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Abstract: The accurate prediction of cropland evapotranspiration (ET) is of utmost importance for
effective irrigation and optimal water resource management. To evaluate the feasibility and accuracy
of ET estimation in various climatic conditions using machine learning models, three-, six-, and nine-
factor combinations (V3, V6, and V9) were examined based on the data obtained from global cropland
eddy flux sites and Moderate Resolution Imaging Spectroradiometer (MODIS) remote sensing data.
Four machine learning models, random forest (RF), support vector machine (SVM), extreme gradient
boosting (XGB), and backpropagation neural network (BP), were used for this purpose. The input
factors included daily mean air temperature (Ta), net radiation (Rn), soil heat flux (G), evaporative
fraction (EF), leaf area index (LAI), photosynthetic photon flux density (PPFD), vapor pressure deficit
(VPD), wind speed (U), and atmospheric pressure (P). The four machine learning models exhibited
significant simulation accuracy across various climate zones, reflected by their global performance
indicator (GPI) values ranging from −3.504 to 0.670 for RF, −3.522 to 1.616 for SVM, −3.704 to 0.972
for XGB, and −3.654 to 1.831 for BP. The choice of suitable models and the different input factors
varied across different climatic regions. Specifically, in the temperate–continental zone (TCCZ),
subtropical–Mediterranean zone (SMCZ), and temperate zone (TCZ), the models of BPC-V9, SVMS-
V6, and SVMT-V6 demonstrated the highest simulation accuracy, with average RMSE values of 0.259,
0.373, and 0.333 mm d−1, average MAE values of 0.177, 0.263, and 0.248 mm d−1, average R2 values
of 0.949, 0.819, and 0.917, and average NSE values of 0.926, 0.778, and 0.899, respectively. In climate
zones with a lower average LAI (TCCZ), there was a strong correlation between LAI and ET, making
LAI more crucial for ET predictions. Conversely, in climate zones with a higher average LAI (TCZ,
SMCZ), the significance of the LAI for ET prediction was reduced. This study recognizes the impact
of climate zones on ET simulations and highlights the necessity for region-specific considerations
when selecting machine learning models and input factor combinations.

Keywords: cropland evapotranspiration; machine learning; input factor combinations; climate zone;
eddy flux; remote sensing

1. Introduction

Evapotranspiration (ET) plays a critical role in the terrestrial water cycle, accounting
for approximately 60% of global precipitation consumption. ET encompasses the process
of water vapor transitioning from the Earth’s surface to the atmosphere, which includes
evaporation from soil or water bodies, transpiration from vegetation, and evaporation of
rainfall intercepted by vegetated surfaces [1]. Crop transpiration is intricately related to
physiological activities such as crop growth and the formation of photosynthetic products.
Simultaneously, evaporation assists in dissipating the heat generated by the increase in
near-surface temperature caused by radiation, thereby maintaining an optimal growth
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environment within the crop system [2]. Generally, more than 90% of the agricultural water
is consumed through ET globally [3]. Accurate estimation of ET is beneficial for real-time
monitoring of crop water use status, offering a basis for determining irrigation schedules,
enhancing water use efficiency, and even predicting yields within agricultural fields [4,5].

Numerous methodologies have emerged to estimate terrestrial ET across various
spatial scales, including hydrological modeling [6], empirical approaches [7], remote sens-
ing inversion [8], and data-driven models. The hydrological method, which relies on
the water balance principle for basin or sub-basin ET calculations, encounters challenges
owing to uncertainties in the input and output data, model structure, initial conditions,
and parameter settings, impacting simulation precision [9]. Empirical, semi-empirical,
and physical–mathematical formulations based on meteorological data offer alternatives,
with selection contingent on data availability, resulting in varied simulation accuracies
across geographical locations [10]. Remote sensing for estimating ET presents distinct
advantages in terms of accuracy and spatial resolution [11]; however, its limitation lies in
the inability to provide continuous temporal values, which might not meet the temporal
demands for irrigation and water resource management. Recently, data-driven models
have been widely used for estimating ET owing to their remarkable capability of identifying
intricate relationships. Machine learning (ML) techniques, which are characterized by their
ability to handle complex relationships without prior knowledge or assumptions, have
proven to be highly effective. Among them, the random forest (RF) algorithm has gained
significant popularity in agricultural applications, such as land cover classification [12],
water resources management [13], and crop yield prediction [14]. Its extensive applicability
can be attributed to its exceptional accuracy in both classification and regression tasks,
with minimal parameter dependencies, efficient processing capabilities, and the ability to
handle overfitting problems [15]. In contrast, the support vector machine (SVM) model
possesses a globally optimal solution and exhibits remarkable training efficiency. These
qualities endow the SVM with enhanced robustness, efficiency, and reliability [16]. The
SVM focuses on establishing functional relationships between ET and explanatory vari-
ables without explicitly considering the underlying biophysical mechanisms [17], making
it particularly suitable for short-term ET prediction. For example, Liu, et al. [18] achieved
a remarkable explanatory power of 71–85% for global ET changes by utilizing only five
indicators (average daily temperature, relative humidity, wind speed, solar radiation, and
NDVI) as input variables for SVM. XGB is an emerging machine learning algorithm that
offers versatility and scalability for modeling small- to medium-sized datasets, making it
a popular choice for crop yield predictions because of its flexibility and adaptability [19].
BP is centered around its application in training and testing using input variables, such as
temperature, sunshine hours, and wind speed [20]. Its extensive applicability surpasses
that of traditional neural networks, as demonstrated in a study by Kumar, et al. [21], in
which the BP model outperformed the traditional method in accurately predicting crop
ET. Given the widespread application and promising prospects of these four machine
learning algorithms for predicting cropland ET, a comprehensive comparative analysis is
essential to assess their strengths, weaknesses, and universality across different input factor
combinations and climatic conditions.

Obtaining parameters for the underlying surface of general croplands is challeng-
ing, and the availability of reliable meteorological data is often limited. Consequently,
researchers have consistently aimed to increase the accuracy of ET predictions using a
reduced number of variables. Previous studies have revealed that the dominant factors
driving ET vary across different climatic regions, leading to differences in the ET simulation
accuracy under various combinations of input factors. Pagano, et al. [22] compared the
performance of multi-layer perceptron (MLP) and random forest (RF) in predicting daily
ET in a citrus orchard typical of the Mediterranean ecosystem, highlighting the substantial
influence of soil water content (SWC) and solar radiation (Rs) on ET prediction. Remarkably,
even with a reduction in the number of input features to just four and a judicious selection
of feature combinations, the machine learning models still achieved high accuracy in pre-
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dicting ET. Chen, et al. [23] utilized the fuzzy rough set algorithm (BSFL-FRSA) to discern
both individual and multifactorial determinants of ET in evergreen needleleaf forests across
three distinct climate zones in North America: the Mediterranean, warm summer continen-
tal, and subarctic regions. The study revealed the predominant factors driving ET and the
most crucial combinations of multiple factors. Agricultural ecosystems are predominantly
found in the boreal, temperate, subtropical–Mediterranean, and temperate–continental
climatic regions [24]. Hence, investigating the primary factors contributing to ET prediction
within these climate zones and selecting optimal combinations of input factors can offer
valuable insights and facilitate accurate ET assessments.

The objectives of this study were to (1) identify the important input factors deriving
daily crop ET in different climatic regions; (2) explore the applicability of four machine
learning models, RF, SVM, XGB, and BP, in predicting daily crop ET; and (3) evaluate
the accuracy of these models using specific combinations of three, six, and nine input
factors and recommend an optimal model for each climatic region. This study provides a
convenient method to accurately simulate ET in farmlands across diverse climatic zones.

2. Materials and Methods
2.1. Description of the Flux Sites

In this study, 15 eddy covariance (EC) cropland flux towers located in three different
climate zones were carefully selected. These sites included representative stations from the
temperate–continental climate zone (TCCZ), featuring US-ARM, US-CRT, US-Ne1, US-Ne2,
and US-Ne3. The subtropical–Mediterranean climate zone (SMCZ) included representative
stations IT-BCi, IT-CA2, US-TW2, US-TW3, and US-TW, whereas the temperate climate zone
(TCZ) comprised representative stations BE-Lon, CH-Oe2, DE-Geb, DE-Kli, and FR-Gri.
Detailed information for each site is presented in Table 1.

Table 1. Site characteristics used in this study.

Site Latitude (◦) Longitude (◦) Altitude
(m)

MAT
(◦C)

MAP
(mm) Country Climate

Zone Period

US-ARM 36.6058 −97.4888 314 14.76 843 USA TCCZ 2003–2012
US-CRT 41.6285 −83.3471 180 10.10 849 USA TCCZ 2011–2013
US-Ne1 41.1651 −96.4766 361 10.07 790 USA TCCZ 2001–2013
US-Ne2 41.1649 −96.4701 362 10.08 789 USA TCCZ 2001–2013
US-Ne3 41.1797 −96.4397 363 10.11 784 USA TCCZ 2001–2013
IT-BCi 40.5238 14.9574 20 18.00 600 Italy SMCZ 2004–2014
IT-CA2 42.3772 12.0260 200 14.00 766 Italy SMCZ 2011–2014

US-TW2 38.1047 −121.6433 −5 15.50 421 USA SMCZ 2012–2013
US-TW3 38.1152 −121.6469 −9 15.60 421 USA SMCZ 2013–2014
US-TW 38.1087 −121.6531 −6 15.60 421 USA SMCZ 2009–2014
BE-Lon 50.5516 4.7461 167 10.00 800 Belgium TCZ 2004–2014
CH-Oe2 47.2863 7.7343 452 9.80 1155 Switzerland TCZ 2004–2014
DE-Geb 51.1001 10.9143 162 8.50 470 Germany TCZ 2001–2014
DE-Kli 50.8931 13.5224 478 7.60 842 Germany TCZ 2004–2014
FR-Gri 48.8442 1.9519 125 12.00 650 France TCZ 2004–2014

Note: MAT: mean annual temperature, MAP: mean annual precipitation. Site codes and corresponding full names
can be found in the Supplementary Materials.

2.2. Flux and Auxiliary

This study was based on the analysis of daily EC flux and meteorological information
extracted from the FLUXNET Tier 2 dataset (http://fluxnet.fluxdata.org, accessed on 10
November 2023), which includes variables such as Rn (W m−2), Ta (◦C), soil temperature
(Ts, ◦C), VPD (hPa), sensible heat flux (H, W m−2), and latent heat flux (LE, W m−2).
According to Allen, et al. [25], daily ET was derived from LE using the latent heat of
vaporization as a function of Ta by ET = LE

2.501−(2.361×10−3)×Ta
. The soil water content

(SWC) was measured at various depths at diverse sites, potentially failing to adequately

http://fluxnet.fluxdata.org
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represent the wetness or dryness of the soil, as soil properties vary across different sites.
Here, we utilized the evaporative fraction (EF) to represent the degree of ground dryness
and wetness [26,27] because an increase in energy allocation to evaporating water implies
a greater potential water supply from the soil. The evaporative fraction (EF) is calculated
as follows:

EF =
LE

LE + H
(1)

where LE is the latent heat flux and H is the sensible heat flux.
The primary source of data for capturing crop phenology information is the leaf

area index (LAI). In our study, LAI data were acquired from the MODIS remote sensing
product MODIS 15A2H (https://lpdaac.usgs.gov/products/mod15a2hv006/, accessed on
15 October 2023) with an 8-day interval and 500 × 500 m spatial resolution. The original LAI
data were preprocessed using the TIMESAT software (version 3.3) to attenuate peak values
and eliminate transient, unrealistic fluctuations due to factors such as cloud interference or
the presence of snow and ice on the ground [28]. Any gaps in the LAI values were filled
using linear interpolation based on available nearby data points over time. Subsequently,
cubic spline interpolation was applied to interpolate the 8-day LAI data, generating daily
data that aligned with the requirements of our modeling inputs. This approach minimized
data redundancy and ensured a consistent and high-quality dataset for our research. The
statistical parameters of the environmental variables from the flux tower and LAI data
across the different climatic regions are presented in Table 2. Observations illustrate that
the mean Ta varied from 11.43 ◦C in TCCZ to 16.19 ◦C in SMCZ; the mean Rn ranged
from 86.37 W m−2 in TCZ to 113.87 W m−2 in SMCZ; the mean ET fluctuated between
1.62 mm d−1 in TCZ and 2.32 mm d−1 in SMCZ; the mean LAI changed from 0.54 m2/m2

in TCCZ to 1.91 m2/m2 in TCZ. Additional statistical characteristics of each variable are
comprehensively provided.

Table 2. Statistical parameters of flux tower measured environmental variables and remote sensing
data during the entire study period at the four sites.

Climate Zone Variable Xmean Xmax Xmin Xsd Xku Xsk

TCCZ

Ta 11.43 36.7 −19.94 11.24 −0.79 −0.32
VPD 6.72 49.56 0 5.54 3.37 1.47

P 97.71 101.65 94.77 0.92 1.97 0.99
U 3.57 13.38 0.81 1.63 1.11 1.04
Rn 96.83 270.59 −28.87 65.43 −1.22 0.15
G 0.63 56.57 −54.03 13.57 0.64 0.39

PPFD 429.64 1049.81 0.31 204.23 −0.59 0.29
LAI 0.82 6.76 0 0.83 4.8 2.01
EF 0.54 1 0.2 0.23 −1.13 0.33
ET 1.64 7.04 0.01 1.41 0.67 1.23

SMCZ

Ta 16.19 29.8 0.08 5.95 −0.63 −0.23
VPD 8.68 30.78 0.18 5.42 0.88 1.07

P 101.29 103.29 97.89 1.01 1.31 −1.3
U 2.98 9.57 0.56 1.8 0.09 0.9
Rn 113.87 246.63 −20.33 58.95 −1.08 −0.12
G 3.34 34.12 −19.63 8.04 0.92 0.75

PPFD 517.56 970.1 31.58 207.45 −1.01 −0.08
LAI 1.15 3.2 0.09 0.54 −0.05 0.18
EF 0.66 1 0.2 0.23 −1.11 −0.33
ET 2.32 7.65 0.02 1.5 0.73 1.04

https://lpdaac.usgs.gov/products/mod15a2hv006/
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Table 2. Cont.

Climate Zone Variable Xmean Xmax Xmin Xsd Xku Xsk

TCZ

Ta 12.63 29.25 −13.73 6.79 0.00 −0.63
VPD 5.49 26.51 0.00 3.64 1.17 0.95

P 99.12 102.46 92.73 1.89 0.27 −1.17
U 2.17 7.74 0.02 1.05 1.65 1.10
Rn 86.37 235.35 −63.52 54.70 −0.82 −0.05
G 4.65 62.27 −34.21 9.89 1.80 0.49

PPFD 363.85 882.84 −35.16 164.91 −0.75 −0.01
LAI 1.91 7.64 0.02 1.55 1.58 1.40
EF 0.62 1.00 0.20 0.20 −0.93 −0.17
ET 1.62 6.69 0.01 1.15 0.07 0.82

Note: Environmental variables included daily mean air temperature (Ta), net radiation (Rn), soil heat flux (G),
evaporative fraction (EF), leaf area index (LAI), photosynthetic photon flux density (PPFD), vapor pressure deficit
(VPD), wind speed (U), and atmospheric pressure (P). The statistical information covers Xmean (mean), Xmax
(maximum), Xmin (minimum), Xsd (standard deviation), Xku (kurtosis), and Xsk (skewness) for each environmen-
tal variable.

2.3. Machine Learning Models
2.3.1. Random Forest (RF)

A flowchart of the implementation of the applied machine learning models is shown
in Figure 1. Figure 2 shows a flowchart of the four machine learning algorithms. RF is a
supervised ensemble learning algorithm that was initially proposed by [29]. Its primary
objective is to generate accurate predictions without overfitting the data. The RF operates
as a combination of tree predictors, with each tree depending on the values of the random
vectors sampled independently and from the same distribution for all trees within the
forest [13]. Previous studies have shown that RF outperforms conventional approaches in
estimating Eto, achieving a significant reduction in the obtained error by approximately
half [30]. After training, predictions for the unseen samples x can be made by averaging
the predictions from all individual regression trees on x, as follows:

f̂ =
1
B ∑B

b=1 fb(x) (2)

where B is the number of trees, fb is the function obtained from training the b-th tree, and f̂
is the final prediction value.
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2.3.2. Support Vector Machine (SVM)

The SVM is recognized as a classical data-driven technique known for its robust
ability to handle complex non-linear relationships between input and output variables [31].
Owing to its strong capacity to solve intricate nonlinear problems, the SVM has been widely
applied to simulate both ET0 [32,33] and ET [34,35]. Additionally, research suggests that
using the radial basis function (RBF) to transform the feature space yields highly accurate
estimation results [36]. Consequently, in this study, an SVM model based on the RBF
function was used to predict the ET. The approximated function is expressed as follows:

y = wTx + b, x, w ∈ RM (3)

where M is the dimension of x, w is the weight vector, and b is a bias term. To determine
the optimum w and b, the target of the optimization problem can be expressed as follows:

min
w,b

=
1
2

√
wwT (4)

where w denotes the normal vector of the hyperplane.

2.3.3. Extreme Gradient Boosting (XGB)

The XGB model is an enhanced version of the gradient boosting machines (GBMs)
proposed by [37]. Originating from the concept of “boosting”, the XGB model combines
predictions from a series of “weak” learners to create a “strong” learner using an additive
training process [38]. Recent studies have indicated that the XGB model is a promising
alternative method for estimating the daily ET0 [39]. However, the specific performance of
the direct application of XGB for simulating ET remains unclear. The general function for
prediction at step t is as follows:

f t
i = ∑t

k=1 fk(xi) = f (t−1)
i + ft(xi) (5)

where xi is the input variable, and ft(xi) and f t
i are the learner and predictions at step t,

respectively.
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2.3.4. Backpropagation Neural Network (BP)

An artificial neural network (ANN) is a well-established supervised learning method
known for its exceptional capability to extract nonlinear features from gathered data,
making it a widely used modeling tool [40]. As a result, ANNs have found extensive
applications in estimating ET0 [41,42]. Backpropagation, a gradient descent method, is
commonly used among various algorithms proposed for training the ANN method. Back-
propagation involves calculating the gradient of the error with respect to the weights for a
given input by propagating the error backward from the output layer to the hidden layer
and then to the input layer [43]. The backpropagation algorithm was adopted in this study,
and a flowchart of the backpropagation algorithm is illustrated in Figure 2. During the
error backpropagation process, the weights and biases are modified at each iteration by
minimizing an error metric that quantifies the disparity between the produced output and
the desired output, which can be expressed as follows:

Wn+1 = Wn + ∆W (6)

where Wn+1 and Wn represent the weight matrix during iterations n and n + 1, respectively,
in the iterative training process. ∆W denotes the adjusting weight matrix responsible for
controlling the convergence rate and the computational complexity.

The error minimization process was repeated until a satisfactory convergence criterion
was obtained:

E = ∑P(yi − ti)
2 (7)

where yi is the final output of the ANN model, and ti is the measured output.

2.3.5. Model Development

This study develops four machine learning models (RF, SVM, XGB, and BP) to simulate
and predict daily cropland ET using daily EC flux and meteorological information. By
inputting different variable combinations, the models’ predictive potentials are explored
and variable combinations are compared. The dataset was split into training and testing
sets. At each flux tower site, 80% of the time series data was used for model training, and
the remaining 20% for testing, allowing for an investigation into the predictive performance
of machine learning models at specific sites and, further, within specific climatic regions.
All machine learning model development and statistical computations were conducted
using R version 4.0.5 [44]. Four machine learning models utilized in this study, along with
their corresponding hyperparameters, can be found in the Supplementary Materials.

2.4. Evaluating Indicators

The root mean square error (RMSE) and mean absolute error (MAE) were used to
check the accuracy of the models, whereas the determination coefficient (R2) and the
Nash–Sutcliffe efficiency coefficient (NSE) are measurements of generalizability when
comparing the performances of the four machine learning models under different input
combinations [45–47].

RMSE =

√
∑n

i=1(xi − yi)
2

n
(8)

MAE =
∑n

i=1|(xi − yi)|
n

(9)

R2 =
∑n

i=1(xi − xi)
2(yi − yi)

2

∑n
i=1(xi − xi)

2 ∑n
i=1(yi − yi)

2 (10)

NSE = 1 − ∑n
i=1(xi − yi)

2

∑n
i=1(yi − yi)

2 (11)
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where xi is the predicted value of ET, yi is the measured value of ET, xi and yi are the
corresponding average values of xi and yi, subscript i refers to the number of datasets,
n is the length of the dataset. Larger R2 and NSE values, along with smaller RMSE
and MAE values, signify a better fit in the context of modeling. In addition, a global
performance indicator (GPI), which normalizes the four different metrics as one, was used
to comprehensively evaluate the model performance [48,49].

GPIi = ∑4
j=1 aj

(
gj − yij

)
(12)

where aj is a coefficient (1 for RMSE and MAE and −1 for R2 and NSE), gj represents the
median of the scaled values of statistical indicator j, and yij represents the scaled value of
statistical indicator j for model i. A higher GPI value implies superior model performance.

3. Results
3.1. The Overall Performance of Four Machine Learning Models in Simulating ET

In certain regions, simultaneously obtaining a complete set of input data for ET simu-
lations is a challenge. To reduce the number of input variables while ensuring the accuracy
of the ET simulation, we selected variables that demonstrated stronger correlations with ET
for both three-factor and six-factor input combinations. The initial correlation coefficients
were computed independently using the input factor data from various climate stations
and subsequently merging the data from all stations to produce the overall correlation
coefficients, as shown in Table 3. The outcomes of this comprehensive data integration
revealed Rn, PPFD, and EF to be strongly correlated with ET, thus forming a three-factor
input combination. Additionally, Ta, LAI, and VPD were strongly correlated with ET,
extending this input combination to six factors. Using all available input data enabled the
creation of a nine-factor input combination, as detailed in Table 4.

Table 3. Pearson correlation coefficients between input factors and evapotranspiration (ET).

Climate Zone Items Rn PPFD EF Ta LAI VPD G U P

All sites
r 0.788 0.648 0.591 0.59 0.513 0.394 0.316 −0.09 0.035

rank 1 2 3 4 5 6 7 8 9

SMCZ
r 0.692 0.601 0.524 0.437 0.513 0.252 0.204 0.461 −0.068

rank 1 2 3 6 4 7 8 5 9

TCZ
r 0.807 0.716 0.506 0.543 0.465 0.487 0.418 −0.069 −0.032

rank 1 2 4 3 6 5 7 8 9

TCCZ
r 0.797 0.628 0.638 0.624 0.798 0.375 0.303 −0.215 −0.077

rank 2 4 3 5 1 6 7 8 9

Table 4. Three-factor combinations were obtained from the correlation analysis of ET using data from
all sites, along with their combination with the RF, SVM, XGB, and BP models.

Input Combination
Input Data

RF SVM XGB BP

RF-V3 SVM-V3 XGB-V3 BP-V3 Rn, PPFD, EF
RF-V6 SVM-V6 XGB-V6 BP-V6 Rn, PPFD, EF, Ta, LAI, VPD
RF-V9 SVM-V9 XGB-V9 BP-V9 Rn, PPFD, EF, Ta, LAI, VPD, G, U, P

The simulation performances of the four models at different represented sites across
various climate zones are illustrated in Figure 3. The sites were chosen based on the
availability of the highest volume of valid data within the respective climate zone. The
consistent results between the simulated and actual ET demonstrated their capacity to
simulate ET with three different input factor combinations. Figure 4 presents the simulation
results of ET using the RF, SVM, XGB, and BP models with three-factor input combinations



Remote Sens. 2024, 16, 730 9 of 20

(V3, V6, and V9). For the RF-V3, SVM-V3, XGB-V3, and BP-V3 models, the average
RMSE values were 0.738, 0.774, 0.780, and 0.892 mm d−1, respectively. The average MAE
values were 0.547, 0.573, 0.576, and 0.627 mm d−1, respectively. Correspondingly, the
average R2 values were 0.618, 0.622, 0.597, and 0.570, whereas the average NSE values were
0.378, 0.256, 0.272, and −0.161, respectively. According to the results presented in Table 5,
RF-V3 exhibited a higher prediction accuracy for ET than the other models, with a GPI
value of −2.376. The same pattern of results emerged with the six- and nine-factor input
combinations, in which the GPI values for SVM-V6 and SVM-V9 were 0.548 and 0.561,
respectively, demonstrating their superior accuracy in simulating ET among the six- and
nine-factor input combinations.
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mate zones.
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Table 5. The GPI values of machine learning models for ET simulations at different stations using
different input combinations.

Site RF-V3 RF-V6 RF-V9 SVM-V3 SVM-V6 SVM-V9 XGB-V3 XGB-V6 XGB-V9 BP-V3 BP-V6 BP-V9

US-ARM −3.320 0.046 0.165 −3.364 −0.144 0.187 −3.579 0.021 0.240 −3.401 −0.021 0.421
US-CRT −1.349 0.017 0.053 −1.753 0.943 1.052 −1.618 0.369 −0.065 −2.943 0.924 0.166
US-Ne1 −3.504 0.003 0.155 −3.522 0.013 0.047 −3.594 −0.030 0.067 −3.392 0.020 0.372
US-Ne2 −3.071 −0.052 0.095 −3.048 0.134 0.598 −2.938 −0.116 0.052 −3.252 0.367 0.748
US-Ne3 −3.453 −0.022 0.125 −3.283 0.198 0.364 −3.395 −0.105 0.022 −3.070 0.252 0.547
IT-BCi −0.742 0.320 0.355 −2.120 0.309 0.225 −1.868 0.593 0.539 −3.407 −0.353 −0.703
IT-CA2 −1.547 0.008 −0.041 −1.333 1.076 0.772 −2.360 −0.131 0.112 −2.885 0.931 0.468
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Table 5. Cont.

Site RF-V3 RF-V6 RF-V9 SVM-V3 SVM-V6 SVM-V9 XGB-V3 XGB-V6 XGB-V9 BP-V3 BP-V6 BP-V9

US-TW2 −0.537 0.454 0.670 −1.321 1.616 1.491 −1.082 −1.184 −0.886 −2.038 1.831 1.765
US-TW3 −3.083 0.026 0.216 −1.724 0.196 0.125 −2.169 0.414 0.707 −2.029 −1.839 0.800
US-TW −3.232 −0.034 0.163 −2.670 0.408 0.483 −2.939 −0.019 0.008 −2.798 0.723 0.283
BE-Lon −1.160 0.215 0.278 −1.150 0.234 0.346 −1.259 −0.251 −0.004 −3.654 0.004 0.166
CH-Oe2 −1.770 0.576 −0.551 −2.636 1.318 1.088 −2.514 0.839 0.972 −1.770 0.576 −0.551
DE-Geb −3.390 0.021 0.076 −3.117 0.189 0.257 −3.704 −0.112 −0.021 −2.549 0.276 0.273
DE-Kli −2.325 −0.004 −0.011 −1.793 1.148 0.912 −2.852 0.064 −0.110 −2.290 0.923 0.615
FR-Gri −3.162 0.269 0.209 −2.892 0.584 0.473 −3.414 −0.190 −0.168 −2.878 0.276 0.576
Mean −2.376 0.123 0.130 −2.382 0.548 0.561 −2.619 0.011 0.098 −2.824 0.326 0.396

Note: The best model is in bold.

The overall simulation results for ET across various sites under three different input
combinations are presented in Table 6. Considering all input factor combinations, the
average RMSE values for the RF, SVM, XGB, and BP models were 0.527, 0.488, 0.545,
and 0.551 mm d−1, respectively. The average MAE values were 0.388, 0.356, 0.396, and
0.390 mm/d, respectively. Concurrently, the average R2 values were 0.771, 0.804, 0.749,
and 0.768, whereas the average NSE values were 0.633, 0.659, 0.588, and 0.491, respectively.
Consequently, the SVM model outperformed the other models in terms of the overall ET
simulation across all climate zones.

Table 6. Three combinations were obtained from the correlation analysis of ET using data from all
sites, along with their combination with the model for simulating ET.

Models Evaluating
Indicators

Unit
Input Combination

V3 V6 V9 Mean

RF

RMSE mm d−1 0.738 0.427 0.415 0.527
MAE mm d−1 0.547 0.313 0.304 0.388

R2 - 0.618 0.844 0.850 0.771
NSE - 0.378 0.756 0.765 0.633

SVM

RMSE mm d−1 0.774 0.347 0.344 0.488
MAE mm d−1 0.573 0.249 0.247 0.356

R2 - 0.622 0.894 0.896 0.804
NSE - 0.256 0.863 0.858 0.659

XGB

RMSE mm d−1 0.780 0.429 0.425 0.545
MAE mm d−1 0.576 0.313 0.300 0.396

R2 - 0.597 0.827 0.824 0.749
NSE - 0.272 0.748 0.743 0.588

BP

RMSE mm d−1 0.892 0.370 0.390 0.551
MAE mm d−1 0.627 0.267 0.275 0.390

R2 - 0.570 0.873 0.860 0.768
NSE - −0.161 0.842 0.793 0.491

Note: Input combinations V3, V6, V9, and mean represent three, six, and nine input factor combinations and
average of all combinations, respectively.

3.2. Performance of Four Machine Learning Models in Simulating ET in Different Climatic Regions

Table 3 presents the results of the correlation analysis of ET using data collected from
stations in three distinct climate zones. Using the same variable grouping described in
Section 3.1, three input factor combinations for these climate zones were derived, and four
machine learning models were used to simulate ET in the TCCZ, SMCZ, and TCZ climate
zones, as shown in Table 7. Across specific input factor combinations in each climate
zone, the SVM model consistently demonstrated superior accuracy in the ET simulation,
with average RMSE values of 0.312, 0.387, and 0.460 mm d−1 for TCCZ, SMCZ, and TCZ,
respectively. The average MAE values were 0.218, 0.275, and 0.332 mm d−1, respectively.
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The average R2 values were 0.926, 0.824, and 0.833, and the average NSE values were 0.905,
0.774, and 0.783, respectively (Table 8).

Table 7. Three combinations obtained from the correlation analysis of ET using data from sites within
each climate zone, along with their combination with RF, SVM, XGB, and BP models.

Climate Zone
Input Combination

Input Data
RF SVM XGB BP

SMCZ
RFS-V3 SVMS-V3 XGBS-V3 BPS-V3 Rn, PPFD, EF
RFS-V6 SVMS-V6 XGBS-V6 BPS-V6 Rn, PPFD, EF, LAI, U, Ta
RFS-V9 SVMT-V9 XGBS-V9 BPS-V9 Rn, PPFD, EF, LAI, U, Ta, VPD, G, P

TCZ
RFT-V3 SVMT-V3 XGBT-V3 BPT-V3 Rn, PPFD, Ta
RFT-V6 SVMT-V6 XGBT-V6 BPT-V6 Rn, PPFD, Ta, EF, VPD, LAI
RFT-V9 SVMT-V9 XGBT-V9 BPT-V9 Rn, PPFD, Ta, EF, VPD, LAI, G, U, P

TCCZ
RFC-V3 SVMC-V3 XGBC-V3 BPC-V3 LAI, Rn, EF
RFC-V6 SVMC-V6 XGBC-V6 BPC-V6 LAI, Rn, EF, PPFD, Ta, VPD
RFC-V9 SVMC-V9 XGBC-V9 BPC-V9 LAI, Rn, EF, PPFD, Ta, VPD, G, U, P

Table 8. Statistical parameters between simulated evapotranspiration by machine learning models
using different input combinations and actual measurements in different climate zones. (The sub-
script (C, S, T) in each model indicates the temperate–continental, subtropical–Mediterranean, and
temperate climate zones, respectively.)

Models
Temperate–Continental

Models
Subtropical–Mediterranean

Models
Temperate

RMSE MAE R2 NSE RMSE MAE R2 NSE RMSE MAE R2 NSE

RFC-V3 0.398 0.287 0.887 0.778 RFS-V3 0.383 0.294 0.833 0.776 RFT-V3 0.713 0.508 0.655 0.546
RFC-V6 0.404 0.288 0.888 0.767 RFS-V6 0.443 0.338 0.786 0.682 RFT-V6 0.410 0.291 0.865 0.840
RFC-V9 0.391 0.278 0.893 0.762 RFS-V9 0.463 0.357 0.775 0.664 RFT-V9 0.411 0.291 0.867 0.839
mean 0.398 0.284 0.889 0.769 mean 0.430 0.330 0.798 0.707 mean 0.511 0.363 0.796 0.742

SVMC-V3 0.325 0.229 0.916 0.893 SVMS-V3 0.385 0.276 0.820 0.784 SVMT-V3 0.703 0.493 0.669 0.557
SVMC-V6 0.323 0.225 0.921 0.903 SVMS-V6 0.373 0.263 0.819 0.778 SVMT-V6 0.333 0.248 0.917 0.899
SVMC-V9 0.288 0.200 0.941 0.920 SVMS-V9 0.403 0.287 0.834 0.761 SVMT-V9 0.342 0.254 0.912 0.893

mean 0.312 0.218 0.926 0.905 mean 0.387 0.275 0.824 0.774 mean 0.460 0.332 0.833 0.783
XGBC-V3 0.376 0.269 0.891 0.848 XGBS-V3 0.413 0.314 0.785 0.746 XGBT-V3 0.732 0.520 0.624 0.526
XGBC-V6 0.371 0.263 0.892 0.849 XGBS-V6 0.476 0.346 0.744 0.622 XGBT-V6 0.416 0.303 0.866 0.840
XGBC-V9 0.361 0.250 0.899 0.840 XGBS-V9 0.475 0.338 0.721 0.623 XGBT-V9 0.404 0.289 0.873 0.848

mean 0.369 0.261 0.894 0.846 mean 0.455 0.333 0.750 0.664 mean 0.517 0.371 0.787 0.738
BPC-V3 0.883 0.425 0.782 0.691 BPS-V3 0.462 0.318 0.722 0.628 BPT-V3 0.835 0.495 0.586 0.290
BPC-V6 0.337 0.234 0.914 0.866 BPS-V6 0.542 0.404 0.675 0.513 BPT-V6 0.382 0.278 0.893 0.867
BPC-V9 0.259 0.177 0.949 0.926 BPS-V9 0.445 0.338 0.835 0.731 BPT-V9 0.417 0.278 0.863 0.826
mean 0.493 0.279 0.882 0.828 mean 0.483 0.353 0.744 0.624 mean 0.544 0.350 0.781 0.661

Based on the statistical parameters listed in Table 8, the optimal models were identified
as SVMC-V3, BPC-V6, and BPC-V9 for three-, six-, and nine-factor combinations in the TCCZ
(Table 9), respectively. In contrast, in the SMCZ (TCZ) climate zone, the optimal models
were determined to be SVMS-V3 (SVMT-V3), SVMS-V6 (SVMT-V6), and SVMS-V9 (SVMT-
V9) for three-, six-, and nine-factor combinations (Table 9), respectively. In summary, the BP
model demonstrated superior ET simulation with six- and nine-factor input combinations
in the TCCZ climate zone. In all other cases, the SVM model consistently delivered higher
accuracy (Figure 5).
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Table 9. The GPI values of the four machine learning models for evapotranspiration simulation using
different input combinations across different climate zones.

Climate
Zone Site RF-

V3
RF-
V6

RF-
V9

SVM-
V3

SVM-
V6

SVM-
V9

XGB-
V3

XGB-
V6

XGB-
V9 BP-V3 BP-V6 BP-V9

TCCZ

US-ARM −0.386 −0.319 0.675 −1.112 −1.495 0.746 −0.207 −0.471 1.135 0.193 0.261 2.505
US-CRT −0.226 −0.268 −0.301 0.312 0.393 0.466 0.003 −0.003 −0.038 −3.508 0.178 0.466
US-Ne1 −0.744 −0.088 0.832 0.287 −0.115 0.053 −1.398 −0.319 0.339 0.820 −0.739 2.602
US-Ne2 −0.320 −0.763 −0.087 0.105 0.091 2.124 −1.348 −0.924 −0.189 0.554 0.859 2.652
US-Ne3 −1.373 −0.982 −0.074 0.455 0.334 1.431 −1.839 −1.676 −0.875 0.167 0.566 2.158
Mean −0.610 −0.484 0.209 0.009 −0.158 0.964 −0.958 −0.679 0.074 −0.355 0.225 2.077

SMCZ

IT-BCi 0.170 0.206 −0.149 0.057 0.070 −0.232 −0.374 0.034 0.145 −0.019 −3.778 −1.361
IT-CA2 0.228 −0.755 −0.898 0.905 0.840 0.981 0.220 −0.455 −0.071 −2.127 −2.151 1.342

US-TW2 0.467 −1.006 −1.144 0.345 0.361 0.383 −0.208 −2.346 −2.879 −0.361 1.092 0.087
US-TW3 −0.128 −0.624 −0.666 0.581 −0.106 −0.375 1.830 0.539 0.818 −2.054 −1.265 0.336
US-TW −0.332 −0.872 −0.670 0.003 2.447 0.649 −0.075 −0.665 −1.308 0.132 0.476 0.963
Mean 0.081 −0.610 −0.705 0.378 0.722 0.281 0.279 −0.579 −0.659 −0.886 −1.125 0.274

TCZ

BE-Lon −1.160 0.215 0.278 −1.150 0.234 0.346 −1.259 −0.251 −0.004 −3.654 0.004 0.166
CH-Oe2 −2.539 0.039 −0.037 −2.671 1.284 1.054 −2.548 0.805 0.937 −1.804 0.542 −0.585
DE-Geb −3.390 0.021 0.076 −3.117 0.189 0.257 −3.704 −0.112 −0.021 −2.549 0.276 0.273
DE-Kli −2.325 −0.004 −0.011 −1.793 1.148 0.912 −2.852 0.064 −0.110 −2.290 0.923 0.615
FR-Gri −3.162 0.269 0.209 −2.892 0.584 0.473 −3.414 −0.190 −0.168 −2.878 0.276 0.576
Mean −2.515 0.108 0.103 −2.325 0.688 0.608 −2.756 0.063 0.127 −2.635 0.404 0.209

All sites Mean −1.262 −0.310 −0.261 −0.952 0.665 0.550 −1.276 −0.323 −0.263 −1.750 −0.038 0.553

Note: The best model is in bold.
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3.3. Runtime Analysis of Four Machine Learning Models in ET Simulation

In addition to seeking higher accuracy, the computational runtime of machine learning
models is also a crucial consideration in ET simulations. As shown in Figure 6, the runtime
for the RF, SVM, XGB, and BP models ranged from 6.77 to 12.83 s, 1.24 to 1.85 s, 0.37 to
0.46 s, and 4.33 to 7.07 s using data merged from all stations, respectively. Using data
exclusively from stations within distinct climate zones, the runtime for the RF, SVM, XGB,
and BP models spans from 7.45 to 12.96 s, 1.72 to 2.46 s, 1.60 to 1.87 s, and 3.92 to 6.70 s,
respectively. The differentiation of climate zones for the input factor combinations had a
negligible impact on the runtime performance of the models. It is noteworthy that, among
the four models, both the RF and XGB models showed an increasing trend in runtime with
an increase in the number of input factors. This trend was particularly pronounced in the
RF model. Conversely, the SVM and BP models exhibited a fluctuating trend in the runtime
as the number of input factors increased. In the comprehensive assessment of all models
and their respective input factor combinations, RF*-V9 boasts the longest runtime at 12.96 s,
whereas XGB-V3 displayed the shortest runtime at 0.37 s.
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Figure 6. Single-run time for training and simulation with all site data under various input factor
combinations. The divisions of input factor combinations were conducted for correlation analysis
on evapotranspiration utilizing two distinct datasets: all site data (represented by RF, SVM, XGB,
and BP) and site data located in different climatic zones (represented by RF*, SVM*, XGB*, and BP*).
For clarity, RF* is defined as the sum of RFC, RFS, and RFT, with this naming convention uniformly
applicable to the other models.
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4. Discussion
4.1. Importance of Input Factors for Simulating Evapotranspiration

Based on a correlation analysis of various input variables with ET, Rn was identified
as the most crucial input factor for simulating ET. Subsequently, photosynthetic photon
flux density (PPFD) has emerged as the next significant factor, both of which are intricately
related to energy absorption. The energy required for water vapor evaporation is derived
from the radiation, thus establishing Rn as a pivotal driver of ET, especially in non-moisture-
restricted areas [50]. In addition, numerous studies have proved that variations in light
intensity can affect plant photosynthesis, leaf area morphology, and radiation absorption.
Light also directly affects the stomatal opening, which is an important channel for water
vapor diffusion [51].

In addition to the energy term, our study found that LAI played an important role
in ET simulation, and there was a stronger correlation between LAI and ET in the TCCZ
than that in the TCZ or SMCZ, ranking at the top (Table 4). The LAI influences the ground
energy reception by affecting the sensible heat flux and radiation. This impact is particularly
pronounced when the LAI is low and diminishes as the LAI surpasses a certain threshold.
Current studies have found that the relationships between environmental factors and
ET were mediated by leaf area [52], and the regulatory effect on ET was significantly
different before and after an LAI close to 1 (1.2~1.5 m2 m−2). When the canopy cover is
full, the increase in canopy cover is not apparently equal to the increase in LAI; therefore,
the intercepted energy does not increase significantly. Therefore, beyond this threshold,
changes in LAI have a diminishing effect on ET [53]. However, in TCZ and TCCZ, the
correlation was relatively weaker. By comparing the average LAI values for different
climatic zones, as displayed in Table 2, it was found that the LAI in the TCZ was greater
than that in the SMCZ and TCCZ, further confirming the mechanism of the impact of LAI
on ET. As an important component of the water cycle, ET involves numerous complex
energy exchanges. In particular, evaporation is the movement of water into the air and can
readily lead to changes in the air temperature. Conversely, variations in the daily average
temperature of agricultural fields can reflect the intensity and rate of energy exchange in
the atmosphere. Thus, the daily mean air temperature (Ta) also demonstrates a strong
correlation with ET [54].

Although EF was considered a crucial factor for quantifying surface water deficits and
the water cycle, and the estimation of ET based on a specific daytime EF is considered a
favorable method [27,55], EF did not demonstrate the same universally strong correlation
across all climatic regions as Rn and PPFD in the present study. Further investigation of
previous research has revealed that EF demonstrates higher sensitivity to land surface
moisture conditions in arid regions, whereas it is less sensitive in relatively humid areas [56].
On one hand, this was probably due to the generally humid climate in agricultural areas;
on the other hand, it may be influenced by irrigation practices in agricultural areas, which
can affect the land surface moisture conditions at flux measurement sites. Therefore, when
considering the number of required input factors, these relatively more important factors
should be prioritized.

4.2. Optimal Input Factor Combinations and Machine Learning Models for Simulating
Evapotranspiration

The four machine learning models used in this study demonstrated relatively good
simulation accuracy. After obtaining the input factor combinations from the correlation
analysis of ET using data from sites within each respective climate zone, the simulation ac-
curacy of the three- and six-factor combinations of each model was significantly improved,
indicating that it is meaningful to consider the differences and impacts of climate zones
when simulating cropland daily ET. Given the high simulation accuracy across all the mod-
els, each model had suitable scenarios and characteristics. RF models often achieve better
simulation accuracy than other models when trained with fewer input variables. However,
they also had the longest execution times among the four models [57]. When conducting
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ET simulations with fewer input variables and when the importance of the time cost is low
or not considered, the RF model can be prioritized. The SVM consistently demonstrated
better modeling performance for ET than the other three models across most combinations
of input variables and various climate zones. In the comparison without distinguishing
climate zones and input factor combinations, SVM-V6 and SVM-V9 were the optimal
six-factor and nine-factor input combination models. In the comparison where input factor
combinations were divided by climate zones, overall, the combined performance of SVM
models with three different input factor combinations (SVM*-V3 and SVM*-V6) was the
best. Additionally, SVM models exhibited faster single-model runtimes (significantly lower
than those of the RF and BP models). The XGB model has a notable advantage in terms of
computational time and efficiency over other models [37], which makes it more suitable for
addressing real-time prediction problems, even though the simulation accuracy of the XGB
model for ET is not particularly outstanding among these machine learning models. How-
ever, the simulation accuracy of the BP model is unstable across different climatic regions,
and its generalization ability is relatively average [58], particularly when dealing with very
limited or extremely large datasets, and the performance of the BP model is not as strong as
that of other models. In some cases, the backpropagation algorithm may become stuck at a
local optimum [59]. Additionally, the BP model had a relatively long single-model runtime
(only slightly faster than that of the RF model). However, when the dataset size is moderate,
the BP model may achieve high accuracy. Therefore, to attain excellent simulation accuracy
with the BP model, a substantial amount of data is required to pre-determine the optimal
local input variables for each site, which may require a significant amount of time and
effort. Considering the simulation accuracy of the model and the runtime under various
conditions, this study suggests that the SVM model is the preferred choice for simulating
daily cropland ET.

Considering three different combinations of input factors, we observed differences
in the adaptability of input factor combinations across climatic zones. By comparing
the performance of machine learning models using the three-factor combination (V3) in
different climatic zones, three out of four of the models exhibited better performance
in the SMCZ. Similar results were also observed with the nine-factor combination (V9),
which showed better performance in the TCCZ (Table 9). Additionally, the four machine
learning models generally performed well in both V6 and V9 input factor combinations.
This indicates that the predictive accuracy of the models improved with the increase in
input factors. However, the simulation accuracy of the V9 input factor combination did not
show significant superiority over that of the V6 input factor combination, and at some sites,
it performed worse for certain site data. Therefore, considering that the V9 input factor
combination requires 50% more input factors than the V6 input factor combination while
achieving similar simulation accuracy, this study suggests that V6 is the most economical
input factor combination for situations with limited meteorological data.

4.3. Uncertainties

Estimating uncertainty for EC data is challenging, and the presence of missing data
in the dataset can lead to discontinuities in the data time series, potentially increasing the
difficulty of accurately predicting ET using machine learning models. Considering the
complexity of relationships between variables, future research may explore the application
of some deep learning models for agricultural evapotranspiration prediction. Additionally,
interpolating MODIS LAI from 8-day periods to daily using cubic spline interpolation may
introduce uncertainty into the models. However, the daily scale LAI interpolated from
8-day data may be beneficial to improve the simulation accuracy of the machine learning
used in this study. The daily scale LAI is consistent with the input meteorological data on
the time scale, and it can better quantify the impact of vegetation change on ET, especially
in the period when the vegetation changed dramatically (generally the rapid development
stage of crops). Directly conducting correlation analysis on the original time series dataset
can result in non-independent impacts of input variables on ET (ideally, analyzing the
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impact of a certain variable should ensure that other variables remain constant, which is not
achievable in reality). This can lead to larger underestimations of variables (such as U and
P) ranked lower in correlation analysis, and the uncertainty in flux tower measurement data
may exacerbate this underestimation. However, its impact on our selection of three-factor
and six-factor input variables (V3 and V6) is minimal. As far as the representativeness of
the EC sites selected in this study, we have to admit that not all EC flux sites in different
climate zones could be included due to limitations of accessibility and openness of data.
In the future, extending field ET predictions to flux tower sites in other climatic zones
beyond those mentioned in this study (e.g., the Boreal climatic zone) could be considered.
Due to the limited representation of site numbers in this study, not all relevant climatic
zones were investigated, although most flux tower station data located in agricultural areas
were included.

5. Conclusions

This study used meteorological and remote sensing data from diverse agricultural
sites in distinct climatic regions to simulate ET using four machine learning models with
three different input combinations. The key findings are summarized as follows: (1) Rn,
PPFD, LAI, EF, and Ta emerged as pivotal factors influencing daily ET in agricultural
areas, and they all exhibited a relatively strong correlation with ET across various climate
zones; (2) all four machine learning models yielded satisfactory simulation performance,
with the SVM model demonstrating the best simulation performance, particularly when
considering the influence of climate zones on ET simulation; (3) the predictive ET accuracy
of three-factor combinations (V3) was improved with the inclusion of more input factors.
However, considering both predictive accuracy and input factor efficiency, the V6 input
factor combination is recommended as the preferred choice; (4) in climate zones with a
lower average LAI, LAI was more crucial for ET predictions than in climate zones with a
higher average LAI (TCZ, SMCZ), highlighting the need for region-specific considerations
when selecting machine learning models and input factor combinations.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs16050730/s1, Table S1: Site codes and corresponding full
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Nomenclature

Ta daily mean air temperature (◦C)
Rn net radiation (MJ/m2 d)
G soil heat flux (MJ/m2 d)
EF evaporative fraction (W m−2/W m−2)
LAI leaf area index (m2/m2)
PPFD photosynthetic photon flux density (µmol/m2 s)
VPD vapor pressure deficit (kPa)
U wind speed (m/s)
P atmospheric pressure (kPa)
V3, V6, V9 three, six, and nine input factor combinations
RMSE root mean square error
R2 determination coefficient
MAE mean absolute error
GPI global performance indicator
NSE Nash–Sutcliffe efficiency coefficient
RF random forest
SVM support vector machine
XGB extreme gradient boosting
BP backpropagation neural network
TCCZ temperate–continental climate zone
SMCZ subtropical–Mediterranean climate zone
TCZ temperate climate zone
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