
Citation: Salinas-González, J.D.;

García-Hernández, A.; Riveros-Rosas,

D.; González-Cabrera, A.E.;

Mauricio-González, A.;

Galván-Tejada, C.E.; Vázquez-Reyes,

S.; Gamboa-Rosales, H. Annual Daily

Irradiance Analysis of Clusters in

Mexico by Machine Learning

Algorithms. Remote Sens. 2024, 16, 709.

https://doi.org/10.3390/rs16040709

Academic Editors: Manuel Antón,

Jung-Sup Um and Stephan Schlüter

Received: 12 December 2023

Revised: 31 January 2024

Accepted: 1 February 2024

Published: 18 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Annual Daily Irradiance Analysis of Clusters in Mexico by
Machine Learning Algorithms
Jared D. Salinas-González 1, Alejandra García-Hernández 1,*, David Riveros-Rosas 2 ,
Adriana E. González-Cabrera 2, Alejandro Mauricio-González 1, Carlos E. Galván-Tejada 1 ,
Sodel Vázquez-Reyes 1 and Hamurabi Gamboa-Rosales 1

1 Academic Unit of Electrical Engineering, Autonomous University of Zacatecas, Jardín Juarez 147,
Centro Histórico, Zacatecas 98000, Mexico; jerad.salinas94@uaz.edu.mx (J.D.S.-G.);
amgdark@uaz.edu.mx (A.M.-G.); ericgalvan@uaz.edu.mx (C.E.G.-T.); vazquezs@uaz.edu.mx (S.V.-R.);
hamurabigr@uaz.edu.mx (H.G.-R.)

2 Geophysics Institute, Universidad Nacional Autónoma de México, Ciudad de México 04150, Mexico;
driveros@igeofisica.unam.mx (D.R.-R.); gonzalezc@igeofisica.unam.mx (A.E.G.-C.)

* Correspondence: alegarcia@uaz.edu.mx

Abstract: The assessment of solar resources involves the utilization of physical or satellite models
for the determination of solar radiation on the Earth’s surface. However, a critical aspect of model
validation necessitates comparisons against ground-truth measurements obtained from surface
radiometers. Given the inherent challenges associated with establishing and maintaining solar
radiation measurement networks—characterized by their expense, logistical complexities, limited
station availability and the imperative consideration of climatic criteria for siting—countries endowed
with substantial climatic diversity face difficulties in station placement. In this investigation, the
measurements of annual solar irradiation, from meteorological stations of the National Weather
Service in Mexico, were compared in different regions clustered by similarities in altitude, TL Linke,
albedo and cloudiness index derived from satellite images; the main objective is to find the best ratio
of annual solar irradiation in a set of clusters. Employing machine learning algorithms, this research
endeavors to identify the most suitable model for predicting the ratio of annual solar irradiation and
to determine the optimal number of clusters. The findings underscore the efficacy of the L-method as
a robust technique for regionalization. Notably, the cloudiness index emerges as a pivotal feature,
with the Random Forest algorithm yielding superior performance with a R2 score of 0.94, clustering
Mexico into 17 regions.

Keywords: solar energy; machine learning; satellite image; clustering analysis; solar resource assessment

1. Introduction

Planning the strategic locations for the installation of a comprehensive measurement
network proves to be indispensable for the assessment of solar resources, especially in
vast territories characterized by a multitude of climatic variations [1,2]. The substantial
financial commitment entailed in establishing solar radiation measurement stations, cou-
pled with the inherent challenges associated with their sustained maintenance, underscores
the critical need for methodological approaches capable of precisely determining both the
optimal number of stations and the most suitable deployment sites [3]. To address this
imperative, recent years have witnessed the publication of several works that delve into the
identification of potential sites for solarimetric station installations, leveraging advanced
techniques such as data mining and cluster analysis [1,2,4]. These methodological advance-
ments not only contribute to the refinement of the selection process, but also pave the way
for enhanced resource assessment methodologies, ensuring a more robust foundation for
solar energy planning and utilization. In light of the dynamic nature of climate patterns
and the evolving landscape of renewable energy research, the continued exploration and
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refinement of these methodologies are essential for sustaining the accuracy and relevance
of solar resource assessments in the face of changing environmental conditions.

However, the application of machine learning techniques, as evidenced in the existing
literature, is not limited solely to site identification; it encompasses a multifaceted array of
capabilities extending well beyond this fundamental aspect. Chief among these applica-
tions is the prediction of solar irradiation at the surface, a task accomplished through the
implementation of sophisticated neural-fuzzy models, machine learning algorithms and
various artificial intelligence methodologies [5–7]. This broad and diversified spectrum
of applications highlights the versatility of machine learning within the realm of solar
resource assessment research.

As the field progresses, the integration of these advanced techniques holds the promise
of significantly enhancing the overall efficiency of measurement networks deployed across
diverse geographic climates. Beyond the traditional role of site selection, machine learning
stands poised to revolutionize the precision and reliability of solar irradiation predictions.
Such advancements not only contribute to a more accurate understanding of solar energy
potential, but also hold the potential to optimize the operational performance of solar energy
systems. The continuous evolution and refinement of machine learning methodologies
in solar resource assessment are pivotal for ensuring the resilience and adaptability of
renewable energy strategies in the face of dynamic environmental conditions and emerging
technological developments.

Machine learning has been applied in order to forecast solar radiation through a time
series of multiple related features [8–11]. The first regionalization works for monitoring
solar radiation, based on cluster analysis techniques using cloud cover data and satellite
images, were carried out by Zagouras in 2013 [12]. This approach involves dividing a
geographical region into a set of k clusters as a method to analyze solar irradiation patterns
across the specified area. Other regionalization studies can be seen in the works of Journée
in 2012 and Lima in 2016 [13,14]. In these studies, the Netherlands was regionalized [13],
and Brazil [14]. In these works, Global Horizontal Irradiance (GHI) was analyzed using
satellite images as well as measurements obtained from solar measurement stations, apply-
ing algorithms such as K-means and Ward; k-means is the most commonly used algorithm
in cluster analysis, in which the algorithm is applied to satellite images, given a set x =
{x1, x2, x3, . . ., xn} of n data points (pixels), and k classes a priori; the algorithm randomly
places the k centroids C = {c1, c2, c3, . . ., ck} in the initial space and assigns the data to one
of the classes based on the shortest distance between the data point and the centroid; and
the goal is to minimize the differences within each group and maximize the differences
between the classes. The results of the above studies led to the grouping of four classes,
both in Brazil and in the Netherlands.

As can be observed, most regionalization works are based on direct measurements of
solar radiation through time series, and very few have employed geoclimatic variables. The
cluster analysis, segments the solar irradiation in different regions according to a similarity
criterion and k number of clusters. The data used are taken mostly from time series in
satellite images and ground-based measurements, and for validation and determination the
appropriate number of clusters is evaluated by internal validation methods that consider
the intrinsic information of the geometrical structure of the data, such as the Silhouette
Index (SI) [15], Davies–Bouldin (DB) and Calinski–Harabasz indexes, with the help of
the L-method [12,16]. The first index is a highly complex calculation that is difficult to
evaluate in special resolutions like Mexico, and the L-method seems to be a good method
for obtaining an optimal number of classes. In 2014, a regionalization was published, for
the case of Mexico, based on climatic parameters such as isotherms, isohyets, evaporation
and humidity to locate the stations of a solarimetric network in Mexico [4]. The presented
literature underscores the evident underutilization and recent exploration of the clustering
technique in the context of regionalization based on solar irradiation, employing diverse
climate parameters and satellite imagery. Notably, investigations in this domain have pri-
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marily focused on a limited scope, with studies leveraging satellite images predominantly
emphasizing a singular variable: cloudiness.

A work was recently published that performs regionalization based on solar irradi-
ation, measuring different climatic characteristics such as albedo, cloud cover, altitude
and atmospheric turbidity [1]. In this research, regionalization is accomplished through
the application of the unsupervised K-means classification method and Gaussian models.
Consequently, multiple regionalizations (clusters) were obtained, and internal validation
methods such as DB and CH were used, applying the L-method for clustering in Mexico
using satellite images of cloudiness index, albedo, Linke and altitude, and determining
the option of 17 regions as the optimal regionalization. In this context, the above results
showed that it is possible to find optimal regionalization through the clustering methods
applied. However, recent studies show that there are different machine learning methods
that can also help to forecast and estimate solar radiation.

The principal aim of this paper is to broaden the analytical scope beyond the initial
exploration of k clusters. Central to this objective is the integration of additional ma-
chine learning algorithms, marking a deliberate expansion of the study’s methodological
framework. This involves statistical regionalization based on parameters relevant to solar
radiation incidence on the Earth’s surface. These parameters include elevation, which corre-
lates solar radiation with the optical path length of the atmosphere; albedo, which is related
to the radiation reflected by the surface and influences the amount of diffuse radiation
in the atmosphere; cloud cover, which filters extraterrestrial direct radiation reaching the
Earth through absorption, reflection and scattering; and atmospheric turbidity, linked to
the scattering and attenuation of solar radiation by locally present particles and gasses in
each region. Due to the volume of information, big data techniques are employed. These
same techniques allow for the calculation of the significance of these parameters in relation
to measurements from surface solar radiation stations. Notably, the study delves into the
application of diverse methodologies, including Random Forest (RF), Artificial Neural
Networks (ANN), Support Vector Machines (SVM) and Multiple Linear Regression (MLR),
derived from the bases established in [1], and secondly works to identify the machine
learning algorithm that presents the best model to forecast and estimate solar irradiance.
To achieve the above, the annual daily irradiation from 26 meteorological stations were
localized in each cluster, averaged and then related to the cluster’s centers of each k cluster.
The results of this paper concluded that the L-method is a good method to perform regional-
ization since it coincides with the machine learning algorithms in this work; all the models
show that 17 clusters is the optimal regionalization when solar irradiance and climatic
variables are related. The results also show that the Random Forest Algorithm gives the
best model, with an R2 correlation score of 0.94 in the regionalization of 17 clusters. This
alignment between the L method and machine learning algorithms serves as a valuable
insight, emphasizing the importance of methodological coherence in achieving accurate
and consistent regionalization results. The congruence observed in this study contributes
to the evolution of optimal regionalization approaches and their alignment with machine
learning methodologies.

2. Materials and Methods

The creation of the dataset used is discussed in [1], wherein detailed explanations are
provided regarding the preprocessing, modeling and evaluation of satellite images. This
process resulted in the generation of datasets and maps that cluster Mexico into distinct
regions based on annual values of albedo, Linke, cloudiness index and altitude for the year
2015. It must be noted that albedo and cloudiness index were obtained with the visible band
of satellite GOES13 and using the methodology for Heliosat-2 [1]. In this methodology,
Heliosat-2 estimates the fraction of clear sky measuring the reflectance of solar radiation
by the Earth’s surface and clouds. Minimum values on the surface represent the Earth’s
albedo and higher reflectance represents the cloudiness index. The Linke turbidity index
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was obtained from solar radiation data (SoDa services), and altitude was obtained from the
National Institute of Statistics and Geography of Mexico (Figure 1).
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The dataset of this study contains the following columns: evaluation, class, annual
daily irradiation, albedo center, Linke center, cloudiness index center and altitude center.
The evaluation describes the index with the clustering method, such as K-means and
Gaussian Mixture Models (GMM), and the numbers of k clusters used; for example, GMM10
means that the following 10 rows are from a cluster analysis in which the GMM algorithm
was applied. The class indicates through a number the cluster class or region; for example,
in Figure 2, class 3 is the region in light blue.

The annual daily irradiation of each class was taken by 26 ground-based stations of
the National Weather Service of Mexico (SMN) (Figure 3).

The dataset utilized in this study provides meteorological data and global solar irra-
diance measurements obtained through thermopile pyranometers manufactured by Kipp
and Zonen® (Delft, The Netherlands) and Campbell Scientific® dataloggers (Logan, UT,
USA) [3]. The geographical coordinates for each station are listed in Table 1.

The acquisition of irradiance data was conducted with measurements registered every
10 min. To maintain temporal consistency with the other features, taken from the year 2015,
the same was applied to these data. The daily global irradiation was obtained in Watts-hour
units using Equation (1), where IGd is the daily irradiation per day and Nd is the amount of
data per day.

IGd =
Nd

∑
n=1

IGn

6
(1)
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To obtain the annual daily irradiation IGy , the data were averaged, as is observed in
Equation (2), where Ny is the number of days studied.

IGy =
∑

Ny
n=1 IGdn

Ny
(2)

The annual daily irradiation of each station was located in the regions for each test,
and if a class had two or more pieces of data, then the annual daily irradiation of this class
was averaged; the result was a sorted vector called ystations and contained the annual daily
irradiation of the classes of each test, so for example in a regionalization of 10 classes, there
are 10 sorted annual daily irradiation data.



Remote Sens. 2024, 16, 709 6 of 17

Table 1. Station names and their geographical coordinates.

Number Station Name Lat. Lon. Altitude [m]

1 Nevado de Toluca 19.12 99.77 4139
2 Altzomonil 19.11 98.65 4007
3 Matías Romero 16.882 95.03 186
4 Nueva Rosita 27.92 101.33 366
5 Centla 18.4 92.64 3
6 Ixta-Popo 19.09 98.64 3682
7 Agustín Melgar 25.26 104 1226
8 Monclova 18.05 90.82 100
9 Oxkutzcab 20.29 89.39 28
10 Acaponeta 22.46 105.38 29
11 Paraíso 18.42 93.15 4
12 Obispo 24.25 107.18 4
13 Petacalco 17.98 102.12 53
14 Atlacomulco 197.991 98.87 2570
15 Maguarich 27.85 107.99 1663
16 Atoyac 17.2 100.44 120
17 Ocampo 28.82 102.52 1663
18 Perote 19.545 97.26 2410
19 Miahuatlán 16.34 96.579 1588
20 Nochistlán 17.43 97.24 2040
21 Matehuala 23.64 100.65 1627
22 Mexicali 32.66 115.29 14
23 Apatzingán 19.082 102.37 282
24 Angamacutiro 20.12 101.72 1730
25 Presa Abelard 32.44 116.91 156
26 Nogales 31.29 110.91 1269

The albedo, Linke, cloudiness index and altitude centers are the annual averages
of their measurements for each class; the data were taken by the centroids of each class.
The ground-based measurements and the satellite images were taken from datasets that
belonged to the Institute of Geophysics at the National Autonomous University of Mexico
(UNAM) (For any clarification or requests for using the data, they can be requested from
the following url: https://solarimetrico.geofisica.unam.mx (accessed on 5 February 2024)).

The diagram in Figure 4 shows the employed methodology: the dataset is used as an
input for modeling each machine learning algorithm, and then the models are evaluated,
and the outputs are the Root Mean Square Error (RMSE) and R2 score of each evaluation.

In the subsequent subsections, a detailed description of the machine learning algo-
rithms used in this study is presented.

2.1. Multiple Linear Regression (MLR)

The MLR is an extension of simple linear regression, and the aim of this algorithm is
to find the values of beta coefficients that minimize the prediction error of a linear equation.
Even though a linear dependence is not expected between irradiance and the considered
parameters in terms of physical processes, the value of the coefficients can provide an
estimation of the relative importance of each of the parameters used in relation to the
magnitude of irradiance. The multiple linear regression follows Equation (3), where ystations
is the annual daily irradiation data, β are the coefficients of each x’s values for each i feature
(independent variables such as albedo, cloudiness index, Linke and altitude) and an error
term is denoted by ϵ [17,18].

ystations = β0 + β1x1 + β2x2 + · · ·+ βixi + ϵ, (3)

The equation can be expressed through matrix notation, like in Equation (4), where
the dependent variables Ystations, β and ϵ are now vectors. The independent variable X

https://solarimetrico.geofisica.unam.mx
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is a matrix with a column for each feature, plus an additional column of 1 value for the
intercept term.

Ystations = βx + ϵ, (4)
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The best way to estimate the β vector in order to minimize the RMSE between the
predicted and the actual Ystations values was computed in Equation (5).

β =
(

XTX
)−1

XTYstations, (5)

2.2. Support Vector Machines (SVMs)

The SVM, also known as Support Vector Regression (SVR) for numeric prediction,
is an algorithm for classification and regression that is well known for its high accuracy,
modeling highly complex relationships, and for not over-fitting the evaluations [17]. A
two-dimensional SVR example is shown in Figure 5, where the bold line is called the hyper
plane; this separates the classes and helps to predict the target value, the boundary lines
(dotted lines), which create a margin, and the support vectors that are the data points
closest to the boundary [19].
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The goal is to fit the error within a certain threshold considering the points that are
within the boundary line, so the best-fit line is the hyperplane line that has the maximum
number of points.

The hyperplane line is described in Equation (6), where β is the coefficient and α is
the intercept.

Ystations = βX + α, (6)

Equations (7) and (8) denote the boundary lines, and the hyperplane is the one that
satisfies Equation (9).

βX + α = +ϵ, (7)

βX + α = −ϵ, (8)

−ϵ ≤ Ystations − βX − α ≤ +ϵ, (9)

considering the fact that Ystations − βX − α = 0.

2.3. Artificial Neural Network (ANN)

An ANN algorithm models the relationship between a set of input signals and an
output signal using a model derived from the understanding of how a biological brain
responds to sensory inputs; the algorithm uses a network of artificial neurons (nodes)
to solve learning problems in which there may be classification or numerical prediction
problems [17].

The biological neural networks are composed of dendrites, soma and axon, and the
dendrites are responsible for capturing the nerve impulses that emit other neurons. These
impulses are processed in the soma and they are transmitted through the axon to contiguous
neurons [20]. Following this scheme, an artificial neuron is composed of inputs that in our
case are the annual averages of albedo, Linke, cloudiness index and altitude denoted by
X1 to Xn, with a weight for each input denoted by w and a bias. The activation function
is how the data will be modeled, so for example in numeric predictions a linear function
is perfect for regression and correlation problems, because it uses the linear equation; the
output could be an annual daily irradiation measurement. Figure 6 describes an artificial
neuron or node.
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Following the same principles, an ANN is then formed by multiple artificial neurons
connected to each other and grouped in different layers, in which the results from an output
layer are the input for the next layer. As can be seen in Figure 7, the hidden layers are the
layers between the input and output layers.

2.4. Random Forest (RF)

RF is a method that combines the predictions from a lot of algorithms with the purpose
of obtaining a better result. Random Forest uses an approach called Bagging, and this
approach permits that varied instances from a set of data be sampled and evaluated with
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the same algorithm; the final output is the most frequent value in the predictions [21].
Figure 8 shows the structure of the Random Forest method.
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The default algorithm used for RF is the decision tree; this algorithm utilizes a tree
structure to model the relationships between the features and the outcomes [21]. It begins
with a root node (depth 0) and the algorithms start to make conditions or assumptions
about the data; if the assumptions are true, then it moves to the root’s left child node
(depth 1, left). In this case, this is a leaf node that does not have any children nodes, so the
node predicts the output. If the conditions are false, then it moves to the right child node.
Figure 9 shows an example of the decision tree.

The decision tree involves growing the tree. First, it splits the set in two subsets using
a single feature k and a threshold tk, which can be seen as “What value of k is lower or
equal to tk?”. The algorithm searches for the pair (k, tk) that splits the set in a way that
minimizes the Mean Squared Error (MSE), as it is described in Equation (10). The mleft/right
is the number of instances in the left and right set and m is the total of instances.

J(k, tk) =
mle f t

m
msele f t +

mright

m
mseright (10)

where
{

MSEnode = ∑iϵnode (ŷnode − y(i))
2

ŷnode =
1

mnode
∑iϵnode y(i)

}
.

As can be seen, the random forest is a set of decision trees which are trained through
random samples and the result is the most frequent MSE score in all the trees.
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3. Results

In a previous work [1], the L-method was used with clustering algorithms such as
GMM and K-means; the results showed that the evaluations with 17 and 10 clusters gave
a better model to explain the relations between climate features and the yearly daily
irradiation, and the best model was for 17 clusters. In this study, 4 and 17 classes were
evaluated with the k-means algorithm, and 10, 8 and 11 classes using the GMM algorithm.

The annual daily irradiation data of the 26 stations are described in Table 2. In addition,
the class that belongs to each station is presented.

Table 3 contains the annual daily irradiation values by class as well as the annual
measurements of albedo, Linke, cloudiness index and altitude for each algorithm and k
clusters; the data are sorted as the lowest to highest Annual Daily Irradiation value and the
classes that are exempt are because in these regions there are no stations to evaluate. The
cluster column indicates the region; for example, the index GMM10 in the cluster column
has a 3, and this number indicates the region in light blue shown in the map of Figure 2.

In pursuit of establishing the correlation between Annual Daily Irradiation and climatic
features, several machine learning algorithms were employed, and the assessment of their
performance relied on the Root Mean Square Error (RMSE) and R-squared (R2) scores. A
lower RMSE indicates a more precise regression, suggesting that the model’s predicted
values align closely with the actual data. The R2 denotes the degree of relationship with
the irradiation values. Table 4 describes the results for each algorithm.

As can be observed in Table 4 and Figure 10, the k-means algorithm with four classes’
evaluations had the best RMSE and R2, but it is more likely that the model is overfitting
the scores because of the low quantity of data that can be related in four classes, and that
this is why it does not represent a viable relationship with respect to the annual solar
irradiation. The better scores were given by ANN and Random Forest algorithm, which
were the evaluation with the 17 classes that better described the relationship between the
climatic features and the annual solar irradiation. This is good because the optimal number
of clusters was given by the L-method, so we can assume that the L-method is a good
evaluation technique for obtaining the optimal number of clusters thanks to all the R2

scores being greater than or equal to 0.80.
Regarding the importance of the feature, Random Forest offers a way to visualize the

relative importance of each feature, as shown in Figure 11.
The cloudiness index is the most important feature, along with the annual solar

irradiation, while the remaining features can be considered supportive in the clustering
of regions.
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Table 2. Stations with their annual daily irradiation and cluster class; the 4 and 17 classes were
clustered by K-means algorithm and the others by GMM algorithm.

Station
Number

Annual Daily
Irradiation

(Wh/m2)
4 Classes 17 Classes 10 Classes 8 Classes 11 Classes

1 4391 2 16 10 2 10
2 4747 2 16 10 2 10
3 4772 4 1 3 8 3
4 4803 3 14 9 4 9
5 4900 4 1 3 8 3
6 5061 2 16 10 2 10
7 5198 1 12 5 1 1
8 5243 4 4 8 3 8
9 5251 4 4 8 3 8

10 5297 4 7 1 6 11
11 5349 4 1 3 8 3
12 5378 4 11 4 5 4
13 5403 4 7 10 2 10
14 5405 2 5 2 2 2
15 5440 1 17 5 5 11
16 5472 4 7 10 8 10
17 5479 1 2 5 1 5
18 5607 2 16 10 2 2
19 5636 4 7 10 8 10
20 5636 2 10 10 2 2
21 5650 1 12 2 1 1
22 5760 1 15 7 7 7
23 5798 4 7 10 2 10
24 5914 2 10 10 2 2
25 5954 1 15 7 7 7
26 5960 1 8 7 7 7

Table 3. Annual daily irradiation, and annual averages of albedo, Linke, cloudiness sky index and
altitude per cluster class.

Evaluation Cluster Annual Daily
Irradiation (Wh/m2) Albedo Linke Cloudiness

Sky Index Altitude

K-means 4 Classes

3 4803 1.4228 3.9373 0.0724 417
2 5252 0.9089 3.5908 0.0493 1880
4 5318 1.0929 4.0504 0.0597 300
1 5707 1.3156 3.3587 0.0467 1410

K-means 17 Classes

16 4733 0.7651 3.7766 0.0706 2010
14 4803 1.5362 4.1138 0.0797 279
1 5007 0.9692 4.1138 0.0768 282

12 5198 1.1008 3.1486 0.0458 1890
4 5249 0.9216 4.2178 0.0662 83

11 5378 1.407 3.8554 0.049 259
5 5405 0.9852 3.2987 0.0456 2190

17 5440 0.8627 3.488 0.0515 2050
2 5479 1.5647 3.6405 0.0448 1340
7 5521 0.9344 3.9526 0.0435 616

10 5775 0.9273 3.792 0.039 1450
15 5857 3.0128 3.4441 0.0413 211
8 5960 1.7008 2.8913 0.0386 660
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Table 3. Cont.

Evaluation Cluster Annual Daily
Irradiation (Wh/m2) Albedo Linke Cloudiness

Sky Index Altitude

GMM 10 Classes

9 4803 1.3981 3.9828 0.0758 412
3 5007 1.0493 3.1392 0.045 1900
8 5247 0.9156 4.2207 0.0662 66
1 5297 0.9402 3.4437 0.0467 1670

10 5366 0.8934 3.7703 0.0455 1350
5 5372 1.5972 3.6213 0.0458 1540
4 5378 1.2612 3.8461 0.0501 590
2 5405 1.0493 3.1392 0.045 1900
7 5891 1.9808 3.1757 0.0398 528

GMM 8 Classes

2 4796 0.9246 3.6013 0.0453 1670
4 4803 1.5312 3.8707 0.0666 666
8 5226 0.9438 4.0782 0.0631 520
3 5247 0.9236 4.2185 0.0652 62
6 5297 0.9425 3.3914 0.0687 617
5 5409 1.3758 3.2596 0.0492 1230
1 5442 1.1262 3.2506 0.0454 1870
7 5891 1.8938 3.2506 0.0405 503

GMM 11 Classes

9 4803 1.3964 3.9956 0.0778 342.9
3 5007 0.9604 4.1067 0.0694 451.3

10 5215 0.8762 3.8325 0.0452 1130
8 5247 0.9162 4.2192 0.0661 65.4

11 5369 0.8865 3.6482 0.0497 1 430
4 5378 1.7276 3.8701 0.0481 143.3
1 5424 1.0966 3.2068 0.0458 1 930
5 5479 1.7575 3.6715 0.046 1 360
2 5641 0.9961 3.3851 0.045 2 090
7 5891 1.8781 3.1055 0.0396 593.3

In Figure 12, the optimal clustering for Mexico based on Annual Daily Irradiation is
illustrated using the k-means algorithm with 17 classes. Despite this being the optimal
scenario, notable results are also evident for clustering with 10 and 11 classes. These
alternative clustering approaches exhibit favorable indicators for effectively regionalizing
Mexico, as evidenced by commendable R2 scores.

Table 4. Stations with their annual daily irradiation and cluster class.

Evaluation

Linear Multiple
Regression SVR ANN RF

RMSE R2 RMSE
[%] R2 RMSE

[%] R2 RMSE
[%] R2

K-means 4 Cl. 0% 1 3.1% 0.80 6.0% −1 2.8% 0.77
K-means 17 Cl. 2.4% 0.87 3.0% 0.80 2.4% 0.87 1.6% 0.94

GMM 10 Cl. 2.0% 0.85 2.7% 0.73 1.8% 0.88 2.6% 0.75
GMM 8 Cl. 3.0% 0.76 4.6% 0.44 6.2% −1 2.4% 0.84
GMM 11 Cl. 2.2% 0.83 2.1% 0.85 1.7% 0.90 1.7% 0.89

Figures 13 and 14 visually present the regionalization of Mexico under these alternative
scenarios, with 10 and 11 classes, respectively. These visual representations emphasize
the meaningful subdivisions achieved with a reduced number of classes, reinforcing the
effectiveness of the clustering approach for capturing distinctive patterns in solar irradiation
across different regions of Mexico. The two figures illustrate the regionalization of Mexico
using Gaussian Mixture Models (GMM); it can be seen that the clustering of regions is very
similar in both, and they only differ slightly in classes 1 and 2 between the two figures.
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Upon a closer examination of the data, it was observed that the difference in clustering
was attributed to four stations in regions that share similar characteristics and exhibit
similar data. It was also observed that by incrementing the number of classes, as shown
in Figure 14, the changes in the clustering of regions aligns more closely with the vertical
distribution of regionalization with 17 clusters depicted in Figure 12, which was obtained
using the k-means clustering technique.
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4. Discussion

Solar global radiation data from meteorological stations of the National Weather Ser-
vice in Mexico were subjected to a comparative analysis with climatic regionalization
derived from cluster analysis techniques based on various climatic parameters. The evalua-
tion involved several machine learning algorithms, including Multiple Linear Regression
(MLR), Random Forest (RF), Support Vector Machines (SVM), and Artificial Neural Net-
works (ANN), with the performance metrics of Root Mean Square Error (RMSE) and R2

score serving as key outputs.
It is important to consider that the performance of different machine learning algo-

rithms largely depends on the size and structure of the data. The relationships explored
in this research are complex due to the nature of the variables and the large amounts of
data involved. MLR is particularly useful when modeling relationships that are not overly
complex and when information is limited. SVM performs well for complex and nonlinear
relationships. RF is an algorithm that seldom exhibits overfitting, and it does not require
variable transformation or parameter adjustment. ANNs excel in capturing complex and
nonlinear patterns in data, adapting well to prevent overfitting and performing effectively
with large datasets.

The results of this comparative analysis revealed that the optimal regionalization
was achieved with 17 clusters, employing both ANN and RF algorithms. Notably, RF
demonstrated superior performance, exhibiting the best values for both RMSE and R2

scores. The aforementioned results align with the advantages associated with both ANN
and RF algorithms, taking into account the quantity of data and the complexity of the
utilized variables. When fewer classes were considered in the regionalization, it appears
that the MLR algorithm exhibited overfitting in the data. Based on the above, the results
indicate that increasing the number of classes leads to improved performance across
algorithms. Notably, the RF algorithm exhibited no overfitting and appeared to fit the data
better in this study, resulting in a more optimal model.

The analysis underscored the significance of the cloudiness index as the primary
feature for identifying regions with respect to global solar irradiation. However, Linke
turbidity and albedo also proved to be relevant factors in the regionalization process,
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contributing to a more comprehensive understanding of the climatic factors influencing
solar radiation patterns.

The efficacy of the L-method in determining the optimal number of clusters was
highlighted, with the results aligning with the best RMSE and R2 scores. This emphasizes
the practical utility of the L-method in guiding clustering processes related to the delin-
eation of geographic regions based on climatic parameters. Additionally, the comparison
of multiple algorithms provided a robust means of evaluating and validating both the data
and results, offering insights into the strengths and limitations of different approaches. This
comprehensive approach enhances the reliability and validity of the regionalization model,
particularly when dealing with climatic variables and solar irradiance data. The findings
contribute to advancing the understanding of regional solar resource distribution and offer
valuable insights for the optimization of solar energy planning and utilization.
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Abbreviations and Variables

Ystations Dependent variable is a sorted set of annual daily irradiations per cluster class
x Features or dependent variables
IGd Daily irradiation per day
IGy Daily annual irradiation
Nd Total data of irradiance per day
Ny Total data per year
β Function coefficients
ϵ Function error
α Intercept
w Feature weights
k Number of clusters in decisions trees is a conditional value
tk In decision trees, is a condition value that should be met
m In decision trees, the number of instances
MSE Mean Squared Error of a function
RMSE Root Mean Squared Error of a function
MLR Multiple Linear Regression
R2 Correlation value
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