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Abstract: Brazil is the largest producer and exporter of coffee beans in the world. Given this relevance,
it is important to monitor the crop to prevent attacks by pests. This study aimed to detect leaf miner
(Leucoptera coffeella) infestation in a newly planted crop based on vegetation indices (VI) derived
from aerial images obtained by a multispectral camera embedded in a remotely piloted aircraft
(RPA) using random forest (RF). The study was conducted on the Cafua farm in the municipality of
Lavras in southern Minas Gerais. The images were collected using a multispectral camera attached
to a remotely piloted aircraft (RPA). Collections were carried out on 30 July 2019 (infested crop)
and 16 December 2019 (post chemical control). The RF package in R software was used to classify
the infested and healthy plants. The t test revealed significant differences in band means between
healthy and infested plants, favouring higher means in healthy plants. VI also exhibited significant
differences, with EXR being higher in infested plants and GNDVI, GOSAVI, GRRI, MPRI, NDI, NDRE,
NDVI and SAVI showing higher averages in healthy plants, indicating distinct spectral responses
and light absorption patterns between the two states of the plant. Due to the spectral differences
between the classes, it was possible to classify the infested and healthy plants, and the RF algorithm
performed very well.

Keywords: unmanned aircraft systems; vegetation index; Coffea arabica; multispectral; artificial intelligence

1. Introduction

Brazil is widely recognized as the largest producer of Arabica coffee (Coffea arabica)
worldwide. The country ranks first in the global production of arabica beans, accounting
for 46.4% to the total production. The estimated total production of grain for the 2023/2024
crop worldwide is 96.33 million bags (60 kg) [1]. In addition, the state of Minas Gerais has
a significant share of national production, contributing 27.8 million bags of processed grain,
representing 50.8% of the country’s total production [2]. The significant contribution by this
state is due to its ideal climatic and geographical conditions for the cultivation of this coffee
variety, including a combination of elevation, temperature, rainfall and suitable soils [3].

However, coffee cultivation still faces challenges, including predation by the leaf miner
(Leucoptera coffeella), a key crop pest that affects coffee production and quality [4,5] in hotter
and drier seasons particularly. According to Franklin et al. [6], the leaf miner moth is a
small silvery-white moth with a diurnal mating habit. The development of the eggs varies
from 5 to 21 days according to temperature. When the eggs hatch, the larvae penetrate
the epidermis of the leaf to feed and to form “mines” which have a light brown colour
and a rounded shape, eventually reaching a darker colour due to the accumulation of

Remote Sens. 2024, 16, 728. https://doi.org/10.3390/rs16040728 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs16040728
https://doi.org/10.3390/rs16040728
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-6403-2210
https://orcid.org/0000-0001-7526-0825
https://orcid.org/0000-0003-0211-9294
https://orcid.org/0000-0002-5838-0152
https://orcid.org/0000-0002-4181-5893
https://doi.org/10.3390/rs16040728
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs16040728?type=check_update&version=1


Remote Sens. 2024, 16, 728 2 of 13

excretions [6]. Attacks by this pest on coffee plants result in reduced productivity, causing
losses of hundreds of millions of dollars every year according to Rosado et al. [7].

To address this challenge, emerging technologies such as remotely piloted aircraft
(RPA) have been used to identify symptoms of pest attacks, e.g., in preliminary studies
conducted by Santos et al. [8]. These studies aimed to mitigate challenges and improve
the production of this crop in Brazil. RPA with multispectral sensors can fly over coffee
plantations and capture high-resolution (in cm) images at different wavelengths, as high-
lighted in recent studies by Bento et al. [9], Santana et al. [10] and Santos et al. [11] using
such technologies for various applications in coffee farming. Such images can be processed
to generate vegetation indices (VI), can provide information on the phytosanitary conditions
of crops [12], be used to identify frost damage [13] and be used to identify diseases such as
rust in coffee trees [14].

With the analysis of VI, it is possible to provide early detection of areas affected by
leaf miner because the leaves damaged by the pest have spectral characteristics that differ
from those of healthy leaves, which allows the identification and mapping of infested
areas. Studies conducted by Santos et al. [8] found that the mean NDVI values for healthy
plants were higher than those for plants infested with the leaf miner. Such information can
lead farmers to make more precise and targeted decisions, contributing to the application
of specific pesticides, reducing indiscriminate pesticide use, minimizing environmental
impacts and reducing costs associated with coffee crops, thus making coffee cultivation
more sustainable.

To monitor the leaf miner currently, two sampling plans can be performed manually:
common sampling and sequential sampling. In the study by Souza et al. [15], common
sampling was performed: 10 samples were collected consisting of the fourth pair of leaves
from the upper third of the branches, with one pair of leaves collected from each quadrant
of the coffee plant. In this common sampling scheme, the number of leaves with mines is
examined, obtaining the percentage of mined leaves. The threshold for level control (LC) is
40% of leaves mined in the winter and 20% of leaves mined in the summer. According to
Berzoti and Aquino [16], sequential sampling has an advantage over common sampling, in
which a fixed number of samples is collected, in addition to having a gain of considerable
time throughout the cycle of a crop. The path for sampling the leaves in the affected area
should form a spiral.

Both manual identification methods require professionals on site to detect the leaf
miner pest. When identifying an outbreak, they write down the information for analysis,
calculate the LC and then the conventional treatment process begins with the application of
pesticides throughout the area. To minimize and optimize the identification of leaf miners
in coffee plantations, remote detection methods are recommended.

A study of the application of Sentinel-2 satellite images to identify coffee leaf miner
infestation levels in coffee plantations was conducted by Vilela et al. [17]. The study
considered bands of the Sentinel-2 satellite with a spatial resolution of 10 m and a revisit
period of approximately five days. Another study by Marin et al. [18] aimed to identify
and map coffee crop stress caused by biotic and abiotic variables, including the leaf miner,
using VI derived from multispectral Landsat-5 Thematic Mapper (TM) images with spatial
resolution of 30 m. Despite having obtained good results, the methodologies proposed by
both studies have some limitations such as the low spatial and temporal resolution when
compared to the images that RPA can offer. RPAs have high temporal resolution compared
to satellites, and therefore obtain images more frequently. Finally, with RPA it is possible to
obtain constant data as long as there are favourable weather conditions (i.e., no rain).

Relying upon traditional manual sampling and monitoring of satellite images, the
identification of extensive areas of infestation by the leaf miner in a timely manner can
become difficult and require processing of large amounts of samples. Thus, the use of
RPAs coupled with image processing and VI analysis allows the continuous monitoring
of coffee plantations, enabling early detection of phytosanitary problems, favouring more
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efficient planning of actions and increased effectiveness in decision making related to crop
management.

In addition, the advent of agricultural solutions based on artificial intelligence (AI),
artificial neural networks, machine learning, deep learning, remote sensing, digital image
processing and robotics [19] has improved production in this sector. Neural networks in
particular have a strong learning ability and are highly accurate in the identification of leaf
pests and diseases [20].

Thus, this study aimed to detect leaf miner infestation in a newly planted crop using VI
analysis and the application of the random forest (RF) algorithm in aerial images obtained
by a multispectral camera embedded on a RPA.

2. Materials and Methods
2.1. Study Area

The study was conducted on the Cafua commercial farm, located in the municipality
of Lavras in southern Minas Gerais in an area of 0.2 ha of coffee (Coffea arabica L.) of the
cultivar Catuaí Vermelho IAC 99, planted in November 2018, with a spacing of 3.5 m
between rows and 0.5 m between plants. The geographical coordinates are 21◦09′50′′S and
44◦59′35′′W, with an average elevation of 934 m (Figure 1).
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Figure 1. Location of the study area.

The climate in the region, according to the Koppen classification, is Cwa (subtropical
climate, characterized by a dry season in the winter and a rainy season in the summer)
with an average temperature of 20 ◦C and average annual rainfall of 1153 mm [21].

2.2. Aerial Data Collection

Visual sampling was performed in the field to classify the coffee crop as infested
or healthy. The first aerial data collection was performed on 30 July 2019 in an area of
crop classified as infested. After this collection, the area was subjected to chemical control
through the application of 0.69 kg.ha−1 Actara 250 WG® (Syngenta, São Paulo, Brazil).
A second visual sampling was performed after chemical control. The crop was classified as
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healthy, and a second collection of aerial data was performed on 16 December 2019. Two
aerial data collections were then carried out on different dates to remotely analyze and
identify changes in the health status of the plants.

A 3DR solo model (3D Robotics, Berkeley, CA, USA) RPA was used. The aircraft was
remotely operated at a height of 50 m from the ground and integrated with a global position-
ing satellite system (GNSS) (Figure 2a). The images were captured by a Parrot SequoiaTM

multispectral camera (MicaSense, Seattle, WA, USA) onboard the RPA. The camera has
four spectral sensors: green (G) (530–570 nm), red (R) (640–680 nm), red edge (EDGE)
(730–740 nm) and near infrared (NIR) (770–810 nm), with a resolution of 1.2 megapixels
(1280 × 960). It is self-calibrated through a solar sensor integrated into the camera and has
a RGB sensor with a resolution of 16 MP (Figure 2b).
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Figure 2. Equipment used for acquisition of images: (a) RPA used for field survey; (b) camera (image
and irradiance sensors).

2.3. Image Processing

The processing of the images obtained with the RPA was performed with Pix4Dmapper
Pro version 4.8.0 software, and orthoimages with reflectance values in the 4 bands, i.e.,
green, red, red edge and near infrared, were generated as described by Santos et al. [22].

The postprocessing of the images was performed using Quantum GIS (QGIS) soft-ware
version 3.10. Arithmetic operations were performed for the R, NIR, EDGE and G bands
using the raster calculator tool, and the following VI were calculated: GNDVI, GO-SAVI,
NDVI, GRRI, MPRI, NDI, NDRE, SAVI and EXR (Table 1). Such VI were selected according
to the relevance in the literature for studies of diseases in coffee trees and VI used for
monitoring coffee leaf miners. A total of 10,987 plants were identified and a 15 cm buffer
was generated on top of each plant to obtain spectral information.

Table 1. VI applied to images obtained using the bands of the multispectral camera.

Vegetation Indices Equation Source

Excessive red (EXR) EXR = 1.44 × R − G [23]
Green normalized difference vegetation index (GNDVI) GNDVI =NIR − G

NIR − G [24]
Green optimal soil adjusted vegetation index (GOSAVI) GOSAVI = (1 + 0.16) NIR − G

NIR+G+0.16 [25]
Green–red ratio index (GRRI) GRRI =G

R [26]
Modified photochemical reflectance index (MPRI) MPRI =G − R

G+R [27]
Normalized different index (NDI) NDI = G − R

G+R+0.01 [28]
Normalized difference red edge (NDRE) NDRE =NIR − EDGE

NIR+EDGE [29]
Normalized difference vegetation index (NDVI) NDVI = NIR − R

NIR − R [30]
Soil-adjusted difference vegetation index (SAVI) SAVI = (1+L) NIR − R

NIR+R+L
[31]

L = 0.5 (adjustment factor for the SAVI index).

2.4. Classification Method

A descriptive statistical analysis of the reflectance values of the bands and the VI values
was carried out. The Shapiro–Wilk normality test (W; p ≤ 0.05), homogeneity of variances
test and t test for independent samples (p ≤ 0.05) was applied in order to verify significant
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differences between the bands and VI obtained in the infested leaves and healthy leaves.
Analysis was performed using R software version 4.3.2 (R Core Team, Vienna, Austria).

The training and validation stages of the classification algorithm consisted of ex-
ploratory analysis of the input data, classification by the RF algorithm and validation and
verification of the performance of the classifier by performance metrics.

In the classification process, two classes of interest were established: coffee plants
with leaf miner infestation and coffee plants without leaf miner infestation (after chemical
control), each with 10,897 samples. The data used for the classification consisted of the
in-dividual spectral bands and the previously mentioned vegetation indices.

R version 4.3.2 software and the “randomForest” package were used for the RF
classification process [32]. Initially, a random division was created between training and
validation samples, with proportions of 70% and 30%, respectively. For the RF classification,
the number of decision trees (Ntree) was set to 100 and the number of variables to be tested
(Mtry) corresponded to the square root of the number of input variables [33]. Gini index
analysis was also applied to describe the importance of each input variable in the algorithm
to the classification process.

Validation was performed by comparing the validation sample to the reference data.
The evaluation of the performance and quality of the classification was performed using
information from a confusion matrix and metrics of global accuracy, sensitivity and speci-
ficity and the F1 score [34] in addition to the external metric, i.e., the area under the ROC
curve (AUC) based on a confusion matrix.

The application of algorithms combined with classification and spectral characteriza-
tion tools allows for the segmentation of pixels according to their reflectance values [35,36].
Consequently, these techniques can contribute to the identification of pests and foliar
diseases. The RF algorithm uses the ensemble paradigm, in which multiple models are
combined to classify the input. Therefore, a combination of several decision trees is used
which are trained with the input data, obtained via a simple random sample and the
attributes to be considered are randomly chosen [37]. The positive characteristics for its
use include the fact that this algorithm is affected by outliers and noisy data, it is non-
parametric, it supports data with different statistical distributions, it has a high capacity
for processing data on a large scale and from different sources and has greater accuracy in
terms of classification when compared to other classifier algorithms [38,39].

3. Results
3.1. Exploratory Data Analysis

Table 2 shows the results of the exploratory analysis of the values of the bands used
to calculate the VI. With the statistical results, it was possible to analyze the spectral
characteristics of the plants relative to the state of the plants (healthy or infested with
leaf miners).

Table 2. Summary of descriptive statistical values for the bands used to detect healthy and in-
fested plants.

Band State of
the Plants Average SD Mean Min Max

EDGE
Infested 12.644 1.709 12.707 4.902 20.627
Healthy 26.498 2.110 26.506 17.112 36.794

G
Infested 7.563 1.537 7.318 3.135 20.634
Healthy 11.083 4.005 9.376 6.480 28.293

NIR
Infested 12.509 1.879 12.598 4.869 18.348
Healthy 17.209 3.080 27.507 14.377 34.277

R
Infested 8.149 2.225 7.778 2.315 27.524
Healthy 9.711 6.287 7.033 3.454 35.516

SD—standard deviation, Min—minimum VI value, Max—maximum VI value.
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The t test was used to compare the averages of the EDGE, G, NIR and R bands in the
two states of plants studied. The four bands did not present normality and did not present
homogeneity of variance. Given this result, a specific t test was used for independent
samples that present non-homogeneous variances. The p-value obtained for the four bands
was less than 0.05, indicating a statistically significant difference in the band means (EDGE,
G, R and NIR) in the two states of the plants. The results obtained suggest that the average
values of the EDGE, G, NIR and R bands is higher in healthy plants than in infested plants,
which indicates a more intense spectral response in these bands in healthy plants and a
greater absorption of light in these bands by healthy plants (Table 2 and Figure 3).

Remote Sens. 2024, 16, x FOR PEER REVIEW 7 of 14 
 

 

  

  
Figure 3. Box plots for band values in the states of infested and healthy plants with statistically 
significant differences by the t test (p ≤ 0.05). 

Table 3 shows the exploratory analysis of the values of the VI obtained in the study. 
The statistical results provide an overview of the characteristics of the different VI in 
healthy plants and plants infested with leaf miner. These results indicate differences in 
the means, standard deviations, medians and ranges of values between the two condi-
tions. 

Table 3. Summary of descriptive statistical values for VI in healthy and infested plants. 

Band State of the Plants Average SD Mean Min Max 

EXR 
Infested 3.845 1.797 3.591 −0.771 17.899 
Healthy 2.512 5.037 0.537 −5.342 22.528 

GNDVI 
Infested 0.245 0.111 0.257 −0.175 0.512 
Healthy 0.429 0.162 0.488 −0.090 0.647 

GOSAVI 
Infested 0.283 0.128 0.295 −0.202 0.589 
Healthy 0.499 0.188 0.569 −0.105 0.753 

GRRI 
Infested 0.951 0.111 0.939 0.646 1.650 
Healthy 1.336 0.343 1.342 0.621 2.537 

MPRI Infested −0.028 0.057 −0.031 −0.215 0.245 
 Healthy 0.1223 0.1131 0.143 −0.234 0.4335 

NDI 
Infested −0.028 0.057 −0.031 −0.214 0.244 
Healthy 0.123 0.131 0.143 −0.234 0.434 

NDRE Infested −0.006 0.034 −0.005 −0.147 0.116 
 Healthy 0.011 0.054 0.022 −0.162 0.160 

NDVI Infested 0.217 0.145 0.228 −0.275 0.608 
 Healthy 0.501 0.242 0.589 −0.206 0.798 

SAVI Infested 0.508 0.177 0.522 −0.092 0.984 
 Healthy 0.864 0.297 0.973 −0.007 1.231 

SD—standard deviation, Min—minimum VI value, Max—maximum VI value. 

Figure 3. Box plots for band values in the states of infested and healthy plants with statistically
significant differences by the t test (p ≤ 0.05).

Table 3 shows the exploratory analysis of the values of the VI obtained in the study.
The statistical results provide an overview of the characteristics of the different VI in healthy
plants and plants infested with leaf miner. These results indicate differences in the means,
standard deviations, medians and ranges of values between the two conditions.

Table 3. Summary of descriptive statistical values for VI in healthy and infested plants.

Band State of the
Plants Average SD Mean Min Max

EXR
Infested 3.845 1.797 3.591 −0.771 17.899
Healthy 2.512 5.037 0.537 −5.342 22.528

GNDVI
Infested 0.245 0.111 0.257 −0.175 0.512
Healthy 0.429 0.162 0.488 −0.090 0.647

GOSAVI
Infested 0.283 0.128 0.295 −0.202 0.589
Healthy 0.499 0.188 0.569 −0.105 0.753

GRRI
Infested 0.951 0.111 0.939 0.646 1.650
Healthy 1.336 0.343 1.342 0.621 2.537

MPRI Infested −0.028 0.057 −0.031 −0.215 0.245
Healthy 0.1223 0.1131 0.143 −0.234 0.4335

NDI
Infested −0.028 0.057 −0.031 −0.214 0.244
Healthy 0.123 0.131 0.143 −0.234 0.434

NDRE Infested −0.006 0.034 −0.005 −0.147 0.116
Healthy 0.011 0.054 0.022 −0.162 0.160
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Table 3. Cont.

Band State of the
Plants Average SD Mean Min Max

NDVI Infested 0.217 0.145 0.228 −0.275 0.608
Healthy 0.501 0.242 0.589 −0.206 0.798

SAVI Infested 0.508 0.177 0.522 −0.092 0.984
Healthy 0.864 0.297 0.973 −0.007 1.231

SD—standard deviation, Min—minimum VI value, Max—maximum VI value.

The t test was used to compare the average VI in the two states of the plants studied.
The indices did not present normality and did not present homogeneity of variance. Given
this result, a specific t test was used for independent samples that present non-homogeneous
variances. The p-value obtained for the indices was less than 0.05, indicating a statistically
significant difference in their averages in the two states of the plants. Accounting for the
comparison of means observed in Table 3 and Figure 4, the mean value of EXR was higher
for infested plants than for healthy plants. For the VI GNDVI, GOSAVI, GRRI, MPRI, NDI,
NDRE, NDVI and SAVI, the means were higher for healthy plants than for infested plants.
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3.2. Overall Classifier Accuracy

The general accuracy, sensitivity, specificity, F1 score and area under the ROC curve
for the classifications performed by the RF algorithm are shown in Table 4. In general, the
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values of the parameters analyzed demonstrate a satisfactory performance of the classifier
in the differentiation of classes. Favourable results were obtained with the algorithm.

Table 4. Performance parameters for the RF classification algorithm.

Algorithm Overall
Accuracy Sensitivity Specificity F1 AUC

RF 0.9997 0.9997 0.997 0.9996 0.9994

Confusion matrix analyses were performed to validate the results of the classification
algorithm. The previously described satisfactory values of the performance parameters
illustrate that there were few errors in the classification of study classes, as evidenced by
the confusion matrices created for data from the classification algorithm (Table 5).

Table 5. Confusion matrix of plants with and without leaf miner infestation classified using RF
algorithm.

Reference

Classes With Without Total

Prediction
With 3268 1 3269

Without 1 3268 3269
Total 3269 3269 6538

Using the RF classifier and the Gini index, it was possible to describe the importance
of each variable for the classification process as shown in Figure 5. It is noted that for this
study, the NIR spectral band and the EDGE band were more important in the classification,
whereas the R band was the least important. The most important vegetation index in the
classification was SAVI, whereas the GRRI vegetation index was the least important in the
proposed classification.
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According to the classification, SAVI was the most important vegetation index. Thus,
the spatial distribution of VI in the study area can be observed in Figure 6. As observed in
Table 3, SAVI had an average value of 0.508 in infested plants, shown by the yellowish and
red colour in Figure 6, and an average value of 0.864 in healthy plants, shown by the green
colour in Figure 6.
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4. Discussion

In this study, it was observed that healthy plants had a higher mean reflectance of the
EDGE, G, NIR and R bands than infested plants. This result is consistent with the studies
conducted by Vilela et al. [17] in which the authors observed that the spectral response in
the NIR region of a coffee crop with a higher percentage of leaf miner infestation was lower
than that of a crop with a lower percentage of infestation. That is, the greater the reflectance,
especially in the NIR region, the more this spectral behaviour is related to vegetative vigour.
When infestation occurs, the leaf miner larvae feed on the mesophyll of the coffee leaves,
creating mines. These mines cause leaf necrosis, contributing to a lower photosynthetic
rate [4] and, therefore, lower vigour and lower spectral response in the NIR range. Thus,
the infestations of pests that affect the internal structures of the leaves can be evaluated
using the NIR band, confirming the results of this study and some previous studies [17,40]
and highlighting the importance of spectral bands in RF classifications, as demonstrated by
the Gini index (Figure 5).

The EDGE spectral band also showed greater importance in the classification process,
as shown in Figure 5. This band is highly sensitive to the concentration of chlorophyll,
al-lowing high absorption of the incident energy that penetrates the surface layer while re-
ducing the high level of reflectance observed in the innermost part of the leaf structure [24].

In addition, the descriptive analysis of vegetation index values can help to identify
patterns and differences between healthy and infested plants, which can be useful for
monitoring and managing coffee plantations affected by the leaf miner. As the results
showed a higher average for healthy plants than for infested plants for the VI GNDVI,
GOSAVI, GRRI, MPRI, NDI, NDRE, NDVI and SAVI, it is suggested that the values of the
indices tend to be higher in healthy plants, indicating greater vegetative vigour. Similar
results were found in the studies conducted by Santos et al. [8], in which the authors
performed studies of VI in different sites infested by leaf miner. In the studies, the authors
found higher values of VI for healthy plants than for infested plants on average. However,
the opposite results were found for the vegetation index EXR when com-paring the average
values of infested and healthy plants. The spectral sensitivity of EXR demonstrates the
difference between red and green bands. In addition, it is noteworthy that the index
is intended to segment soil leaf regions [41]. This behaviour is attributed to the higher
percentage of exposed soil in areas with infested plants (plant age: eight months) than in
areas with healthy plants (plant age: one year and one month).

Regarding the VI that were found to have the greatest importance in the classification
process, SAVI stands out. This index makes use of the constant L, known as the adjustment
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factor of the SAVI index, the value of which varies from 0.25 to 1 depending on the soil
coverage. According to Huete [31], an L value of 0.25 is recommended for areas with
dense vegetation, an L value of 0.5 is recommended for areas of intermediate density and
an L value equal to 1 indicates areas with low vegetation density. Importantly, when the
SAVI value is equal to 0, its results are similar to those of NDVI, which was found in the
second-best classification. This vegetation index considers the soil influences visible in the
images during analysis and was suitable because the plants analyzed were young and the
interrow space had no vegetation cover, minimizing the interference of the exposed soil in
this analysis. Thus, the fact that this index eliminates the effects of the soil gives us a more
realistic view of the status in the study area [42].

The results obtained by the RF algorithm indicate that the performance of this approach
was satisfactory for the differentiation of study classes, since high values were observed
for the performance metrics evaluated such as the overall accuracy, sensitivity, specificity,
F1 score and area under the ROC curve (Table 4). The precision values de-scribed in this
study indicate the frequency with which the classifier correctly estimates the classes. Values
close to 100% were observed, highlighting the excellent fit of the model to the proposed
classes based on the satisfactory values of the performance metrics, thus showing few errors
between the thematic classes identified in the confusion matrix (Table 5). Therefore, based
on the results presented, RF is considered a suitable classification algorithm for this study.

It is also noteworthy that the NIR band had the highest importance weight in the
classifier according to the Gini index (Figure 5). However, the NIR band alone was not
sufficient to differentiate between the study classes, and using other spectral bands resulted
in better classification results. In general, satisfactory and accurate classifications of plants
with and without the presence of leaf miner were obtained by using images with a high
spatial resolution combined with spectral bands and VI that were able to capture the
responses of the plants to stress conditions imposed by pest infestation. Notably, in a study
by Bento et al. [9], the authors used classification algorithms to differentiate weeds from
coffee plants and obtained satisfactory parameter values for the RF algorithm based on the
analyzed performance metrics.

The application of a classification algorithm such as RF, in the identification of the leaf
miner in Brazilian coffee cultivation, has the potential to improve the early detection and
management of this pest. However, there are challenges to be overcome, including issues
related to data quality, generalizability of models and interpretability. With continuous
advances in technology and research, these approaches may play a key role in the future
of precision coffee farming in Brazil. It is recommended that future studies consider
using data acquired by cameras with high spectral resolutions to improve the quality of the
training images. In addition, the application of supervised learning and subsequent transfer
learning techniques may allow training of supervised models and eventually pretrained
models on large image datasets, favouring adjustments for the detection of specific diseases
to save time and resources. Another recommendation is for future studies to apply other
classifiers and algorithms to obtain better fits. The integration of these models into real-time
monitoring systems can support assertive and proactive decision making. Learning models
with good interpretability are suggested to help farmers better understand the decisions
made by the algorithms.

Finally, we recommend experiments that follow various stages of plant development.
Due to the fact that the leaf miner develops quickly, its damage can seriously compromise
productivity. Although there is already a coffee variety resistant to the pest [43], there are
still no significant commercial plantations. Knowing how to identify the leaf miner in coffee
makes it easier to apply the correct insect control techniques and, consequently, ensures that
the crop does not suffer drastic losses. However, producers still do not use remote detection
techniques or precision agriculture techniques for early identification. What happens in the
field is the initial identification and independent of the LC, and the application of pesticides
occurs. This approach entails high costs and unfavourable environmental implications.
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Therefore, the relevance of studies like this one is justified to provide subsidies to producers
on the topic in question.

Furthermore, as recommendations for future work, hyperspectral remote sensing of
solar-induced chlorophyll fluorescence (SIF) studies stand out for monitoring vegetation
health. Such studies can be significant and replicable for detecting pests in coffee farming,
as the caterpillars begin to eat the leaves from the upper part, thus forming a kind of mine
for shelter. These lesions have a brown color and cause necrosis in the leaves resulting
in defoliation, which contributes to a reduction in the plants’ photosynthetic rate and,
consequently, a drop in productivity. SIF, according to the available literature [44,45], can be
an effective tool for detecting photosynthesis and identifying variations in photosynthesis
caused by the miner pest.

5. Conclusions

In the present research, leaf miner infestation detection has been achieved in newly
planted coffee seedlings through the effective combination of VIs obtained by a multispec-
tral camera embedded in an RPA and aerial images.

The t test revealed significant differences in EDGE, G, NIR and R bands between
healthy and infested plants. The highest band averages were in healthy plants. The VIs
also showed significant differences through the t test between healthy and infested plants,
with higher mean EXR in infested plants and higher means for GNDVI, GOSAVI, GRRI,
MPRI, NDI, NDRE, NDVI and SAVI in healthy plants.

Due to spectral differences between the classes, it was possible to use the RF classifi-
cation algorithm. The algorithm demonstrated a satisfactory performance in classifying
healthy and infested plants. Parameters such as accuracy, sensitivity, specificity, F1 score
and area under the ROC curve indicated favourable results. The RF classifier and the Gini
index identified the NIR and EDGE bands as the most important for classification, while
the R band was the least important. Among the vegetation indices, SAVI was the most
important and GRRI the least important.

Such results contribute to the identification of patterns and differences between
healthy and infested plants, marking an unprecedented advancement in coffee farming.
This achievement not only improves the effectiveness and precision of agricultural practices
but also offers an efficient means of monitoring for producers, thus driving the advance-
ment of coffee farming through the adoption of advanced technologies. Furthermore,
the lack of widespread research on the use of advanced technologies in coffee farming
highlights the distance of these resources from producers. Thus, the integration of these
technologies stands out for its efficiency in identifying pests, providing an innovative
approach for optimizing the management of coffee crops.
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