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Abstract: The cement industry, as one of the primary contributors to global greenhouse gas emissions,
accounts for 7% of the world’s carbon dioxide emissions. There is an urgent need to establish a rapid
method for detecting cement plants to facilitate effective monitoring. In this study, a comprehensive
method based on YOLOv5-IEG and the Thermal Signature Detection module using Google Earth
optical imagery and SDGSAT-1 thermal infrared imagery was proposed to detect large-scale cement
plant information, including geographic location and operational status. The improved algorithm
demonstrated an increase of 4.8% in accuracy and a 7.7% improvement in MAP@.5:95. In a specific
empirical investigation in China, we successfully detected 781 large-scale cement plants with an
accuracy of 90.8%. Specifically, of the 55 cement plants in Shandong Province, we identified 46 as
operational and nine as non-operational. The successful application of advanced models and remote
sensing technology in efficiently and accurately tracking the operational status of cement plants
provides crucial support for environmental protection and sustainable development.

Keywords: cement plant; SDGSAT-1; YOLOv5-IEG; remote sensing; Google Earth

1. Introduction

The cement industry is a primary contributor to greenhouse gas emissions, particularly
in terms of CO2 emissions [1,2]. This is primarily due to the calcination of raw materials
used in cement production and the fuel required to maintain high temperatures in the
kiln [3]. Additionally, the cement industry plays a crucial role in the global economy, as it is
utilized in the production of various infrastructure and construction projects [4,5]. In recent
years, a primary objective of the global environmental agenda has been to curtail emissions
to safeguard the Earth’s climate patterns [6]. The escalating trend in atmospheric emissions
necessitates the design and implementation of policies to address the challenges posed
by climate change [7–10]. The National Development and Reform Commission (NDRC)
of China has recently introduced several policies [11] aimed at mitigating environmental
pollution and greenhouse gas emissions from the cement industry. Consequently, there is
an urgent need to expedite the identification and monitoring of cement plants in China for
effective management.

Traditional methods for monitoring cement plants heavily rely on manual on-site
investigations and the statistical analysis of limited archival reports. However, these ap-
proaches suffer from narrow monitoring scope, low frequencies, and limited effectiveness
in achieving comprehensive monitoring of extensive industrial zones [12]. With the evolu-
tion of remote sensing technology, applications based on remote sensing data have become
increasingly prevalent. It is noteworthy that there have been some studies focusing on
the detection of industrial heat sources, with researchers proposing methods that inte-
grate the use of hotspot data to identify high-energy-consuming industrial sources. For
example, Liu et al. [13] introduced a “time-space-temperature” approach, utilizing VIIRS

Remote Sens. 2024, 16, 729. https://doi.org/10.3390/rs16040729 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs16040729
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-6289-7616
https://doi.org/10.3390/rs16040729
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs16040729?type=check_update&version=1


Remote Sens. 2024, 16, 729 2 of 23

750-m nighttime fire (VNF) data to identify industrial heat sources. Additionally, this
study presented temperature information resembling fingerprints for the classification of
industrial heat source objects. Ma et al. [14] employed an improved adaptive K-means
algorithm to identify industrial heat sources in China, successfully extracting 4771 such
objects in the Chinese region. These approaches leverage hotspot clustering to detect
industrial heat sources, mitigating the challenges associated with time-consuming on-site
investigations. However, it is important to note that these methods struggle to distinguish
between different types of industrial heat sources and face difficulties in obtaining precise
location information.

Deep learning technologies, particularly Convolutional Neural Networks (CNNs),
have advanced, and coupled with continuous progress in remote sensing image processing,
their applications have yielded notable achievements in various domains, such as object
detection [15,16], image segmentation [17], and speech processing [18]. Models designed
for object detection tasks, such as RCNN [19], Faster-RCNN [20], YOLO series [21–24], and
SSD [25], have been applied in a wide range of scenarios. Scholars have attempted to apply
these models to object detection tasks in remote sensing imagery [16]. However, most
research has primarily focused on typical objects, such as airplanes [26,27], ships [28], and
vehicles [29], with relatively few studies addressing complex industrial sites like cement
plants. Some researchers have employed deep learning techniques to detect industrial
heat sources. Lu et al. [30], for instance, based their work on the deep learning object
detection network, SSD. They constructed a deep learning object detection model suitable
for GF-1 remote sensing imagery of steel plants. The model incorporated a maxout module,
optimizing the negative sample pathway into a multi-branch structure, ultimately achieving
a detection accuracy of over 80%. Another notable contribution was made by Xu et al. [31],
who utilized the Faster RCNN deep learning framework and ResNet feature network to
detect cement plant targets in satellite maps. They further enhanced the model’s capabilities
through image preprocessing, data augmentation, and the inclusion of negative sample
training methods, achieving a 94% detection rate on an expanded test set. Additionally,
researchers have employed large pretrained models to extract named entities, capturing
global industrial heat sources [32]. While these studies have made progress in identifying
different categories of industrial heat sources, they also demonstrate certain limitations.
The primary challenges in this field currently revolve around two key issues: first, the
construction of a dataset presents a significant obstacle due to the lack of publicly available
datasets for training; second, the intricate and complex background of cement plants
contributes to lower accuracy in these studies.

To the best of our knowledge, the YOLO family has found widespread application
in the realm of target detection within remote sensing imagery [33,34]. Notably, YOLOv5
has gained considerable attention among researchers due to its robust functionality [35,36].
However, the literature reveals a scarcity of investigations focusing on the application of
the YOLO family to the detection of industrial heat sources. This scarcity prompted our
consideration of adopting YOLOv5 as the baseline model.

Furthermore, traditional optical remote sensing imagery typically provides position
information about cement plants but falls short in intuitively reflecting their operational
status. In the multifaceted process of cement production, the generation of clinker is the
most energy-intensive and emission-intensive phase [37,38]. During this pivotal stage, the
raw material mixture is conveyed into a kiln heated to over 900 ◦C, initiating the transfor-
mation of limestone (CaCO3) into lime (CaO) and CO2 [5]. This transformative process,
known as calcination, subjects the raw materials to temperatures as high as 1450 ◦C, culmi-
nating in the formation of clinker. The extreme temperatures involved in this procedure
yield distinctive thermal signatures, observable through thermal infrared imagery [32].
Hence, the integration of thermal infrared imagery provides a more comprehensive under-
standing of the thermal features of cement plants, facilitating the assessment of a plant’s
operational status.
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In this study, high-resolution Google Earth optical imagery and SDGSAT-1 thermal
infrared imagery were selected as experimental data. A comprehensive method based
on YOLOv5-IEG and the Thermal Signature Detection (TSD) module using Google Earth
optical imagery and SDGSAT-1 thermal infrared imagery was proposed to achieve large-
scale cement plant detection. Through the combination of position information in optical
imagery and thermal information in thermal infrared imagery, a more comprehensive
understanding of the location and operational status of cement plants can be obtained. The
methodology proposed in this study introduces a novel monitoring approach for cement
plants, characterized by higher accuracy and broader detection coverage compared to
traditional methods. Through an in-depth study of the unique environment of cement
plants, this research seeks to provide specific and practical insights into the application of
deep learning. The intention is to drive the widespread adoption of this technology in the
field of industrial monitoring, offering the potential for more comprehensive, efficient, and
accurate detection methods for factory surveillance tasks.

The main contributions of this paper can be summarized as follows:

1. We introduced a large-scale cement plant detection method that uses the YOLOv5-IEG
model, achieving a detection and localization approach based on remote sensing
imagery.

2. We established a monitoring model for the operational status of cement plants, lever-
aging SDGSAT-1 thermal infrared imagery.

3. A dataset of cement plants in China was created with higher accuracy than other
available datasets.

2. Materials and Methods
2.1. Study Area

In this experiment, China (no data for Hong Kong, Macao, and Taiwan) was selected as
the study area, as shown in Figure 1. Driven by the continuous growth in infrastructure and
construction project demand, the cement industry has experienced significant expansion,
particularly in China, India, and Southeast Asia. China is the world’s largest producer
and consumer of cement [11,39,40]. However, the industry’s growth in China has been
accompanied by environmental challenges such as air pollution and deforestation. Due
to the difficulty in obtaining timely and comprehensive data on the construction status of
cement plants, attributed to challenges in human resource utilization, China (no data for
Hong Kong, Macao, and Taiwan) was chosen as the study area for this experiment.

2.2. Experimental Dataset

The LabelImg toolbox was employed in this study for manual annotation of samples
in each cement plant image, generating files suitable for model training. In total, this study
created a dataset comprising 1972 images (Figure 2; data available from the corresponding
author), with a training-to-validation set ratio of 8:2. The positional offsets of the detection
boxes generated by the network are depicted in Figure 3a, where x, y, width, and height
represent the displacement values of the predicted box’s center coordinates relative to the
true coordinates. As evident from Figure 3b, the majority of detected boxes fall within
the range of 0.20~0.4, indicating that the detected targets are predominantly of medium
to small sizes. Notably, the prior boxes for the cement plant class generally exhibit larger
sizes, and there is minimal variation in aspect ratios among cement plants. Furthermore,
during the training phase, as our model automatically segments non-target regions within
the input imagery as negative samples, there is no necessity to introduce negative samples
into the training dataset.



Remote Sens. 2024, 16, 729 4 of 23Remote Sens. 2024, 16, x FOR PEER REVIEW  4  of  25 
 

 

 

Figure 1. Geographical location of the study area. 

2.2. Experimental Dataset 

The LabelImg toolbox was employed in this study for manual annotation of samples 

in each cement plant image, generating files suitable for model training. In total, this study 

created a dataset comprising 1972 images (Figure 2; data available from the corresponding 

author), with a training-to-validation set ratio of 8:2. The positional offsets of the detection 

boxes generated by the network are depicted in Figure 3a, where x, y, width, and height 

represent the displacement values of the predicted box’s center coordinates relative to the 

true coordinates. As evident from Figure 3b, the majority of detected boxes fall within the 

range of 0.20~0.4,  indicating  that  the detected  targets are predominantly of medium  to 

small sizes. Notably, the prior boxes for the cement plant class generally exhibit  larger 

sizes, and there is minimal variation in aspect ratios among cement plants. Furthermore, 

during the training phase, as our model automatically segments non-target regions within 

the input imagery as negative samples, there is no necessity to introduce negative samples 

into the training dataset. 

Figure 1. Geographical location of the study area.

Remote Sens. 2024, 16, x FOR PEER REVIEW  5  of  25 
 

 

 

Figure 2. Illustration of partial dataset. 

 

Figure 3. Distribution statistics of the training set. 

2.3. Technical Route 

To leverage the distinctive features of diverse remote sensing imagery, encompassing 

optical imagery for target detection and thermal infrared imagery for temperature analy-

sis, we present a comprehensive method based on YOLOv5-IEG and the TSD module to 

detect large-scale cement plants. This approach aims to provide a more thorough under-

standing of the spatial distribution and operational status of cement plants. The method-

ology comprises  two main components.  In  the first part, we employ  the YOLOv5-IEG 

Figure 2. Illustration of partial dataset.



Remote Sens. 2024, 16, 729 5 of 23

Remote Sens. 2024, 16, x FOR PEER REVIEW  5  of  25 
 

 

 

Figure 2. Illustration of partial dataset. 

 

Figure 3. Distribution statistics of the training set. 

2.3. Technical Route 

To leverage the distinctive features of diverse remote sensing imagery, encompassing 

optical imagery for target detection and thermal infrared imagery for temperature analy-

sis, we present a comprehensive method based on YOLOv5-IEG and the TSD module to 

detect large-scale cement plants. This approach aims to provide a more thorough under-

standing of the spatial distribution and operational status of cement plants. The method-

ology comprises  two main components.  In  the first part, we employ  the YOLOv5-IEG 

Figure 3. Distribution statistics of the training set.

2.3. Technical Route

To leverage the distinctive features of diverse remote sensing imagery, encompassing
optical imagery for target detection and thermal infrared imagery for temperature analysis,
we present a comprehensive method based on YOLOv5-IEG and the TSD module to detect
large-scale cement plants. This approach aims to provide a more thorough understanding
of the spatial distribution and operational status of cement plants. The methodology
comprises two main components. In the first part, we employ the YOLOv5-IEG model,
utilizing high-resolution Google Earth imagery with a spatial resolution of 2 m, to detect
the spatial position information of cement plants. The second part introduces the TSD
module, utilizing SDGSAT-1 thermal infrared imagery, proposed for the analysis of thermal
signatures in cement plants. The technical framework of this method is illustrated in
Figure 4, encompassing five key processes: data preprocessing, dataset construction, cement
plant detection using Google Earth imagery, operational status monitoring of cement plants,
and comparative analysis.
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1. Remote Sensing Image Preprocessing

Initially, high-resolution satellite imagery (levels 14–16) of the study area was obtained
from Google Earth’s website (https://earth.google.com/web/, accessed on 1 August 2023).
The imagery specific to cement plant areas was then extracted, forming the cement plant
image dataset. Additionally, high-quality 2023 thermal infrared imagery with a resolution
of 30 m was acquired from the SDGSAT-1 data website (http://124.16.184.48:6008/home,
accessed on 1 August 2023). To facilitate matching of the two image types, preprocessing
steps included depth adjustment and resolution standardization for Google Earth imagery,
along with cropping procedures for the study area. Similar preprocessing steps, such as
depth adjustment, resolution standardization, image mosaic, and region-specific cropping,
were applied to the SDGSAT-1 thermal infrared imagery.

2. Dataset Construction

This study utilized two distinct datasets corresponding to the two types of remote
sensing imagery. The first dataset, sourced from Google Earth imagery, served the pur-
pose of spatial localization and detection of cement plants. The second dataset comprised
SDGSAT-1 thermal infrared imagery, crucial for monitoring the operational status of ce-
ment plants. For the construction of the first dataset, existing cement plant information
was gathered from various sources, and corresponding datasets, including geographical
coordinates, were downloaded. The data were then cropped to a standardized size of
1200 × 800 pixels, resulting in a total of 1861 global cement plant images. Regarding the
SDGSAT-1 thermal infrared dataset, imagery from multiple provinces within China with
favorable data quality since 2023 was downloaded and cropped based on cement plant
geographical coordinates, yielding the SDGSAT-1 thermal infrared dataset.

3. Cement Plants Detection Using Google Earth Imagery

To achieve rapid detection of cement plant geographical coordinates, YOLOv5 served
as the foundational model in this study. Further enhancements were incorporated, includ-
ing a fusion of the ghost module with the CSP module to improve detection speed. To
enhance detection accuracy, an EMA module was inserted after the CSPGhost module, rein-
forcing meaningful channel information and suppressing background feature interference.
These adaptations collectively enabled the swift and accurate detection of cement plants.

4. Cement Plant Operational Status Monitoring
5. Following the detection phase, thermal monitoring of the cement plants’ operational

status was conducted by using the TSD module. Subsequent to the model’s prediction,
a network linking layer was added to establish an “e-channel” between the detection
results (bounding boxes) from the Google Earth imagery and the SDGSAT-1 thermal
infrared imagery. This fusion allowed the reflection of the thermal status of cement
plants through infrared imagery. The feedback loop culminated in the final output,
encompassing both position information and operational status.

6. Comparative Analysis

To assess the detection results, we conducted comparative analyses by using several
publicly available datasets in this study. Our evaluation focused on comparing the number
of detected cement plants and the accuracy of the detection frames.

2.4. YOLOv5-IEG Algorithm

In this study, we propose a cement plant detection method (YOLOv5-IEG). The back-
bone network of YOLOv5 [24] consists of the CSP module, Focus structure, and SPP
pyramid structure. The CSP module reduces redundant gradient calculations by segment-
ing gradients, the Focus structure effectively preserves crucial information, and the SPP
pyramid structure enables the network to adapt to multi-scale inputs, strengthening the
connection of contextual features. Inspired by the lightweight GhostNet [41] architecture,
for the purpose of lightweighting the detection model, we optimized the CSP module in
the backbone network to a CSPGhost module. This involved utilizing Ghost modules to

https://earth.google.com/web/
http://124.16.184.48:6008/home
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replace redundant feature maps, enhancing detection speed. To ensure detection accuracy,
we inserted an Efficient Multi-scale Attention mechanism after the last CSPGhost module,
establishing a structure with both feature grouping and multi-scale capabilities. This effec-
tively establishes short-term and long-term dependencies, suppresses background feature
interference, and optimizes network performance. During the prediction phase of the
network, the Inner-IoU loss function was employed as the bounding box loss. This choice
addresses the limitations of existing IoU loss functions [42] in detection tasks, enhancing
the precision of detection with improved generalization capabilities and faster convergence.
The specific architecture of the YOLOv5-IEG network is depicted in Figure 5.
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To improve visualization, the model has been streamlined into the flowchart depicted
in Figure 6. YOLOv5-IEG comprises three main components: input, backbone network,
and detection results. At the input stage, frames of the imagery to be detected are pro-
cessed through operations such as feature extraction and feature fusion, ultimately yielding
classifications and regression bounding box positions for the identified targets. Image
preprocessing involves Mosaic data augmentation, adaptive scaling, and adaptive anchor
box computation, strategically implemented to reduce computational overhead. At the
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forefront of the backbone network, downsampling is achieved through the Focus struc-
ture, involving image segmentation and reassembly to diminish network parameters and
augment local receptive fields.
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2.4.1. Efficient Multi-Scale Attention (EMA)

With the evolution of deep Convolutional Neural Networks (CNNs), attention-grabbing
network topologies have been applied in the domains of image classification and object
detection tasks. When expanding neural networks to multiple convolutional layers, they
exhibit a remarkable ability to enhance learning feature representations. However, this
entails stacking more deep convolutional methods, consuming significant memory and
computational resources, which is a major drawback in constructing deep CNNs. As an
alternative, attention mechanism methods, due to their flexible structural features, not
only strengthen the learning of more discriminative feature representations but can also be
easily inserted into the backbone architecture of neural networks. Consequently, attention
mechanisms have garnered significant interest in the computer vision research community.

To better capture cross-spatial feature information of cement plants across different
spatial dimensions and achieve more comprehensive feature aggregation, this study in-
troduces Efficient Multi-scale Attention (EMA) [43] into the model. This module consists
of only two convolutional kernels placed in parallel subnetworks. One parallel subnet-
work is a 1 × 1 convolutional kernel, processed similarly to Coordinate Attention (CA),
and the other is a 3 × 3 convolutional kernel. However, the CA (Coordinate Attention)
module can be considered a similar method to the Squeeze-and-Excitation (SE) attention
module [44], where global average pooling is used to model cross-channel information.
Typically, channel statistics can be generated by using global average pooling, compressing
global spatial position information into channel descriptors. Unlike SE, CA embeds spatial
position information into the channel attention map to enhance feature aggregation. The
parallel substructure helps the network avoid more sequential processing and large depths.
The EMA module adopts a parallel substructure, as shown in Figure 7. The EMA module
selects the shared components of the 1 × 1 convolutional kernel from the CA module and
names it the 1 × 1 branch in EMA. To aggregate multi-scale spatial structural information,
the 3 × 3 kernel is placed in parallel with the 1 × 1 branch for quick response and is named
the 3 × 3 branch. This feature grouping and multi-scale structure effectively establish
short-term and long-term dependencies, contributing to improved performance.
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2.4.2. Inner-IoU Loss Function

With the rapid advancement of detectors, the bounding box regression (BBR) loss
function undergoes continuous updates and optimizations. However, existing Intersection
over Union (IoU)-based BBR still predominantly focuses on accelerating convergence by
adding new loss terms, overlooking the inherent limitations of the IoU loss component
itself [45]. While IoU loss theoretically effectively describes the state of bounding box
regression, it lacks adaptive adjustments for different detectors and detection tasks in
practical applications and exhibits limited generalization capabilities. Therefore, this study
replaces the original IoU loss with Inner-IoU loss.

In the bounding box regression loss function, IoU loss accurately describes the degree
of match between the predicted bounding box and the ground truth (GT) box, ensuring that
the model can learn the target’s positional information during training. As a fundamental
component of existing mainstream bounding box regression loss functions, IoU is defined
as follows:

IoU =

∣∣B ∩ Bgt
∣∣

|B ∪ Bgt|
(1)
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where B and Bgt represent the predicted box and the ground truth box, respectively. After
defining IoU, the corresponding loss function can be expressed as follows:

LIoU = 1 − IoU (2)

To date, IoU-based loss functions have become mainstream and dominant, with
many approaches extending IoU and adding new loss terms. For example, GIoU [46]
addresses the gradient vanishing problem when the overlap between anchor boxes and
GT boxes is zero; DIOU [47] introduces a new distance loss term; EIoU [42] minimizes
the normalized differences in width, height, and center position between the target box
and anchor box directly; and SloU [48] introduces an angle loss considering the impact
of the angle between anchor boxes and GT boxes on bounding box regression. These
bounding box regression loss functions can accelerate convergence and improve detection
performance by adding new geometric constraints to the IoU loss function. However, they
do not consider the inherent reasonableness of the IoU loss itself, which determines the
quality of detection results.

To address the weaknesses of existing IoU loss functions in terms of weak generalization
capabilities and slow convergence speed across different detection tasks, Zhang et al. [49]
proposed Inner-IoU loss in 2023. This loss leverages auxiliary bounding boxes to calcu-
late IoU loss and expedites the bounding box regression process. In Inner-IoU, a scale
factor ratio is introduced to control the size of auxiliary bounding boxes. By using aux-
iliary bounding boxes of different scales for different datasets and detectors, the limi-
tations in generalization capabilities of existing methods can be overcome. Inner-IoU
loss is applied to existing IoU-based bounding box regression loss functions, such as
LInner − IoU, LInner − GIoU, LInner − DIoU, LInner − CIoU, LInner − EIoU, and LInner −
SIoU, as shown in Equations (3)–(8):

LInner − IoU = 1 − IOUinner (3)

LInner − GIoU = LGIou + IoU − IOUinner (4)

LInner − DIoU = LDIou + IoU − IOUinner (5)

LInner − CIoU = LCIou + IoU − IOUinner (6)

LInner − EIoU = LEIou + IoU − IOUinner (7)

LInner − SIoU = LSIou + IoU − IOUinner (8)

In this study, the Inner-IoU loss function will be incorporated into the YOLOv5 model,
addressing the weaknesses of existing IoU loss functions in terms of weak generalization
capabilities and slow convergence speed in detection tasks. This addition aims to enhance
the generalization capabilities and improve the convergence speed of the model for the
cement plant detection task in this study.

2.5. Cement Plant Operational Status Monitoring Model

This study aims to monitor the operational status of cement plants objectively. Upon
detecting cement plants, the integration of SDGSAT-1 thermal infrared imagery is explored
to monitor the operational status of the cement plants. After overlaying the thermal infrared
image, the actively operating areas of the cement plant show clear thermal signatures in
contrast to the non-operational areas, as shown in Figure 8.
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low temperature).

In this study, we have developed a Thermal Signature Detection (TSD) module, as
illustrated in Figure 9, which is seamlessly integrated with the YOLOv5-IEG model through
the E-channel. The YOLOv5-IEG model is responsible for discerning the precise location
information of the cement plant, while the TSD module excels in evaluating the thermal
signatures of the plant. This comprehensive approach enables the determination of the
operational status of the cement plant. The detection process is elucidated in Figure 6,
encompassing the following pivotal steps:

1. The YOLOv5-IEG model is employed to detect the precise location information of the
cement plant.

2. The TSD module is utilized to identify thermal signature information within the
SDGSAT-1 thermal infrared imagery.

3. Integration of the location information and thermal signature information is achieved
through the E-channel, enabling a comprehensive assessment to determine the opera-
tional status of the cement plant.

4. As the TSD module relies on location information obtained from target detection
models and requires no training, it can be seamlessly integrated with other target
detection models without compromising their accuracy.
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3. Experiment and Results
3.1. Experimental Settings

The method proposed in this research, alongside comparative models, was executed
within a Python 3.7 environment that employed the PyTorch-1.10.0 framework. The experi-
ments themselves took place on a workstation equipped with two NVIDIA RTX 3090 GPUs.
To maintain consistency throughout the training process, fixed hyperparameters were uti-
lized, including the number of training epochs (set to 300), batch size (set to 48), and initial
learning rate (set to 0.1). Furthermore, the PyTorch 1.10.0 framework’s Stochastic Gradient
Descent (SGD) optimizer was employed for optimizing the model parameters. To ensure
rapid model convergence and prevent local minima, the momentum parameter was set to
0.8. Additionally, a weight decay of 0.0005 was implemented to mitigate model overfitting.

3.2. Accuracy Evaluation Method

In object detection tasks, the evaluation criteria for algorithm performance primarily
involve classification accuracy and the precision of bounding box regression. The correct-
ness of the assigned class is determined based on the confidence score, while the assessment
of positional accuracy relies on whether the Intersection over Union (IoU) between the
predicted and ground truth bounding boxes exceeds a predefined threshold. IoU quantifies
the overlap between the predicted and annotated boxes and calculated as in Equation (1),
where B represents the area of the predicted box, and Bgt is the area of the ground truth box.

The Confusion Matrix (CM) is employed to analyze the classification performance of a
model, providing an intuitive representation of the extent to which each class is confused
and the corresponding proportions. Each row of the matrix represents the true class of the
samples, while each column represents the predicted class. Larger values on the diagonal
indicate a higher probability of correct classification, reflecting better overall performance
of the model.

Taking a binary classification confusion matrix as an example, as shown in Table 1,
“Positive” and “Negative” denote sample labels, where “Positive” is the label for the target
to be detected, and “Negative” is the label for the background. “True” and “False” represent
the prediction results, where “True” signifies a correct prediction, and “False” denotes
an incorrect prediction. Thus, TP (True Positive) signifies correct classification, FP (False
Positive) represents the prediction of a negative sample as a positive instance, FN (False
Negative) indicates the prediction of a positive sample as a negative instance, leading to a
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missed detection, and TN (True Negative) denotes the prediction of a negative sample as
negative, which is not considered in object detection tasks.

Table 1. Schematic diagram of confusion matrix.

Ground Truth
Prediction

Positive Negative

Positive True Positive (TP) False Negative (FN)

Negative False Positive (FP) True Negative (TN)

In object detection, commonly used metrics to assess algorithm performance are
precision, recall, average precision (AP), and mean average precision (mAP). The specific
meanings of these metrics are as follows:

Precision: Precision, also known as positive predictive value, represents the proportion
of true positive predictions among all predictions of positive instances. It measures the
accuracy of positive predictions. The calculation is given by the following formula:

P =
TP

TP + FP
(9)

Recall: Recall, also known as sensitivity, indicates the proportion of true positive pre-
dictions among the total actual positive samples, reflecting the extent of missed detections.
It is calculated as follows:

R =
TP

TP + FN
(10)

Average Precision (AP): Precision and recall are complementary performance metrics,
each having limitations as single-point values. To balance these two metrics, the mAP
metric is introduced. The precision–recall (P–R) curve is constructed with precision as the
y-axis and recall as the x-axis. The area under the P–R curve, denoted as AP, represents the
performance for a specific class. The mAP is the mean of AP values across all classes in the
dataset. The calculation is given by the following formula:

mAP =
1
N

N

∑
i=1

APi (11)

where N is the number of classes. For mAP at Different IoU Thresholds (e.g., mAP@0.5:.95),
the IoU (Intersection over Union) threshold is typically set to 0.5, indicating that predictions
with IoU greater than 0.5 are considered valid. mAP can be calculated at different IoU
thresholds, such as from 0.5 to 0.95 with an interval of 0.05. For example, mAP@0.5:.95
represents the average mAP calculated over this IoU range.

3.3. Experimental Results

Figure 10 and Table 2 present the qualitative and quantitative metrics, respectively, for
the YOLOv5-IEG model on the cement plant dataset. The detection results on the cement
plant dataset demonstrate the effectiveness of our proposed method in achieving accurate
detection in complex background environments. YOLOv5-IEG achieves precision, recall,
mAP@0.5 (%), and mAP@0.5:0.95 (%) scores of 96.8%, 93.7%, 96.9%, and 68.8%, respectively.

Table 2. Performance of the model on the test set.

P (%) R (%) mAP@.5 (%) mAP@.5:.95 (%)

96.8 93.7 96.9 68.8

As illustrated in Figure 10, the red boxes represent the detection boxes, and the num-
bers indicate the confidence scores. In the experiments, a minimum confidence threshold of
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0.80 was set, meaning confidence scores exceeding 0.8 are considered as cement plants. It is
evident from the results that the proposed model accurately detects the positions of cement
plants in diverse backgrounds, including mountainous regions, deserts, and industrial
areas. These achievements can be attributed to the functionality of the EMA module, which
effectively integrates cross-spatial feature information of cement plants in different spatial
dimensions, enabling richer feature aggregation. Additionally, the Inner-IoU loss function
enhances the model’s convergence speed and generalization ability, enabling the rapid
detection of cement plant targets of varying sizes.
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3.4. Detection of Cement Plants in China Based on The YOLOv5-IEG Model

To detect spatial position information on cement plants in China, this study down-
loaded almost the entire 14–15 level Google Earth imagery for the Chinese region, totaling
approximately 1.8 terabytes. In order to comprehensively detect all cement plants, an ap-
proach of overlapping and clipping was employed, with a resolution of 1200 × 800 pixels.
In the end, a total of 781 large-scale cement plants were detected in the Chinese region,
with a specific spatial distribution illustrated in Figure 11. Among them, Sichuan (62), Shan-
dong (55), and Henan (48) have a higher quantity. Anhui, Hebei, Guangxi, Guizhou, and
other provinces have a somewhat lower number of cement plants. The top ten provinces
together contribute to 53.25% of the total, while the remaining 22 provinces with fewer
cement plants account for 46.75%.
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3.5. Monitoring the Operational Status of Cement Plants—Shandong Province

In this study, Shandong Province was selected as the research area to conduct mon-
itoring of cement plant operations. In the preprocessing stage, infrared thermal images
captured by SDGSAT-1 during the months of May to June in Shandong Province were
acquired. A careful selection was made to choose a high-quality phase of remote sensing
imagery for the experiment. Subsequently, cement plants in Shandong Province were
detected and their thermal states were monitored. The results are illustrated in Figure 12.
A total of 55 cement plants were detected, with 46 of them being in operation and nine not
being in operation. These plants are primarily distributed in locations such as Zaozhuang,
Zibo, and Yantai.
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To enhance the clarity of the monitoring results, Figure 13 displays partial schematic
results. While Figure 13a–c illustrate cement plants in operation, Figure 13d depicts a
cement plant that is not operational. In this figure, the SDGSAT-1 thermal infrared image
has undergone grayscale and normalization processing, with all values ranging from 0 to
255. Higher pixel values indicate greater thermal activity. The proposed Thermal Signature
Detection module for cement plants in this study demonstrates effective detection of the
thermal signatures of cement plants and monitoring of their operational status.

4. Discussion
4.1. Comparison with Other Target Detection Algorithms

In order to further validate the effectiveness of the improved YOLOv5-IEG algorithm,
comparative experiments were conducted with other deep learning models in the same
hardware environment. All seven network models were trained for 300 epochs. The final
training results are presented in Table 3. The proposed algorithm demonstrated a 2.8%
improvement in precision compared to Faster RCNN, with a significant increase of 17.41%
in recall. Comparative experiments confirm that the improved algorithm in this study
exhibits superior performance in the detection of large-scale cement plants, especially in
complex background scenarios.

Table 3. Results of comparative experiments.

Model P (%) R (%) mAP@.5 (%) mAP@.5:.95 (%)

Faster-RCNN 94.0 76.3 94.1 68.2
Mask-RCNN 89.2 65.9 89.2 52.3

SSD 91.4 80.2 92.2 64.8
YOLOv6 91.5 88.2 90.1 61.8
YOLOv7 90.6 90.1 91.2 62.0
YOLOv8 92.2 90.2 88.2 61.2

Ours 96.8 93.7 96.9 68.8
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4.2. Ablation Experiments

In order to demonstrate the performance gains produced by the added CSPGhost
module, EMA module, and Inner-IoU loss function in this study, we conducted ablation
experiments. The experimental results are presented in Table 4. The improved YOLOv5
model showed positive optimizations with significant improvements in precision and mAP.
It is noteworthy that the addition of the EMA mechanism resulted in improvements in
all metrics. Ultimately, precision increased by 3.7%, recall increased by 1.61%, mAP@.5
increased by 1.6, and mAP@.5:95 increased by 7.7%. These indices collectively reflect the
superiority of the improved YOLOv5-IEG model.

Table 4. Results of ablation experiments.

Method
P (%) R (%) mAP@.5(%) mAP@.5:95(%)

YOLOv5s Ghost EMA Inner-IoU
√

92.0 92.1 94.3 61.1√ √
91.6 93.1 94.8 62.4√ √ √
94.6 94.8 96.1 66.2√ √ √ √
96.8 93.7 96.9 68.8
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4.3. Comparative Analysis between Our Results and Those of Others

To validate the quantity and accuracy of cement plants detected by the algorithm
proposed in this study, two industrial heat source datasets were introduced. This includes
a dataset from Ma et al. [14], which is based on long-term active thermal anomaly data and
employs spatiotemporal density segmentation to construct a medium-to-low-resolution
Chinese industrial heat source dataset spanning 2012 to 2021. This dataset comprises
4411 industrial heat sources, with a total of 719 cement plants, as shown in Figure 14a.
Additionally, data from Tkachenko [34] were used, containing 1159 entries labeled as
cement plants. However, due to the dataset creation process involving geographic spatial
computer vision and large-scale language modeling techniques, many entries only have
the word “cement” in their names or are cement dealerships, falling outside the scope of
detection in this study. After manual interpretation, 865 entries were identified as actual
cement plants, distributed as shown in Figure 14b. Comparing these two datasets in a
contrastive experiment, the analysis revealed that the accuracy of cement plant detection in
this study reached 90.8%, with a false-negative rate of 4.3% and a false-positive rate of 4.9%.
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In addition, to compare the precision of detection boxes between our results and
Ma et al.’s dataset, this study randomly selected 50 cement plants as samples, manually
annotated standard detection boxes, and employed Intersection over Union (IoU) as the
evaluation criterion. The box comparison chart, depicted in Figure 15, displays manually
annotated ground truth boxes in blue, detection results from this study in red, and detection
results from Ma et al.’s dataset in green. This study concludes that the average IoU (mIoU)
for the detection boxes in this research is 78.2%, while Ma et al.’s dataset achieves an mIoU
of 44.4%. This demonstrates that the detection boxes generated in this study exhibit higher
accuracy and more precise localization.

4.4. Analysis of Thermal Signatures in Cement Plants

In this study, assessments were conducted on the operational status of 56 cement
plants located in Shandong Province, China. Of these, nine cement plants were found to be
non-operational, while 46 were identified as being in operation. As depicted in Figure 16,
SDGSAT-1 thermal infrared imagery was overlaid onto Google Earth imagery with a
transparency set at 50%. Observations revealed that the detected thermal signatures in the
actively operating cement plants were predominantly located in the rotary kiln section, a
crucial component used for the calcination of limestone to produce clinker. The observed
phenomenon aligns with the objective facts. In contrast, the monitoring results for the nine
non-operational cement plants, as illustrated in Figure 17, indicated a lack of discernible
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thermal signatures within the plant boundaries. Consequently, it was determined that these
cement plants were not in operation. It is essential to note that this assessment was based on
high-quality SDGSAT-1 thermal infrared imagery acquired on a specific day in the months
of May and June. Therefore, the findings of this experiment reflect the operational status of
the cement plants at that moment. For dynamic monitoring of cement plant operations,
continuous time series thermal infrared imagery from SDGSAT-1 can be utilized, providing
insights into the sustained operational status of the cement plants over time.
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5. Conclusions

In this study, we introduced a deep learning model for detecting cement plant targets
in complex background scenarios. To reduce the model’s parameter count, the CSPGhost
module was introduced, leading to a 29.2% reduction in model parameters. To address
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the limitations of existing IoU loss functions in terms of weak generalization capability
and slow convergence speed in detection tasks, the Inner-IoU loss function was introduced
to enhance the generalization ability and improve the convergence speed of the model
in the cement plant detection task. Additionally, to better capture cross-spatial feature
information in different spatial dimensions for cement plants and achieve richer feature
aggregation, a novel dimensionality-preserving EMA mechanism was incorporated into
the model, mitigating detection issues such as false negatives to a certain extent. The final
detection accuracy demonstrated a 4.8% improvement over the baseline model. Further-
more, we proposed a cement plant operational status monitoring model that combines
Google Earth imagery and SDGSAT-1 thermal infrared imagery to detect cement plants
and determine their operational status. In Shandong Province, 45 operational cement
plants were monitored, with their predominant heat signatures observed primarily in the
rotary kiln areas. Nine cement plants were identified as non-operational. This provides the
capability to dynamically monitor the operational status of cement plants.

It is crucial to note that in object detection tasks, the quality of training samples signifi-
cantly influences the model’s detection performance. Therefore, obtaining a comprehensive
dataset of cement plant samples is key to developing a reliable cement plant detection
model. Inevitably, the model may struggle to detect novel or less distinctive cement
plants. Addressing this challenge is one of our future research priorities, emphasizing the
substantial enrichment of the training dataset to strengthen the model’s reliability.
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