extent difference in the Antarctic region is generally less than 0.25 million km2.
Moreover, the derived sea ice extents from the two different (12.5 km and 25 km) sampling
data of CSCAT show some deviations. The corresponding sea ice edge ED is about 13 km
for the Arctic region, and 10 km in 2020 and 2022 and 12 km in 2021 for the Antarctic region.
The sea ice extent of the CSCAT 25 km sampling data is usually overestimated, and the
overestimation is about 0.3–1.0 million km2.

Overall, compared to the sea ice extent product of AMSR2, the sea ice extent retrieved
from the CSCAT 12.5 km sampling data has better consistency than the ASCAT 12.5 km
sampling data. The sea ice extent of the CSCAT 25 km sampling data is overestimated
compared to that of the CSCAT 12.5 km sampling data. There is a significant difference in
the sea ice extent between the 12.5 km and 25 km sampling data of CSCAT, and the 25 km
data overestimate the sea ice extent. The sea ice extent on the 6.25 km grid of the 12.5 km
sampling data from a Ku-band rotating fan beam scatterometer can provide a valuable
independent description of the fine-scale state of polar sea ice cover.
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