Evolution of Wetland Patterns and Key Driving Forces in China’s Drylands
Abstract
:1. Introduction
2. Data Sources and Methods
2.1. Study Area
2.2. Data Sources
2.3. Wetland Area Evolution
2.4. Land Use Transfer Matrix
2.5. Landscape Indices
2.6. Linear Trend Analysis
- Basically stable (θSlope = 0, p < 0.05);
- Significantly increasing (θSlope > 0, p < 0.05);
- Slightly increasing (θSlope > 0, p > 0.05);
- Significantly decreasing (θSlope < 0, p < 0.05);
- Slightly decreasing (θSlope < 0, p > 0.05).
2.7. Human Disturbance Index
2.8. Pearson Correlation Analysis
3. Results
3.1. Analysis of Wetland Pattern Changes
3.1.1. Evolutionary Characteristics
3.1.2. Conversion Characteristics
3.1.3. Variation in Wetland Patterns
3.2. Climate and Human Activity Changes in Wetlands within China’s Drylands
3.2.1. Trends of Temperature and Precipitation
3.2.2. Trends of Human Disturbance Index (HDI)
3.3. Key Drivers of Wetland Evolution
3.3.1. Relationship between Wetland Evolution and Climatic Factors
3.3.2. Relationship between Wetland Evolution and HDI
3.3.3. Key Drivers of Wetland Pattern Evolution
4. Discussion
4.1. Analysis of the Driving Forces for the Evolution of Diverse Types of Wetlands
4.1.1. Lake Expansion with Regional Differences and the Uneven Distribution of Precipitation
4.1.2. River Expansion but Severe Fragmentation Due to Increased Precipitation, Temperatures, and Human Activity
4.1.3. Marsh Shrinkage all over China’s Drylands and Conversion to Farmland and Grassland
4.1.4. Artificial Wetland Expansion and the Increase in Artificial Reservoirs
4.2. Strategies for Wetland Conservation
- (1)
- Lakes and rivers have expanded over the last 30 years, but the majority of this growth has been caused by increasing snowmelt from glaciers. However, glaciers in China have been decreasing in recent years [86]. Lakes and rivers are in danger, so we need to increase their protection by establishing wetland nature reserves and parks. To increase water resource usage, rational water allocation for living and production should be implemented.
- (2)
- Compared to climate change, human activities could have more intense and irreversible damage to wetland ecosystems [81]. The degradation of marshes and river fragmentation in China’s drylands is primarily driven by the occupation of wetlands by agriculture and urban construction sites, as well as increased drainage and irrigation activities. Thus, controlling human activity is the most crucial measure for protecting wetlands. As a result, public education about wetland protection should be prioritized, particularly among farmers. Second, we must strengthen the protection of wetlands. For example, we can prohibit the conversion of wetlands into farmland, prohibit grazing operations in marshes, and limit “mowing activities” on reed and other marsh vegetation from May to August to safeguard marshes.
- (3)
- China has undertaken extensive conservation and restoration efforts to safeguard wetland resources, including the National Wetland Conservation Action Plan (NWCPAP) in 2000, the National Wetland Conservation Plan (NWCP) (2002–2030) in 2003, and the NWCP’s short-term implementation plan every five years. To boost the conservation and restoration of wetland resources in China’s drylands, the National Wetland Conservation Plan must be actively promoted and implemented, increasing wetland protection and restoration.
4.3. Limitations of Remote Sensing Interpretation of Wetlands
- (1)
- The range of wetland regions is hard to define accurately, and the accuracy of extractions is unsatisfactory for some wetland types (vegetation and marshes, for example);
- (2)
- There are several limits to the display of wetland types in remote sensing images. For example, natural wetland boundaries can be artificially repaired or preserved and have visible bounds in remote sensing images, making them easily identifiable as artificial wetlands (reservoirs/pits);
- (3)
- In some areas of China’s drylands, the quality of remote sensing images is poor, and coverage is inadequate, necessitating additional images from nearby water-rich months or years, making it difficult to extract seasonal wetland data.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Davidson, N.C.; Fluet-Chouinard, E.; Finlayson, C.M. Global extent and distribution of wetlands: Trends and issues. Mar. Freshw. Res. 2018, 69, 620–627. [Google Scholar] [CrossRef]
- Davidson, N.C. How much wetland has the world lost? Long-term and recent trends in global wetland area. Mar. Freshw. Res. 2014, 65, 934–941. [Google Scholar] [CrossRef]
- Lu, M.Z.; Zou, Y.C.; Xun, Q.L.; Yu, Z.C.; Jiang, M.; Sheng, L.X.; Lu, X.G.; Wang, D.L. Anthropogenic disturbances caused declines in the wetland area and carbon pool in China during the last four decades. Glob. Chang. Biol. 2021, 27, 3837–3845. [Google Scholar] [CrossRef] [PubMed]
- Mahdianpari, M.; Jafarzadeh, H.; Granger, J.E.; Mohammadimanesh, F.; Brisco, B.; Salehi, B.; Homayouni, S.; Weng, Q. A large-scale change monitoring of wetlands using time series Landsat imagery on Google Earth Engine: A case study in Newfoundland. GISci. Remote Sens. 2020, 57, 1102–1124. [Google Scholar] [CrossRef]
- Zhang, Z.; Bortolotti, L.E.; Li, Z.H.; Armstrong, L.M.; Bell, T.W.; Li, Y.P. Heterogeneous Changes to Wetlands in the Canadian Prairies Under Future Climate. Water Resour. Res. 2021, 57, e2020WR028727. [Google Scholar] [CrossRef]
- Wang, J.; Chen, J.S.; Wen, Y.; Fan, W.; Liu, Q.N.; Tarolli, P. Monitoring the coastal wetlands dynamics in Northeast Italy from 1984 to 2016. Ecol. Indic. 2021, 129, 107906. [Google Scholar] [CrossRef]
- Cui, L.L.; Li, G.S.; Liao, H.J.; Ouyang, N.L.; Li, X.Y.; Liu, D. Remote Sensing of Coastal Wetland Degradation Using the Landscape Directional Succession Model. Remote Sens. 2022, 14, 5273. [Google Scholar] [CrossRef]
- Li, S.; Ma, H.Y.; Yang, D.; Hu, W.; Li, H. The Main Drivers of Wetland Evolution in the Beijing-Tianjin-Hebei Plain. Land 2023, 12, 480. [Google Scholar] [CrossRef]
- Jin, H.R.; Huang, C.Q.; Lang, M.W.; Yeo, I.Y.; Stehman, S.V. Monitoring of wetland inundation dynamics in the Delmarva Peninsula using Landsat time-series imagery from 1985 to 2011. Remote Sens. Environ. 2017, 190, 26–41. [Google Scholar] [CrossRef]
- Zhou, K. Wetland landscape pattern evolution and prediction in the Yellow River Delta. Appl. Water Sci. 2022, 12, 190. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, H.; Yao, B.; Lin, H.; An, X.; Liu, Y. Spatiotemporal changes of wetlands in China during 2000-2015 using Landsat imagery. J. Hydrol. 2023, 621, 129590. [Google Scholar] [CrossRef]
- Yang, L.; Wang, L.; Yu, D.; Yao, R.; Li, C.a.; He, Q.; Wang, S.; Wang, L. Four decades of wetland changes in Dongting Lake using Landsat observations during 1978–2018. J. Hydrol. 2020, 587, 124954. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, W.; Gao, H.; Nie, N. Climate Change and Anthropogenic Impacts on Wetland and Agriculture in the Songnen and Sanjiang Plain, Northeast China. Remote Sens. 2018, 10, 356. [Google Scholar] [CrossRef]
- Deng, Y.; Shao, Z.; Dang, C.; Huang, X.; Wu, W.; Zhuang, Q.; Ding, Q. Assessing urban wetlands dynamics in Wuhan and Nanchang, China. Sci. Total Environ. 2023, 901, 165777. [Google Scholar] [CrossRef]
- Zheng, X.J.; Sun, P.; Zhu, W.H.; Xu, Z.; Fu, J.; Man, W.D.; Li, H.L.; Zhang, J.; Qin, L. Landscape dynamics and driving forces of wetlands in the Tumen River Basin of China over the past 50 years. Landsc. Ecol. Eng. 2017, 13, 237–250. [Google Scholar] [CrossRef]
- Stubbs, Q.; Yeo, I.Y.; Lang, M.G.; Townshend, J.; Sun, L.X.; Prestegaard, K.; Jantz, C. Assessment of Wetland Change on the Delmarva Peninsula from 1984 to 2010. J. Coast. Res. 2020, 36, 575–589. [Google Scholar] [CrossRef]
- Hempattarasuwan, N.; Untong, A.; Christakos, G.; Wu, J.P. Wetland changes and their impacts on livelihoods in Chiang Saen Valley, Chiang Rai Province, Thailand. Reg. Environ. Chang. 2021, 21, 115. [Google Scholar] [CrossRef]
- Hao, L.N.; He, S.; Zhou, J.L.; Zhao, Q.; Lu, X. Prediction of the landscape pattern of the Yancheng Coastal Wetland, China, based on XGBoost and the MCE-CA-Markov model. Ecol. Indic. 2022, 145, 109735. [Google Scholar] [CrossRef]
- Shen, S.G.; Pu, J.; Xu, C.; Wang, Y.H.; Luo, W.; Wen, B. Effects of Human Disturbance on Riparian Wetland Landscape Pattern in a Coastal Region. Remote Sens. 2022, 14, 5160. [Google Scholar] [CrossRef]
- Yin, L.T.; Zheng, W.; Shi, H.H.; Wang, Y.Z.; Ding, D.W. Spatiotemporal Heterogeneity of Coastal Wetland Ecosystem Services in the Yellow River Delta and Their Response to Multiple Drivers. Remote Sens. 2023, 15, 1866. [Google Scholar] [CrossRef]
- Berg, A.; McColl, K.A. No projected global drylands expansion under greenhouse warming. Nat. Clim. Chang. 2021, 11, 331–371. [Google Scholar] [CrossRef]
- Mortimore, M.; Anderson, S.; Cotula, L.; Davies, J.; Faccer, K.; Hesse, C.; Morton, J.; Nyangena, W.; Skinner, J.; Wolfangel, C. Dryland Opportunities: A New Paradigm for People, Ecosystems and Development; ICUN: Gland, Switzerland, 2009. [Google Scholar]
- LI, J.; Sun, H.; Xing, X.D.; Wang, C.X. Characteristics of Wetland and Its Conservation in Arid and Sem-i arid Areas in Northwest of China. J. Desert Res. 2003, 23, 5. (In Chinese) [Google Scholar]
- Yang, A.M.; Wang, F.; Liu, Q.; Liu, X.Y. Classification of wetland and analysis on wetland distribution characteristics and water questions in China. Sci. Soil Water Conserv. 2006, 4, 5. (In Chinese) [Google Scholar]
- Dai, A.; Lamb, P.J.; Trenberth, K.E.; Hulme, M.; Jones, P.D.; Xie, P. The recent Sahel drought is real. Int. J. Climatol. 2004, 24, 1323–1331. [Google Scholar] [CrossRef]
- Reed, S.C.; Coe, K.K.; Sparks, J.P.; Housman, D.C.; Zelikova, T.J.; Belnap, J. Changes to dryland rainfall result in rapid moss mortality and altered soil fertility. Nat. Clim. Chang. 2012, 2, 752–755. [Google Scholar] [CrossRef]
- Guan, X.; Huang, J.; Guo, R.; Yu, H.; Lin, P.; Zhang, Y. Role of radiatively forced temperature changes in enhanced semi-arid warming in the cold season over east Asia. Atmos. Chem. Phys. 2015, 15, 22975–23004. [Google Scholar] [CrossRef]
- Xi, Y.; Peng, S.; Ciais, P.; Chen, Y. Future impacts of climate change on inland Ramsar wetlands. Nat. Clim. Chang. 2021, 11, 45–51. [Google Scholar] [CrossRef]
- Giweta, M.; Worku, Y. Reversing the Degradation of Ethiopian Wetlands”: Is it Unachievable Phrase or A Call to Effective Action? Int. J. Environ. Sci. Nat. Resour. 2018, 14, 136–146. [Google Scholar] [CrossRef]
- Thamaga, K.H.; Dube, T.; Shoko, C. Evaluating the impact of land use and land cover change on unprotected wetland ecosystems in the arid-tropical areas of South Africa using the Landsat dataset and support vector machine. Geocarto Int. 2022, 37, 10344–10365. [Google Scholar] [CrossRef]
- Cherkaoui, S.I.; Hanane, S.; Magri, N.; El Agbani, M.-A.; Dakki, M. Factors Influencing Species-Richness of Breeding Waterbirds in Moroccan IBA and Ramsar Wetlands: A Macroecological Approach. Wetlands 2015, 35, 913–922. [Google Scholar] [CrossRef]
- van Dijk, A.; Beck, H.E.; Crosbie, R.S.; de Jeu, R.A.M.; Liu, Y.Y.; Podger, G.M.; Timbal, B.; Viney, N.R. The Millennium Drought in southeast Australia (2001–2009): Natural and human causes and implications for water resources, ecosystems, economy, and society. Water Resour. Res. 2013, 49, 1040–1057. [Google Scholar] [CrossRef]
- Khelifa, R.; Mahdjoub, H.; Samways, M.J. Combined climatic and anthropogenic stress threaten resilience of important wetland sites in an arid region. Sci. Total Environ. 2022, 806, 150806. [Google Scholar] [CrossRef] [PubMed]
- Assefa, W.W.; Eneyew, B.G.; Wondie, A. The driving forces of wetland degradation in Bure and Wonberma Woredas, Upper Blue Nile basin, Ethiopia. Environ. Monit. Assess. 2022, 194, 838. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Fu, B.; Wang, S.; Stringer, L.C.; Wang, Y.; Li, Z.; Liu, Y.; Zhou, W. Drivers and impacts of changes in China’s drylands. Nat. Rev. Earth Environ. 2021, 2, 858–873. [Google Scholar] [CrossRef]
- UNESCO. The Ramsar Convention on Wetlands; UNESCO: Paris, France, 1971. [Google Scholar]
- Liu, J.Y.; Kuang, W.H.; Zhang, Z.X.; Xu, X.L.; Qin, Y.W.; Ning, J.; Zhou, W.C.; Zhang, S.W.; Li, R.D.; Yan, C.Z.; et al. Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s. J. Geogr. Sci. 2014, 24, 195–210. [Google Scholar] [CrossRef]
- Chen, J.; Chen, J.; Liao, A.P.; Cao, X.; Chen, L.J.; Chen, X.H.; He, C.Y.; Han, G.; Peng, S.; Lu, M.; et al. Global land cover mapping at 30 m resolution: A POK-based operational approach. Isprs J. Photogramm. Remote Sens. 2015, 103, 7–27. [Google Scholar] [CrossRef]
- Yang, J.; Huang, X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- He, S.L.; Li, J.; Wang, J.L.; Liu, F. Evaluation and analysis of upscaling of different land use/land cover products (FORM-GLC30, GLC_FCS30, CCI_LC, MCD12Q1 and CNLUCC): A case study in China. Geocarto Int. 2022, 37, 17340–17360. [Google Scholar] [CrossRef]
- Wei, W.; Xia, J.; Hong, M.; Bo, L. The Evolution of “Three-Zone Space” in the Yangtze River Economic Belt under Major Functional Zoning Strategy from 1980 to 2018. Urban Plan. Forum 2021, 3, 28–35. [Google Scholar] [CrossRef]
- Xu, X.; Guo, P.; Zhang, F.; Wu, H.; Guo, W. Analysis for Changing Ecological Effects Under Policy-Driven in Shiyang River Basin. J. Soil Water Conserv. 2020, 34, 185–191. [Google Scholar] [CrossRef]
- Bie, Q.; Shi, Y.; Li, X.Z.; Wang, Y.J. Contrastive Analysis and Accuracy Assessment of Three Global 30 m Land Cover Maps Circa 2020 in Arid Land. Sustainability 2023, 15, 741. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, L.Y.; Zhang, X.; Chen, X.D.; Mi, J.; Xie, S. Consistency Analysis and Accuracy Assessment of Three Global 30-m Land-Cover Products over the European Union using the LUCAS Dataset. Remote Sens. 2020, 12, 3479. [Google Scholar] [CrossRef]
- Li, M.J.; Ti, P.; Zhu, X.L.; Xiong, T.; Mei, Y.T.; Li, Z.L. Analysis of Spatial and Temporal Variability of Global Wetlands during the Last 20 Years Using GlobeLand30 Data. Remote Sens. 2022, 14, 5553. [Google Scholar] [CrossRef]
- Chen, J. Framing the Spatio-Temporal Changes in Global Cultivated Land Using GlobeLand30. Sci. Agric. Sin. 2018, 51, 1089–1090. [Google Scholar] [CrossRef]
- Liu, J.P.; Ren, Y.; Chen, X.D. Regional Accuracy Assessment of 30-Meter GLC_FCS30, GlobeLand30, and CLCD Products: A Case Study in Xinjiang Area. Remote Sens. 2024, 16, 82. [Google Scholar] [CrossRef]
- Hao, X.; Qiu, Y.B.; Jia, G.Q.; Menenti, M.; Ma, J.M.; Jiang, Z.X. Evaluation of Global Land Use-Land Cover Data Products in Guangxi, China. Remote Sens. 2023, 15, 1291. [Google Scholar] [CrossRef]
- Wu, Z.; Cai, Z.; Guo, Y.; Wang, Y. Accuracy evaluation and consistency analysis of multi-source remote sensing land cover data in the Yellow River Basin. Chin. J. Eco-Agric. 2023, 31, 4254. [Google Scholar] [CrossRef]
- Peng, S. 1-km Monthly Precipitation Dataset for China (1901–2020); National Tibetan Plateau Data Center: Beijing, China, 2020. [Google Scholar] [CrossRef]
- Peng, S. 1-km Monthly Mean Temperature Dataset for China (1901–2022); National Tibetan Plateau Data Center: Beijing, China, 2019. [Google Scholar] [CrossRef]
- Shen, G.; Yang, X.; Jin, Y.; Xu, B.; Zhou, Q. Remote sensing and evaluation of the wetland ecological degradation process of the Zoige Plateau Wetland in China. Ecol. Indic. 2019, 104, 48–58. [Google Scholar] [CrossRef]
- Wang, Z.; Li, T.; Yang, S.; Zhong, D. Spatio-Temporal Dynamic and Structural Characteristics of Land Use/Cover Change Based on a Complex Network: A Case Study of the Middle Reaches of Yangtze River Urban Agglomeration. Sustainability 2022, 14, 6941. [Google Scholar] [CrossRef]
- Zhou, S.; Chang, J.; Luo, P.; Kang, Y.; Li, S. Landscape dynamics and human disturbance processes in wetlands in a mining city: A case study in Huaibei, China. Environ. Monit. Assess. 2022, 195, 192. [Google Scholar] [CrossRef]
- Thompson, D.K.; Simpson, B.N.; Whitman, E.; Barber, Q.E.; Parisien, M.-A. Peatland Hydrological Dynamics as A Driver of Landscape Connectivity and Fire Activity in the Boreal Plain of Canada. Forests 2019, 10, 534. [Google Scholar] [CrossRef]
- Ai, J.W.; Yang, L.Q.; Liu, Y.F.; Yu, K.Y.; Liu, J. Dynamic Landscape Fragmentation and the Driving Forces on Haitan Island, China. Land 2022, 11, 136. [Google Scholar] [CrossRef]
- McDonnell, M.J.; Pickett, S.T.A. Ecosystem Structure and Function along Urban-Rural Gradients: An Unexploited Opportunity for Ecology. Ecology 1990, 71, 1232–1237. [Google Scholar] [CrossRef]
- Zhao, D.D.; Liu, J.P. Heterogeneity of wetland landscapes and their relationships with anthropogenic disturbances and precipitation in a semiarid region of China. Environ. Monit. Assess. 2022, 194, 786. [Google Scholar] [CrossRef]
- Points of significance. Nat. Hum. Behav. 2023, 7, 293–294. [CrossRef]
- Hou, W.; Zhai, L.; Qiao, Q.; Walz, U. Monitoring the intensity of human impacts on anthropogenic landscape: A mapping case study in Beijing, China. Ecol. Indic. 2019, 102, 382–393. [Google Scholar] [CrossRef]
- Yi, L.; Yu, Z.; Qian, J.; Kobuliev, M.; Xing, X. Evaluation of the heterogeneity in the intensity of human interference on urbanized coastal ecosystems: Shenzhen (China) as a case study. Ecol. Indic. 2021, 122, 107243. [Google Scholar] [CrossRef]
- Peng, B.; Fu, Y. Impact characteristics of human disturbance on land-use and landscape ecology pattern, Lushan, Southwest China. IOP Conf. Ser. Earth Environ. Sci. 2019, 227, 052050. [Google Scholar] [CrossRef]
- Cui, L.; Li, G.; Chen, Y.; Li, L. Response of Landscape Evolution to Human Disturbances in the Coastal Wetlands in Northern Jiangsu Province, China. Remote Sens. 2021, 13, 2030. [Google Scholar] [CrossRef]
- Zhou, Y.; Ning, L.; Bai, X. Spatial and temporal changes of human disturbances and their effects on landscape patterns in the Jiangsu coastal zone, China. Ecol. Indic. Integr. Monit. Assess. Manag. 2018, 93, 111–112. [Google Scholar] [CrossRef]
- Zhang, X.P.; Wang, X.Y.; Hu, Z.H.; Xu, J.C. Landscape Pattern Changes and Climate Response in Nagqu Hangcuo National Wetland Park in the Tibetan Plateau. Sustainability 2023, 15, 10200. [Google Scholar] [CrossRef]
- Wang, W.; Samat, A.; Ma, L.; Ge, X.Y.; Abuduwaili, J. Spatio-temporal variations and trend analysis of lake area in Xinjiang in 1986—2019. Acta Ecol. Sin. 2022, 42, 15. (In Chinese) [Google Scholar] [CrossRef]
- Wang, H.B.; Ma, M.G. Impacts of Climate Change and Anthropogenic Activities on the Ecological Restoration of Wetlands in the Arid Regions of China. Energies 2016, 9, 166. [Google Scholar] [CrossRef]
- Mao, D.H.; Wang, Z.M.; Wu, B.F.; Zeng, Y.; Luo, L.; Zhang, B. Land degradation and restoration in the arid and semiarid zones of China: Quantified evidence and implications from satellites. Land Degrad. Dev. 2018, 29, 3841–3851. [Google Scholar] [CrossRef]
- Luo, N.N.; Yu, R.; Mao, D.H.; Wen, B.L.; Liu, X.T. Spatiotemporal variations of wetlands in the northern Xinjiang with relationship to climate change. Wetl. Ecol. Manag. 2021, 29, 617–631. [Google Scholar] [CrossRef]
- Gao, F.; He, B.; Yan, Z.; Xue, S.; Li, Y. Analysis of the changes and driving force of the water area in the Ulungur Lake over the past 40 years. J. Water Supply Res. Technol. 2020, 69, 500–511. [Google Scholar] [CrossRef]
- Saimire, T.; Dilinuer, A. Impact of Climate Change in the Bosten Lake Basin on the Kaidu River Runoff. Clim. Environ. Res. 2022, 27, 323–332. [Google Scholar] [CrossRef]
- Guo, J.; Shi, J.S.; Zhang, Y.L.; Wang, Z.W.; Wang, W. Lake Changes in Inner Mongolia over the Past 30 Years and the Associated Factors. Water 2022, 14, 3137. [Google Scholar] [CrossRef]
- Feng, Y.H.; Zhang, H.; Tao, S.L.; Ao, Z.R.; Song, C.Q.; Chave, J.; Le Toan, T.; Xue, B.L.; Zhu, J.L.; Pan, J.M.; et al. Decadal Lake Volume Changes (2003-2020) and Driving Forces at a Global Scale. Remote Sens. 2022, 14, 1032. [Google Scholar] [CrossRef]
- Wang, S.; Zhou, K.; Zuo, Q.; Wang, J.; Wang, W. Land use/land cover change responses to ecological water conveyance in the lower reaches of Tarim River, China. J. Arid. Land 2021, 13, 1274–1286. [Google Scholar] [CrossRef]
- Zhao, W.W.; Ding, J.Y.; Wang, Y.P.; Jia, L.Z.; Cao, W.F.; Tarolli, P. Ecological water conveyance drives human-water system evolution in the Heihe watershed, China. Environ. Res. 2020, 182, 109009. [Google Scholar] [CrossRef]
- Wang, X.L.; Luo, Y.; Sun, L.; Shafeeque, M. Different climate factors contributing for runoff increases in the high glacierized tributaries of Tarim River Basin, China. J. Hydrol. Reg. Stud. 2021, 36, 100845. [Google Scholar] [CrossRef]
- Mao, D.H.; Yang, H.; Wang, Z.M.; Song, K.; Thompson, J.R.; Flower, R.J. Reverse the hidden loss of China’s wetlands. Science 2022, 376, 1061. [Google Scholar] [CrossRef] [PubMed]
- National Bureau of Statistics of China. China Statistical Yearbook; National Bureau of Statistics of China: Beijing, China, 2001.
- Liu, X.H.; Guan, K.W.; Zhang, Y.H.; Wu, T.T.; Cao, M.X.; Zhang, P.; Feng, M.Y. Changes of Wetland Area before and after Ecological Water Supplement Project in the National Nature Reserve of Populus euphratica in Tarim. Sci. Silvae Sin. 2018, 54, 8. (In Chinese) [Google Scholar] [CrossRef]
- Yun, J.; Liu, H.M.; Xu, Z.C.; Cao, X.A.; Ma, L.Q.; Wen, L.; Zhuo, Y.; Wang, L.X. Assessing Changes in the Landscape Pattern of Wetlands and Its Impact on the Value of Wetland Ecosystem Services in the Yellow River Basin, Inner Mongolia. Sustainability 2022, 14, 6328. [Google Scholar] [CrossRef]
- Xu, W.; Fan, X.; Ma, J.; Pimm, S.L.; Kong, L.; Zeng, Y.; Li, X.; Xiao, Y.; Zheng, H.; Liu, J.; et al. Hidden Loss of Wetlands in China. Curr. Biol. 2019, 29, 3065–3071. [Google Scholar] [CrossRef]
- Khafagy, M.E.; El-Sayed, H.; Darwish, K.M. Land cover/use change analysis and mapping of Borg El-Arab City, Egypt. Arab. J. Geosci. 2020, 13, 1123. [Google Scholar] [CrossRef]
- Kahsay, A.; Demissie, B.; Nyssen, J.; Triest, L.; Lemmens, P.; De Meester, L.; Kibret, M.; Verleyen, E.; Adgo, E.; Stiers, I. Extent of Lake Tana’s Papyrus Swamps (1985–2020), North Ethiopia. Wetlands 2023, 43, 6. [Google Scholar] [CrossRef]
- Li, H.D.; Gao, Y.Y.; Li, Y.K.; Yan, S.G.; Xu, Y.Y. Dynamic of Dalinor Lakes in the Inner Mongolian Plateau and Its Driving Factors during 1976–2015. Water. 2017, 9, 749. [Google Scholar] [CrossRef]
- Wang, C.Y.; Liu, S.H.; Zhou, S.; Zhou, J.; Jiang, S.C.; Zhang, Y.K.; Feng, T.T.; Zhang, H.L.; Zhao, Y.H.; Lai, Z.Q.; et al. Spatial-temporal patterns of urban expansion by land use/ land cover transfer in China. Ecol. Indic. 2023, 155, 111009. [Google Scholar] [CrossRef]
- Su, B.; Xiao, C.D.; Chen, D.L.; Huang, Y.; Che, Y.J.; Zhao, H.Y.; Zou, M.B.; Guo, R.; Wang, X.J.; Li, X.; et al. Glacier change in China over past decades: Spatiotemporal patterns and influencing factors. Earth-Sci. Rev. 2022, 226, 103926. [Google Scholar] [CrossRef]
Dataset | Resolution | Source | Time Scale |
---|---|---|---|
GlobeLand30_LUCC | 30 m | National Catalogue Service For Geographic Information [38] | 2000–2020 |
CLCD_LUCC | 30 m | Land use data from Jie Yang et al., Wuhan University [39] | 1990–2020 |
CN_LUCC | 1 km | Resource and Environment Science and Data Center [37] | 1990–2020 |
Precipitation | 1 km | National Tibetan Plateau Data Center [50] | 1990–2020 |
Temperature | 1 km | National Tibetan Plateau Data Center [51] | 1990–2020 |
Subcategory | Meaning | Interference Index |
---|---|---|
Construction land | Residential land, industrial land, energy development land | 0.99 |
Farmland | Land for dry crops | 0.70 |
Paddy field | Rice fields | 0.65 |
Garden land | Arbor garden, shrub garden | 0.57 |
Forest | Natural forest, plantation, sparse forest | 0.55 |
Lake | A naturally bounded body of water dominated by oxbow lakes | 0.30 |
Reservoir pits/ponds | Reservoirs and aquaculture | 0.30 |
River | Permanent rivers | 0.23 |
Beach | Floodplain, river bank, sandbank | 0.17 |
Marsh | Forest marsh, shrub marsh, coastal wetland | 0.15 |
Unused land | Unused land including hard-to-utilize land | 0.10 |
Region | Dominant Factors | Index | |||
---|---|---|---|---|---|
PD | NP | LSI | AI | ||
China | Precipitation | 59.48% | 65.15% | 65.43% | 65.89% |
Temperatures | 40.52% | 34.86% | 34.57% | 34.11% | |
XJ | Precipitation | 67.02% | 70.66% | 70.54% | 70.68% |
Temperatures | 32.97% | 29.33% | 29.46% | 29.32% | |
HCR | Precipitation | 49.26% | 58.11% | 58.85% | 59.86% |
Temperatures | 50.74% | 41.89% | 41.45% | 40.14% |
Region | Factors | Index | |||
---|---|---|---|---|---|
PD | NP | LSI | AI | ||
China | Climatic factors | 41.74% | 43.72% | 41.73% | 44.00% |
HDI | 58.26% | 56.28% | 58.27% | 56.00% | |
XJ | Climatic factors | 37.36% | 37.51% | 36.89% | 39.50% |
HDI | 62.64% | 62.49% | 63.11% | 60.50% | |
HCR | Climatic factors | 47.56% | 50.39% | 47.80% | 49.43% |
HDI | 52.44% | 49.61% | 52.20% | 50.57% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, X.; Zhao, H.; Wang, M.; Yuan, Q.; Chen, Z.; Jiang, S.; Deng, W. Evolution of Wetland Patterns and Key Driving Forces in China’s Drylands. Remote Sens. 2024, 16, 702. https://doi.org/10.3390/rs16040702
Wu X, Zhao H, Wang M, Yuan Q, Chen Z, Jiang S, Deng W. Evolution of Wetland Patterns and Key Driving Forces in China’s Drylands. Remote Sensing. 2024; 16(4):702. https://doi.org/10.3390/rs16040702
Chicago/Turabian StyleWu, Xiaolan, Hui Zhao, Meihong Wang, Quanzhi Yuan, Zhaojie Chen, Shizhong Jiang, and Wei Deng. 2024. "Evolution of Wetland Patterns and Key Driving Forces in China’s Drylands" Remote Sensing 16, no. 4: 702. https://doi.org/10.3390/rs16040702
APA StyleWu, X., Zhao, H., Wang, M., Yuan, Q., Chen, Z., Jiang, S., & Deng, W. (2024). Evolution of Wetland Patterns and Key Driving Forces in China’s Drylands. Remote Sensing, 16(4), 702. https://doi.org/10.3390/rs16040702