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Abstract: LiDAR-based digital terrain models (DTMs) represent an advance in the investigation
of small-scale geomorphological features, including dolines of karst terrains. Important issues in
doline morphometry are (i) which statistical distributions best model the size distribution of doline
morphometric parameters and (ii) how to characterize the volume of dolines based on high-resolution
DTMs. For backward compatibility, how previous datasets obtained predominantly from topographic
maps relate to doline data derived from LiDAR is also examined. Our study area includes the karst
plateaus of Aggtelek Karst and Slovak Karst national parks, whose caves are part of the UNESCO
World Heritage. To characterize the study area, the relationships between doline parameters and
topography were studied, as well as their geological characteristics. Our analysis revealed that
the LiDAR-based doline density is 25% higher than the value calculated from topographic maps.
Furthermore, LiDAR-based doline delineations are slightly larger and less rounded than in the case
of topographic maps. The plateaus of the study area are characterized by low (5–10 km−2), moderate
(10–30 km−2), and medium (30–35 km−2) doline densities. In terms of topography, the slope trend
is decisive since the doline density is negligible in areas where the general slope is steeper than
12◦. As for the lithology, 75% of the dolines can be linked to Wetterstein Limestone. The statistical
distribution of the doline area can be well modeled by the lognormal distribution. To describe the
DTM-based volume of dolines, a new parameter (k) is introduced to characterize their 3D shape: it
is equal to the product of the area and the depth divided by the volume. This parameter indicates
whether the idealized shape of the doline is closer to a cylinder, a bowl (calotte), a cone, or a funnel
shape. The results show that most sinkholes in the study area have a transitional shape between a
bowl (calotte) and a cone.

Keywords: doline; sinkhole; karst; LiDAR; lognormal; volume; 3D shape; World Heritage

1. Introduction

Geomorphology deals with the study of landforms, and its purpose is not merely to
provide descriptions but also to draw conclusions about the development of landforms.
Within this field, geomorphometry deals with the measurable parameters of landforms
and examines their statistical and spatial distributions and the relationships between the
parameters. The availability of LiDAR-based digital terrain models (DTMs) represents a
leap forward in the examination of smaller landforms. The dolines (or sinkholes) of karst
terrains are just such small forms, the diameter of which varies between 1 m and several
100 m [1,2], so LiDAR can provide the optimal raw data for their investigation. Nevertheless,
doline morphometry was already “investigated” well before the advent of LiDAR datasets.
The first doline morphometry papers appeared in the 1970s [3,4]. GIS greatly improved
the possibilities of doline morphometric analyses, thanks to which it became possible to
examine increasingly larger databases (containing several tens of thousands of dolines). As

Remote Sens. 2024, 16, 737. https://doi.org/10.3390/rs16050737 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs16050737
https://doi.org/10.3390/rs16050737
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0003-4471-2889
https://orcid.org/0000-0002-3382-7800
https://orcid.org/0000-0002-6552-4329
https://doi.org/10.3390/rs16050737
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs16050737?type=check_update&version=2


Remote Sens. 2024, 16, 737 2 of 27

a result, the number of articles dealing with doline morphometry has gradually increased
since the 2000s [5–10]. Even in this period, however, the morphometric characterization of
sinkholes was mainly based on topographic maps, aerial photographs, and field surveys.
The scale and quality of these datasets varied greatly from country to country. However,
the growing availability of LiDAR data made it possible to delineate the precise shape of
dolines on the basis of high-resolution (i.e., 1–2 m cell size) DTMs [11–22]. We note that,
in recent years, sinkholes delineated using the SfM (Structure from Motion) method for
aerial photos taken from drones have increasingly been included in the analyses [23–26],
but this type of data acquisition has specific issues (e.g., influence of vegetation); therefore,
this procedure is not dealt with in this article.

Dolines are the most characteristic small landforms of karst regions. The word “doline”
comes from the Slovenian language, and following the work of Jovan Cvijić, “the father of
karst geomorphology”, this term gained widespread use in karst studies [27]. On the other
hand, the term “sinkhole” spread from English-speaking countries, and in recent years, it
has become more frequent in karst studies. However, out of respect for Cvijić, we prefer
using the word “doline”, though occasionally, we also write “sinkhole” as a synonym.
Nevertheless, owing to the large number of dolines, they represent objects that can be easily
studied using statistical methods. The distribution and size characteristics of sinkholes
are closely related to lithology, tectonics, glaciation, some climatic parameters, and the
duration of sinkhole development [8–10,28–33]. An important open question in sinkhole
morphometry is the statistical distribution of the size parameters. In many cases, previous
studies have shown that the doline areas within a study terrain are best characterized by a
lognormal distribution [31,34–36]. However, it has also been suggested that the cumulative
distribution of doline areas can be well described by a power function, which may be based
on fractal properties [37–39]. For a more detailed interpretation of this approach, see [39].

The size of a doline is most comprehensively characterized by its volume because
this parameter reflects not only the horizontal extent but also the depth. The amount of
dissolved material transported from the surface by infiltrating water can best be approxi-
mated using volumetric analysis. The exact calculation of the volume was previously not
possible with the required accuracy or at least rather difficult, but LiDAR-based DTMs
also provide an opportunity for this. This is why volume has recently gained a greater
significance in sinkhole morphometric studies [10,16,21,26,40,41]. In fact, the volume cal-
culation can be carried out using raster DTMs, or more directly using a point cloud. For
small-scale landforms, either natural or artificial, terrestrial laser scanning or close-range
photogrammetry can provide valuable input in order to quickly and precisely calculate the
volume [42–44]. Volume calculations generally require the definition of upper and lower
surfaces, or, in the study of dynamic landforms (e.g., volcanoes, sand dunes, landslides),
the surface before and after a given period or event [45–49]. In the case of karst dolines,
the lower surface is the actual surface, whereas the upper surface can be thought of as the
pre-denudation surface.

The doline density is one of the most frequently used morphometric indicators, which
aims to capture the degree of karstification of a given area and to characterize the terrain
with a single number. A lot of data on doline density have been collected in recent decades;
however, the comparison of these data is not easy due to the different methods used in the
analyses [7,9,21,26,29,32,35,50–55].

LiDAR-based processing makes the morphometrical analysis of dolines more precise
than previous methods. However, it is worth investigating how the data obtained with
previous methods, specifically on the basis of topographic maps, and the data calculated
on the basis of LiDAR relate to each other. For this comparison, we need a test area where
both types of data are available in relatively good quality.

Moreover, to carry out this quantitative analysis, we need a study area with a suf-
ficiently large number of dolines and well-defined territorial units. Thus, we chose the
area of the Aggtelek Karst (NE Hungary) and the Slovak Karst (SE Slovakia), which form
a common, cross-border, continuous karst region, the traditional name of which is the
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Gömör–Torna (Gemer–Turňa) Karst. There are two national parks in this karst area, and
the caves of this territory are part of the UNESCO World Heritage [56,57]. In this context,
we note that the examination of sinkholes in the karst regions is significant not only from a
morphometric point of view but also because most of the precipitation reaching the surface
in these areas infiltrates into the depth through the dolines, which makes these landforms
extremely important from a hydrological point of view. The sinkholes therefore play a
significant role in the preservation of the caves, as well as in the protection of the karst
water resources [58,59].

In this article, we formulate three general objectives, taking into consideration the
above topics.

Our first goal is to investigate the statistical question of which probability distribution
better fits the empirical distribution of doline areas: the lognormal distribution or the
power-law distribution.

Second, we investigate how sinkhole volumes can be calculated from LiDAR-derived
DTM data and which model parameter(s) can suitably characterize the 3D shape of dolines.

The third point of our aims is the characterization of the various plateaus of the selected
study area (Aggtelek Karst and Slovak Karst) based on doline morphometric parameters.

2. Materials and Methods
2.1. Study Area

The examined karst region (Figure 1) is mostly built up of well-karstified rocks formed
in the Middle and Upper Triassic, of which the Wetterstein Formation (limestone and
dolomite) has the largest extent, but the Gutenstein Formation (limestone and dolomite),
the Steinalm Limestone, and the Reifling Limestone also occupy significant areas [60–64].
These carbonate rocks were deposited in the Neotethys Ocean [63]. The ocean became
deeper in the Jurassic, and thus, carbonate deposition was halted. As a result of subduc-
tion at the edge of the ocean, a part of the oceanic crust was obducted on the continental
crust, which can be found today near Meliata (Slovakia, [65]). In the Cretaceous, due to
tectonic compression, the carbonate layers were folded and nappes were created. Some
parts became subaerial, which made karstification possible, as demonstrated by the first
traces of paleokarst in the area [63,66]. The Oligocene was characterized by significant
horizontal movements along tectonic lines [63]. Due to the uplift of some parts of the area,
karst features could develop in the Miocene, when the climate was subtropical [67–72],
but the southern part of the area was flooded by the Pannonian Sea, which later be-
came a lake [63,67–72]. As the uplift continued in several stages during the Pliocene and
Quaternary, most of the current exokarst and endokarst features were formed in these
periods [65,73–77]. Before these uplifts, the area slightly sloping from north to south used
to be a relatively uniform surface, and a drainage network of fluvial origin was formed on
it. Thereafter, the uplift divided this area into several blocks, and karstification became
gradually more intensive [78]. Some of the river valleys transformed into dry valleys,
infiltration became the dominant process in the uplifted karst areas, and cave formation
took place in the depths [79]. Currently, the topography of the study area is characterized
by plateaus of 350–900 m a.s.l., densely dotted with dolines. The plateaus are separated
from each other by valleys that are mostly of tectonic origin but also fluvially formed.
Almost all of the sinkholes are of solution origin, and only a small number of collapse
features and depressions of suffosion origin occur [11,20,71,80,81]. Along the contact zones
of karst and non-karst units, stream sinks and springs are found at the input and output
sides, respectively [68,81,82]. In the depths, there are caves with diverse speleo-features
and genetics; thus, their geodiversity is outstanding, which is the main reason why these
caves have been declared a UNESCO World Heritage Site [83]. The area of Aggtelek Karst
and Slovak Karst has been studied by many researchers from a geomorphological point
of view [68,72,73,84–87]. Among these publications, there are also several that specifically
focus on doline morphometric analyses [11,18,20,31,71,80,88–90]. However, none of these
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publications provide a comprehensive morphometric description of the entire investigated
area, as most of these works were written in the period before LiDAR became available.
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Figure 1. Map of the study area. Karst plateaus are marked by ID numbers: Jelšavská (1); Koniarska
(2); Plešivská (3); Bučina (4); Silická (5); Horný (6); Žl’ab (7); Bôrčianska (8); Zádielska (9); Jasovská
(10); Kečovská-Haragistya (11); Nagyoldal (12); W-Alsó-hegy (13); E-Alsó-hegy (14); Szinpetri (15);
Páska-bükk (16); Aggtelek (17); Rudabánya (18); Szalonna (19); Jósvafő (20).

2.2. Base Data

The main data sources of the present analyses are LiDAR databases. LiDAR data are
available free of charge for Slovakia [91]. According to this portal, the technical parameters
of the given territory (34-Rožňava) are as follows: scanning period: 28 April 2021–5 May
2021; vertical accuracy of cloud points: 0.08 m; positional accuracy of cloud points: 0.09 m;
average density of last reflection points: 47/m2; and vertical accuracy of DTM (in ETRS89):
0.09 m. The raster DTM with a horizontal resolution of 1 m from LiDAR is also directly
available from the database; thus, we used it in the analyses. As for the Hungarian side, the
LiDAR database was created by the Envirosense Hungary Kft. on behalf of the Aggtelek
National Park in August 2013. The data were provided to us by the Aggtelek National Park
Directorate. The density of points classified as ground is 2 points/m2. It is relatively low
because data collection was carried out during the vegetation period. Therefore, a DTM
with a resolution of 2.5 m/px was created from the point cloud [18]. This database does
not include the easternmost, relatively small plateaus of the Hungarian part of Aggtelek
Karst (i.e., Rudabánya (18) and Szalonna (19) units; hereafter, numbers after local plateau
names (Figure 1) are the “ID” numbers used in the figures and in the tables).

In addition to the LiDAR-based analysis, we also carried out the delineation of dolines
based on topographic maps at a scale of 1:10,000 in both countries [92,93]. The outlines
were delineated using the outermost-closed-contour method (see details in Section 2.3). If
smaller closed depressions were clearly distinguishable within a large, complex depression,
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then we delineated the smaller features. In the Hungarian topographic maps, the contour
interval is 5 m, but in the case of dolines, there are often secondary contour lines at 2.5 m
vertical intervals. The Slovak topographic maps have contour intervals of 2 m.

To delineate the geological units, we used geological maps with a scale of 1:25,000
for the Hungarian parts and their associated map descriptions [60,64]. For the Slovakian
parts, geological maps with a scale of 1:50,000 and their corresponding descriptions were
used as a basis [61,62]. The scales are different, because these are the best publicly available
geological maps in these countries.

2.3. Methodology

One of the crucial methodological issues in doline morphometry is the delineation
of dolines. Dolines are small, closed depressions formed in karst areas. However, the
lower and upper size limits are not clearly defined in the literature [15,17,94]. It is really
not easy to specify a threshold diameter below which a small depression is considered a
“random pit” and above which the form is regarded as a doline. Nevertheless, we have
to set a lower limit in the procedure in order to exclude small depressions that are only
due to minor random undulations of the surface (or of the DTM) and are not dolines. The
upper limit is also ambiguous. Occasionally, dolines can grow very large, with diameters
of 500 m or more [95]. If the bottom of a large, closed depression is not dissected by smaller
forms, then it can still be considered a doline, even if its formation is more complex than
that of simple dolines. For example, large, closed depressions are often found in valley
sections that end in a stream sink. On the other hand, if a large, closed depression includes
several smaller dolines, then the large form can be considered rather an “uvala”, and the
smaller features within this can be delineated as dolines (see [96] for more details on uvalas).
Nevertheless, “nested features” occur even in the case of smaller depressions [15]. These
“nested features” can be formed by the coalescence of individual dolines or by the splitting
of larger depressions into smaller parts. The question is how we delineate these forms. If
two (or more) simple depressions within a larger depression are roughly the same size and
are large enough to be considered dolines, then they should be delineated as individual
dolines. However, when a tiny depression is found within a larger depression, then it is
more realistic to delineate the larger depression as a doline. Finally, we note that complex
(nested) depressions can be technically characterized by the “sinkhole rank” (see [15,97]
for details).

Even if it is already decided which feature is considered to be a doline, there is still
the question of where exactly to draw the outline of the feature. The outline of the doline
can be determined by several methods (Figure 2). On topographic maps, the doline is
indicated by closed contour lines (or occasionally by symbols). Thus, the edge of the doline
can be defined most simply by the outermost closed contour (OCC). This is slightly lower
compared to the lowermost point of the doline’s real rim. In fact, the vertical deviation
is smaller than the value of the contour interval. Therefore, it necessarily represents a
slightly narrower delineation than reality. At the same time, this instruction is clear and
easy to follow for the digitizer, so this method is used quite often, especially if the basic
data are topographic maps [7,21,26,31,98]. Another clear definition for doline delineation
is the imaginary closed contour at the level of the lowermost point of the doline rim.
This definition has become widespread in the case of DTM-based delineations [11–16,18].
Nonetheless, there is also an approach that states that the outline of the sinkhole is not
necessarily horizontal. According to this definition, the outline of the sinkhole must be
adjusted to the abrupt change in slope (that is, to the profile curvature maximum). However,
the slopes of the doline edges can be so varied, and the slope transition often so gradual, that
it is not possible to build a clear and universal definition based on this principle. As a result,
this type of approach generally requires manual delineation, which leads to subjectivity.
Thus, this method has not become widespread, although some researchers favor this
definition despite its practical difficulties [20,98,99]. Finally, the outline of the doline can
also be defined as the watershed belonging to its deepest point. This can unequivocally be



Remote Sens. 2024, 16, 737 6 of 27

performed on the basis of DTMs, but this method usually leads to much larger features
than the real forms of dolines, except in the case of polygonal karsts consisting of closely
packed dolines [10,16].
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Figure 2. Various doline delineation principles. The brown dashed lines indicate the elevation levels
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In our analysis, in the case of topographic maps, we delineated the dolines using
the OCC method, while in the case of LiDAR-based DTMs, dolines were defined by the
level of the lowermost point of the doline rim. The details of the delineation algorithm
are presented in previous articles [12,15,18,97], so only the major steps and the flowchart
(Figure 3) of the algorithm are presented here without further details.
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1. Smoothing of the DTM to remove spurious errors.
2. Filling of pits smaller than true dolines (by setting the appropriate Z-limit). (In the

case of a too-small Z-limit, there are many false positives, i.e., features outlined by the
algorithm that are not true dolines. In the case of a too-large Z-limit, there are many
false negatives, i.e., dolines that are not recognized by the algorithm. In [18], it was
demonstrated that 1 m is the optimal value for Aggtelek Karst; thus, in the present
analysis, the same value was used as the Z-limit.) The result is the “filled DTM”.

3. Determination of flow directions based on the filled DTM.
4. Identification of the remaining sinks (which are deeper than the above Z-limit): these

are the “sink points”.
5. Delineation of watersheds belonging to the sink points.
6. Filling of depressions up to the level of the lowermost point of their rim. The result is

the “zonal-filled DTM”.
7. Calculation of the difference between the “zonal-filled DTM” and the “filled DTM”:

this is the depth.
8. Delineation of areas where the depth is larger than 0: these are the dolines (as raster data).
9. Conversion of dolines into a polygon shape file for further analysis.
10. Calculation of the morphometric characteristics of sinkholes.

Closed depressions, as mentioned above, are often “nested”. Handling these complex
forms is a challenge. Kobal et al. [15] developed a procedure, the essence of which is
to fill the depressions that have already been identified and then repeat the delineation
procedure. As a result, we can also obtain the outlines of larger, complex features. In the
present analysis, our experience was that after applying the delineation steps only once, we
obtained the correct doline boundaries for most features. However, in certain cases, when
a small doline was present in a larger feature, then only two (or more) tiny dolines were
outlined, and the “true doline” (the larger feature) was missing from the database. This
phenomenon is especially remarkable when comparing manual and automatic delineations
(see Figure 4). To resolve this situation, after applying the algorithm once, we combined
certain features. Dolines whose area or depth was too small (area less than 1000 m2 or
depth less than 1 m) and were close to other sinkholes (distance less than 30 m) were filled,
and the delineation steps were run again. Since the results obtained after the second round
were satisfactory, we finished the delineation procedure after this second round.
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Figure 4. A typical result of the delineation algorithm after the first and second rounds for a model
area. The doline outlines based on the topographic map are also presented (TOPO). It is obvious that
in the case of the large central doline, the delineation is incorrect after the first round; this is why the
second round is necessary.

Morphometric parameters have been calculated using standard GIS tools. In the
present paper, the following parameters are used: doline area (A), equivalent diameter (d, the
diameter of the circle having the same area as the original form), depth (h, the elevation
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difference between the highest and lowest points of the doline), circularity (Circ), and volume
(V). In the literature, there are several formulae for circularity; we used the following
formula (after [19,100]), where P is the doline perimeter:

Circ = (4 × π × A)/P2 (1)

Based on DTMs, the volume can be calculated as the difference between the upper and
lower envelope surfaces. Actually, the upper envelope surface is the horizontal polygon
area of the doline. The lower envelope surface is the filled DTM (after the 2nd step of the
algorithm). The volume is calculated as a sum:

V = ∑
px∈ f orm

Apx×hpx (2)

where Apx is the area of one pixel, and hpx is the depth of the form in a given pixel. After
some simple transformations, we obtain

V = Apx × ∑
px∈ f orm

hpx = Apx × n × hmean = A f orm × hmean (3)

where n is the number of pixels within the actual form. The mean depth (hmean) can be easily
calculated in a GIS environment (e.g., by the Zonal Statistics as Table tool in ArcMap® 10.8
software), and the volume is calculated by multiplying this value with the area of the doline.

In this paper, a new morphometric parameter is also introduced: the 3D-shape parameter
(k). The purpose is to characterize the ideal 3D geometric shape of dolines. In the literature,
the shape of dolines is approximated as a cylinder, a bowl (or calotte), a cone, or a funnel
(Figure 5). Naturally, these are idealized shapes, but they are often linked to genetic types.
Namely, collapse sinkholes can be approximated by a cylinder, whereas solution dolines
are closer to bowl or cone shapes. Before the advent of DTMs, the researchers selected a
3D shape typical of dolines in their research area, and the volume was calculated from the
area and depth using the formula linked to the selected shape. Now, the situation is just
the opposite: we are able to precisely calculate the volume using the LiDAR-based DTM,
and we can assign an “idealized 3D shape” to the doline based on its volume. In order to
carry this out, we have to take into account how the volume formulae change for the ideal
3D shapes. It is observed that the volume formulae have similar structures, and they can
all be written in a general form:

V =
A × h

k
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In this formula, k reflects the ideal 3D shape of the given feature. Naturally, it is
possible that a doline has exactly the same volume as the same-area and same-depth cone,
while its true shape is quite different. Thus, we cannot say that if k is exactly 3, then the
doline has a perfect cone shape. That is why we speak about an “idealized 3D shape”.

The parameters characterizing the spatial distribution of dolines are the doline density
and the doline area ratio. The doline density is equal to the number of dolines divided by
the study area. The doline area ratio is the total area of dolines divided by the study area.
These parameters are sensitive to the size of the study area. In many studies, it is observed
that “everything” is included in the study area, even sub-areas where dolines cannot occur
at all for either lithological or topographical reasons. In such cases, we obtain low values
for the whole area’s doline density, while the real situation is that the area that is actually
covered by dolines can be characterized by a higher density. This problem can be solved
by a doline density map, but if one wants to characterize the doline density with a single
indicator value, then our proposal is that, as far as possible, one should take into account
only those parts of the study area where the lithology allows for the formation of dolines
and the slope angle is generally low. Naturally, these criteria should not be applied per
pixel, but to larger contiguous areas. The numerical threshold of the slope angle should be
determined on the basis of local conditions, but typically, the threshold value is around
10–12◦, above which dolines occur only very rarely [9,35,53,55,101].

In order to compare doline density values among different areas, it is recommended to
use the “same language”, i.e., common terms for doline density ranges. Recently, the clas-
sification of Pahernik [32] has been becoming widespread, according to which the doline
density is “negligible” for 1–10 km−2, “small” for 10–30 km−2, “medium” for 30–60 km−2,
“large” for 60–100 km−2, “very high” for 100–200 km−2, and “extremely high” for above
200 km−2. According to the literature, there are many well-karstified areas with a doline
density of less than 10 km−2, including some plateaus of Aggtelek and Slovak Karsts;
therefore, we recommend slightly modifying Pahernik’s too-strict designations, and our
proposal is to call the 1–10 km−2 category “low” density, the 10–30 km−2 category “mod-
erate” density, and the 60–100 km−2 category “high” density; for the other categories, we
would leave the original terms of Pahernik.

3. Results

Hereafter, LiDAR-derived doline data are included in the analysis by default, except
for the first point, where LiDAR-based and topographic map-based (hereinafter TOPO)
data are compared. In the case of two plateaus (Rudabánya (18) and Szalonna (19)), no
LiDAR data were available, so the parameters of the dolines were determined only on the
basis of the topographic maps. For the whole karst area, the majority of dolines are located
on the delineated plateaus (n = 4955). However, a small but non-negligible proportion of
them cannot be assigned to the plateau terrains (n = 307). Nonetheless, when the context is
the whole karst area, the data for “non-plateau dolines” are also included.

3.1. Features Identified in LiDAR versus TOPO Data

In the comparison, we focus on three parameters, doline density, doline area, and
circularity, as these parameters characterize dolines from three different aspects: spatial
distribution, size, and shape. Further on, considering the differences in data quality
between the two countries, the results are also summarized by country. For the entire
area, the LiDAR database contains 25% more dolines than TOPO. (In the case of Hungary,
the surplus is 11%, whereas for Slovakia, it is 29%). Accordingly, the doline density is,
on average, 25% higher when calculated based on LiDAR; however, this average value
covers quite significant differences according to the plateaus (Figure 6). On the northern
plateaus, LiDAR generally resulted in a larger surplus, in some cases drastically increasing
the number of dolines (Jelšavská (1), Jasovská (10)), while the increase was smaller on the
southern plateaus. There can be several reasons for this. On the one hand, this can be due
to a bias, as the Hungarian LiDAR data have a lower resolution and lower quality than
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the Slovakian data. On the other hand, experience from our field trips also confirms that
there are fewer small dolines in the Hungarian parts that do not appear on topographic
maps, so the change compared to the TOPO data is smaller. As for the doline areas
(Figure 6), the distributions of the two datasets are basically very similar. It is observed
that although the LiDAR-based data contain the smallest-area dolines, TOPO dolines are,
on average, somewhat smaller. The lower quartile, mean, and median values all support
this observation. (For the whole study area, the median area of dolines is, on average, 17%
larger for the LiDAR than for the TOPO dataset. For Hungary, this value is 13%, and for
Slovakia, 18%). The reason for this is that, in the case of topographic maps, the border
is defined by the outermost closed contour, which is typically somewhat lower than the
elevation of the lowermost point of the rim of the doline; therefore, the area of TOPO
dolines is smaller.
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Finally, regarding circularity (Figure 6), the diagram demonstrates that the shapes of
TOPO dolines are more circular (for the whole study area, the median circularity of dolines
is, on average, 3% smaller for the LiDAR than for the TOPO dataset; for Hungary, this
value is 4%, and for Slovakia, 2%). The reason for this is that, according to cartographic
principles, a kind of “generalizing/rounding effect” already prevails during the drawing
of the contour lines in the map. In addition, during the digitization of the dolines, a further
smoothing effect may have played a role. In contrast, during the LiDAR-based derivation,
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dolines are delineated by more realistic contours that better match the actual (observed)
shapes of the dolines.

3.2. Doline Spatial Distribution Parameters

In print size, the dolines are too small to show all the features on one map, so here, we
present a section that shows the Silická plateau (5) with the largest number of sinkholes
(Figure 7).

The spatial distribution of dolines can be well illustrated with a doline density map
(Figure 8). This map shows that the north–central parts of the karst area are the most
densely scattered with dolines. However, exceptions to this simple observation also exist;
for example, Alsó-hegy (13, 14), Jósvafő plateau (20), and the northern tip of the Koniarska
plateau (2) also have high-doline-density parts. In addition, a high-doline-density zone can
be observed along the Gombasek–Silica tectonic line (between Silická (5) and Bučina (4)
plateaus), which also continues to the NW on the Plešivská plateau (3). Regression analysis
supports that the doline density is also influenced by the slope angle. At the level of plateau
mean values, it is observed that there is a moderate (R2 = 0.50) negative correlation between
the doline density and the mean slope angle (Figure 9). This means that, trend-wise, on the
plateaus that are more horizontal, dolines are found in higher densities.

Table 1 demonstrates that there are significant differences in both the number and the
density of dolines among the individual plateaus. There are no dolines at all on Žl’ab Mt.
(7), and there are only a few dolines in the Rudabánya Mountains (18); thus, these are not
doline-dotted plateaus. A rather low doline density (<8.8 km−2) characterizes Borčianska
(8), Jasovská (10), Zádielska (9), Szalonna (19), and Aggtelek (17) karst plateaus. A moderate
doline density (10.8–30 km−2) is typical of most plateaus, while the locally highest values
(>28 km−2), though still only “medium” according to the general classification [32], are
found on Plešivská (3), Silická (5), E-Alsó-hegy (14), Jósvafő (20), and Bučina (4) plateaus.
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Figure 7. Dolines of Silická plateau (5) delineated by the LiDAR-based methodology. Doline colors
are according to depth. The numbers 4–6 refer to plateaus as in Figure 1 and Table 1. The map
containing the whole Aggtelek Karst and Slovak Karst can be downloaded as a Supplementary File
(Figure S1).
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As already mentioned, the general slope angle significantly determines where sink-
holes can form. Examining this question on the basis of the DTM, we calculated the general
slope of the terrain in the doline centers. It is important to look at the general slope be-
cause the actual slope in the doline center is theoretically 0◦ (since it is a local minimum).
Therefore, to calculate the general slope, instead of LiDAR, the 1′′ resolution SRTM dataset
was used [102]. But even the SRTM was further smoothed by a mean filter with a radius of
three and five cells, and the slope angle was calculated based on these filtered DTMs, too,
in order to obtain the general slope of the terrain. Thereafter, the distribution of the general
slope angle of doline centers was examined. There are only minor differences among the
distributions based on the unsmoothed, three-cell smoothed, and five-cell smoothed 1′ ′

resolution SRTM data. Our goal is to determine the slope angle threshold that limits the
formation of sinkholes; thus, the upper percentiles of the slope angle distributions are
presented in Table 2. It highlights that there are only very few dolines formed on terrains
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steeper than 12◦, and one can say that 90% of sinkholes are formed on terrains with a
general slope of less than 7–8◦ (the exact value depends on filtering).

Table 1. Some doline morphometric indicators of the plateaus of the study area: the number of
dolines, doline density, doline area ratio, and the doline–area mean and median, n.d. means no data.

Id Plateau Name Number of
Dolines

Doline
Density (km−2)

Doline Area
Ratio (%)

Doline–Area
Mean (m2)

Doline–Area
Median (m2)

1 Jelšavská 38 12.6 8.5% 6723 3863

2 Koniarska 213 17.3 11.0% 6342 4657

3 Plešivská 946 28.4 14.4% 5079 3597

4 Bučina 191 35.6 15.9% 4474 3608

5 Silická 1436 29.9 16.3% 5460 3930

6 Horný 170 12.8 6.0% 4676 3540

7 Žl’ab 0 0.0 0.0% n.d. n.d.

8 Bôrčianska 8 2.4 0.6% 2408 636

9 Zádielska 30 3.8 2.9% 7733 4888

10 Jasovská 152 3.2 1.6% 4931 2732

11 Kečovská-
Haragistya 380 15.8 9.6% 6065 3419

12 Nagyoldal 148 23.3 10.8% 4615 3544

13 W-Alsó-hegy 154 15.5 6.8% 4378 2849

14 E-Alsó-hegy 645 30.0 13.6% 4550 3177

15 Szinpetri 144 10.9 7.5% 6929 5274

16 Páska-bükk 21 10.8 16.5% 15,229 8469

17 Aggtelek 182 8.8 9.9% 11,237 5934

18 Rudabánya 2 1.0 0.1% 1254 1254

19 Szalonna 29 5.3 4.3% 8094 4932

20 Jósvafő 66 33.0 16.0% 4829 3333

Table 2. The percentile values of the general slope angles measured in doline centers. Slope val-
ues refer to the general slope of the terrain calculated from the unsmoothed and mean-filtered
SRTM 1” DTM.

General Slope Angle Values for Different Percentiles

General Slope
Calculated From 1% 5% 10% 25% 50% 75% 90% 95% 99%

Unsmoothed
SRTM 1′′ 1.0 1.6 2.1 3.1 4.5 6.4 8.2 9.7 12.8

3-cell mean-filtered SRTM 1′′ 0.7 1.2 1.6 2.5 3.9 5.6 7.4 8.7 11.8

5-cell mean-filtered SRTM 1′′ 0.5 1.0 1.3 2.3 3.7 5.3 7.0 8.4 11.9

In addition to the slope angle, geological settings also influence the location of sink-
holes: the formation of high-doline-density zones can be clearly observed along some fault
lines. Based on the Slovak and Hungarian geological maps, three-quarters of dolines were
formed on Wetterstein Limestone, whereas the second most important bedrock is Steinalm
Limestone (Table 3). Further on, dolines also occur at a few percent on the following
lithologies: Wetterstein Dolomite, Reifling Limestone, Gutenstein Limestone, Gutenstein
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Dolomite, Gutenstein Formation undistinguished, deluvial sediments, Waxeneck Lime-
stone, and Szin Beds. As Table 3 demonstrates, Wetterstein Limestone is more favorable
for doline evolution than other rocks, because it has a higher share of dolines than of area.
Steinalm Limestone and Reifling Limestone have the same share of dolines as of area. All
other lithologies have lower shares of doline than of area.

Table 3. Distribution of dolines according to lithology. Lithologies with less than 0.9% of all dolines
are not shown.

Lithology Count Percent of All
Dolines (PAD)

Percent of Plateau
Dolines (PPD)

Percent of Plateau
Area (PPA) PPD/PPA

Wetterstein
Limestone 3834 72.9% 74.1% 60.5% 1.22

Steinalm
Limestone 532 10.1% 10.6% 10.7% 0.99

Wetterstein
Dolomite 154 2.9% 2.9% 4.4% 0.67

Gutenstein
Limestone 121 2.3% 2.3% 2.7% 0.87

Reifling Limestone 119 2.3% 1.8% 1.8% 0.99

Gutenstein
Dolomite 116 2.2% 2.3% 2.5% 0.90

Deluvial sediments 71 1.3% 0.9% 3.0% 0.32

Waxeneck
Limestone 62 1.2% 1.0% 1.8% 0.55

Szin Beds 61 1.2% 0.8% 2.1% 0.40

Gutenstein
undistinguished 49 0.9% 0.8% 1.4% 0.54

An indicator similar to the doline density is the doline area ratio, which expresses the
proportion of the surface that is covered by dolines. The difference with respect to the doline
density is that larger dolines may create greater coverage, even at a lower doline density.
According to Figure 10, a high area ratio due to large dolines is the most characteristic of the
southern and western parts of the karst region, as the most obvious outliers are the Aggtelek
(17) and Páska-bükk (16) plateaus, but the Szinpetri (15), Jelšavská (1), and Koniarska (2)
plateaus also advance in the doline area ratio ranking with respect to the doline density
rank. A possible explanation for this fact is that the development of the dolines along the
boundaries of the karst areas was more intensive due to streams flowing from non-karst
areas to the karst terrain; thus, the dolines could grow larger in these parts. In the case
of Páska-bükk (16), there is a special reason: one of the largest dolines in the entire karst
region is found here (A = 125,784 m2), which results in an outstanding “doline area ratio”.
The difference between the interpretation of the doline density and the doline area ratio is
also reflected in Figure 11. In the case of similar-sized dolines, the relationship between the
doline density and the doline area ratio would be a simple line with R2 close to 1. However,
as Figure 11 demonstrates, the strength of the relationship is strong but not very strong.
Points above the regression line mean plateaus where the doline density is higher than
expected from the doline area ratio due to the high proportion of relatively small dolines.
On the other hand, points below the line mark plateaus, where relatively large dolines
significantly increase the doline area ratio, even if the doline density is not so high. The
most extreme example is the Páska-bükk (16) plateau due to the aforementioned reason.
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3.3. Doline Area Empirical Distributions

The mean doline area for the whole study area is 5514 m2, which corresponds to
an equivalent diameter of 84 m. However, since the size distribution of the sinkholes
is highly skewed, the median value better expresses the size of the “typical doline”. In
the study area, this is 3638 m2, which corresponds to a diameter of 68 m. As described
in the doline area ratio section, the Koniarska (2), Jelšavská (1), Szinpetri (15), Zádielska
(9), Szalonna (19), and especially the Aggtelek (17), and Páska-bükk (16) plateaus can be
characterized by larger dolines. In contrast, the type areas of smaller sinkholes (in addition
to the Bôrčianska(8) and Rudabánya(18) units, which have hardly any sinkholes) are the
Alsó-hegy (13, 14) and Bučina (4) plateaus. The doline areas according to the bedrock are
presented in Figure 12 for the important (i.e., with a proportion of at least 0.9%) litholog-
ical categories. It shows that within the most common Wetterstein Limestone category
(n = 3834), smaller sinkholes dominate. The dolines formed on Wetterstein Dolomites
(n = 154) are similar in median value but somewhat larger in mean value. The size of the
dolines formed on Reifling Limestone (n = 119) and Steinalm Limestone (n = 532) occupies
an intermediate position, and finally, the largest areas are typical of the dolines formed on
Gutenstein Formations (n = 286 altogether).
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Regarding the study area, the results support that the statistical distribution of doline
areas can be well modeled by the lognormal distribution. Table 4 indicates that, for most
plateaus, the statistical tests (chi-square and Kolmogorov–Smirnov) confirmed that the
logarithm of the data shows a normal distribution; therefore, the distribution of the original
data is lognormal. For the sake of brevity, only the six plateaus with the most sinkholes are
shown in the diagrams (Figure 13). As for Plešivská (3), Silická (5), and E-Alsó-hegy (14), if
the smallest features detected as dolines are omitted using 200 m2 (equivalent diameter
ca. 8 m) as a lower limit for the doline area, then the statistical tests support the lognormal
distribution even in these cases. This means that only a few small features (n = 17, 20, and
12 for Plešivská (3), Silická (5), and E-Alsó-hegy (14), respectively) obscure the lognormal
nature of the distributions for these plateaus.
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lines indicate the fitted normal distribution (after the log transformation).

The possibility of a power-law distribution was also examined. Graphs showing
the cumulative frequency distribution for the six plateaus with the most sinkholes were
also created (Figure 14). If a logarithmic scale is used on both axes and the power-law
distribution is true, then the points must fit on a straight line [17,39]. The results indicate
that only a limited part of the graphs fulfills linearity; i.e., the power function fits only a
limited part of the original data. The lower limit of linearity cannot be clearly determined
based on these graphs, because the slopes of the functions change gradually, but as an
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approximation, one can say that the graph is linear for doline areas above 5000 m2. This
value is much higher than the threshold used during the doline delimitation procedure;
thus, it is not an artifact. Therefore, it is stated that the power-law distribution is not
suitable to model doline area distributions in this karst terrain.

Table 4. The test results of doline area distribution fitting for the study area plateaus. Chi-square
and Kolmogorov–Smirnov (K-S) tests were used for the log-transformed data. The null hypothesis is
that the log-transformed data fit a normal distribution. If p > 0.05, then the null hypothesis cannot be
rejected, n.d. means no data.

Id Plateau Name Chi-Square
Statistic

Chi-Square
p-Value

Kolmogorov–
Smirnov D

Kolmogorov–
Smirnov p-Value

1 Jelšavská 12.5263 0.4850 0.1003 0.8394

2 Koniarska 26.0563 0.6723 0.0424 0.8376

3 Plešivská 115.8750 4.60 × 10−6 0.0507 0.0153

4 Bučina 24.3770 0.6615 0.0417 0.8936

5 Silická 137.2580 6.40 × 10−7 0.0449 0.0061

6 Horný 29.7647 0.3248 0.0978 0.0773

7 Žl’ab n.d. n.d. n.d. n.d.

8 Bôrčianska n.d. n.d. n.d. n.d.

9 Zádielska 13.0000 0.3690 0.1119 0.8468

10 Jasovská 26.5789 0.4317 0.0616 0.6121

11 Kečovská-
Haragistya 28.2737 0.8749 0.0361 0.7057

12 Nagyoldal 20.3784 0.7267 0.0727 0.4210

13 W-Alsó-hegy 26.7792 0.4210 0.0545 0.7497

14 E-Alsó-hegy 69.0791 0.0247 0.0419 0.2085

15 Szinpetri 31.0000 0.1890 0.0776 0.3543

16 Páska-bükk 3.1429 0.9779 0.1060 0.9723

17 Aggtelek 39.0879 0.0795 0.0541 0.6617

18 Rudabánya n.d. n.d. n.d. n.d.

19 Szalonna 5.5690 0.2337 0.0859 0.9830

20 Jósvafő 14.6061 0.6238 0.0748 0.8535

3.4. Parameters Characterizing the Vertical Shape

Among the parameters characterizing the vertical shape of dolines, the depth and the
depth-to-diameter ratio were calculated (Table 5). There are significant differences in both
parameters according to the plateau and according to the bedrock, too. In both absolute
and relative terms, shallow dolines can be found in the Rudabánya (18), Bôrčianska (8),
Jósvafő (20), Zádielska (9), and Jasovská (10) units. It means that the average depth of
dolines on these plateaus is less than 4 m. The other extreme is represented by Bučina
(4) and E-Alsó-hegy (14), where the average depth of dolines approaches 10 m, and the
depth-to-diameter ratio is also outstanding in these places (0.13–0.14). In the case of Páska-
bükk (16), the average depth is greatly increased by the giant doline of the plateau, but
since its areal extent is also large, the depth-to-diameter ratio is not outstanding here. In
geological terms, Figure 15 illustrates that the Wetterstein Limestone, which represents
the vast majority of dolines, has the largest depth-to-diameter ratio; i.e., the “typical”,
relatively steep-sided dolines are characteristic of this bedrock. Compared to the above
bedrock, the dolines formed on Steinalm Limestone or Reifling Limestone are somewhat
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shallower, and the dolines formed on Gutenstein Formations, Waxeneck Limestone, and
Wetterstein Dolomite are even shallower. Finally, the shallowest features can be associated
with the Szin Beds and the deluvial sediments. These differences can be explained by
geomorphological processes.
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Figure 14. Cumulative frequency distributions of the doline area on a logarithmic scale for the
six plateaus with the most sinkholes.

The volume of dolines essentially expresses how much the given doline “contributed”
to the karst denudation. If, for a plateau, the total volume of dolines is divided by the area
of the plateau, then we obtain a mean denudation thickness that is directly due to doline
growth. The mean volume, the 3D-shape parameter, and the mean denudation thickness
values of the plateaus are presented in Table 5.
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Table 5. Vertical doline parameters: depth, depth-to-diameter ratio, volume, 3D-shape parameter (k),
and mean denudation. (Since LiDAR data were not available for Rudabánya (18) and Szalonna (19)
mountains, these parameters were not calculated for these units.) n.d. means no data.

Id Plateau Name Doline Depth,
Mean (m)

Depth-to-
Diameter Ratio

Volume, Mean
(m3)

3D-Shape
Parameter (k),

Mean

Mean
Denudation

Thickness (m)

1 Jelšavská 7.6 0.0866 49,560 2.21 0.6265

2 Koniarska 8.3 0.0943 30,421 2.23 0.5265

3 Plešivská 8.8 0.1078 24,277 2.56 0.6897

4 Bučina 9.9 0.1285 23,161 2.34 0.8235

5 Silická 8.7 0.1063 25,009 2.41 0.7478

6 Horný 6.1 0.0777 14,870 2.40 0.1896

7 Žl’ab n.d. n.d. n.d. n.d. n.d.

8 Bôrčianska 4.0 0.0457 2864 2.54 0.0067

9 Zádielska 4.9 0.0503 20,344 2.59 0.0764

10 Jasovská 4.9 0.0622 14,158 2.76 0.0456

11 Kečovská-
Haragistya 6.9 0.0877 27,436 2.12 0.4330

12 Nagyoldal 7.1 0.0956 21,483 2.08 0.5010

13 W-Alsó-hegy 5.9 0.0846 17,456 2.00 0.2707

14 E-Alsó-hegy 10.0 0.1384 26,113 2.25 0.7828

15 Szinpetri 7.4 0.0840 36,645 1.97 0.3987

16 Páska-bükk 12.4 0.1052 139,720 2.05 1.5124

17 Aggtelek 8.4 0.0835 66,745 2.04 0.5856

18 Rudabánya 1.0 0.0257 n.d. n.d. n.d.

19 Szalonna 8.5 0.0885 n.d. n.d. n.d.

20 Jósvafő 4.2 0.0571 14,796 1.90 0.4890

The volumes of the dolines, as well as the mean denudation thickness, show ex-
treme values for Páska-bükk (16), which is again attributed to the giant doline on this
plateau. Apart from this, the plateaus in the western and southern parts of the karst can
be characterized by large-volume dolines. These are the plateaus where doline areas are
also outstanding (Aggtelek (17), Jelšavská (1), Szinpetri (15), and Koniarska (2) plateaus).
However, from the viewpoint of mean denudation thickness, the doline density is more
influential than the doline size (either area or volume). In statistical terms, if the extreme
value of Páskabükk (16) is omitted, then R2 between the mean denudation thickness and
doline density is 0.66, while R2 between the mean denudation thickness and mean doline
area is only 0.03, and R2 between the mean denudation thickness and mean doline volume
is 0.23. As a result, Bučina (4), E-Alsó-hegy (14), Silická (5), and Plešivská (3) plateaus have
high denudation thickness values. In contrast, the northeastern plateaus (Bôrčianska (8),
Zádielska (9), Jasovská (10)) show quite low values. It is difficult to interpret the magnitude
of the volume in itself, but the value of the mean denudation thickness expressed in meters
is already more tangible. It is observed that this value varies between 0.4 and 0.8 m. These
low values are interpreted in Section 4.

As for the 3D shapes of the dolines, there are significant differences among the plateaus
(Figure 16). Overall, the diagram demonstrates that the 3D shape of most dolines falls
between the bowl (calotte) and the cone. According to the diagram, dolines close to
cylindrical shape are very rare, which is in agreement with the settings of this karst area,
where collapse sinkholes are almost absent. In general, the spatial distribution of the
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3D-shape parameter suggests that bowl-shaped dolines are more typical in the southern
parts of the karst region, while in the northern parts, there is a shift toward the cone
shape. However, with the exception of the Jasovská (10) and Zádielska (9) plateaus, even
in the northern parts, the bowl shape dominates. Close-to-funnel-type dolines occur
only as individual outliers on the northern plateaus. Since the highest plateaus have a
higher proportion of cone- or funnel-type dolines, the 3D-shape parameter is slightly but
significantly correlated with the elevation above sea level (R = 0.12).
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4. Discussion

First, we discuss the accuracy of the doline extraction method. The question is what
we consider a “true value” or “reference data”. Reliable field data about doline locations
with large sample sizes are not available to us, but our several decades of field experience
suggests that 1:10,000-scale topographic maps are of relatively high quality for this area in
terms of doline locations. Naturally, dolines smaller than 30 m cannot be proportionately
represented at this scale, but such small dolines are negligible in the area according to
our field experience. If the topographic maps are considered reference data, it is argued
that the LiDAR-based delineation is better than the reference itself. Almost all dolines in
the topographic maps are recognized based on the LiDAR dataset, and even 25% more
dolines are delineated starting from LiDAR. This can be compared to the results of [20].
They made a thorough comparison of different methods for a smaller subunit (the south-
western part of the Silická planina) of Slovak Karst. In brief, they obtained the following
results in terms of doline numbers: using the outermost closed contour method based on
1:10,000-scale topographic maps, they obtained 432 dolines. The simple DEM-based sink-fill
algorithm resulted in 657 dolines, whereas their water flow simulation algorithm resulted in
592 dolines. Finally, the DEM-based manual delineation by experts resulted in 622 dolines
(and they accepted this last one as the “true value”). We tried to outline the same study
area as in [20], though some minor differences exist in the north. The results show that
for the same area, our database contained 476 dolines from the topographic map and
612 dolines based on LiDAR. This means that the doline extraction accuracy in the present
paper is similar to that in [20]. From a theoretical perspective, it is possible to estimate the
accuracy related to the original LiDAR dataset. According to the provider of the Slovak
LiDAR dataset, both the positional and vertical accuracies of cloud points are 0.08–0.09 m.
As for the derived DTM accuracy, there is no such value published, but given the accuracy
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of cloud points, it can be assumed that one pixel has a positional accuracy of 1 m (or better).
In that case, the horizontal accuracy of the extracted feature vertices is also ca. 1 m. The
minimum size of a depression in the DTM is 3 × 3 pixels, but small random errors can also
influence it. However, we believe that 5 × 5-pixel (or larger) depressions (with a Z-limit
of 1 m) can be reliably identified by the algorithm. In the case of the Hungarian LiDAR
dataset, we do not have information about the positional accuracy of cloud points, but
starting from a pixel size of 2.5 m, we can say that depressions larger than 12.5 m × 12.5 m
can be reliably identified.

In the study area, the distributions of the doline area have a tendency toward log-
normal distributions for most of the plateaus. To discuss this fact, it is worth recalling
the general interpretation of the lognormal distribution. The lognormal distribution can
be observed in the case of several natural phenomena (see [103]). Quite often, there is a
“multiplicative process” behind the lognormal distribution. This means that the size of
the individuals of a studied population changes by a random multiplier per time unit, so
the growth rate itself is independent of the size, but the actual growth is proportional to
the size of the individual in the previous step. This process and the resulting lognormal
distribution applied to economic companies were already described in the 1930s [104,105].
However, Mitzenmacher [106] also proved that if we slightly change the conditions of a
multiplicative model, for example, by setting a threshold or summing up the effects of
several such processes, then the result will no longer be lognormal, but a power-law distri-
bution. Barabási [107] calls the lognormal distribution a “crossover distribution” and points
out that there is a debate in many scientific fields about whether the power-law distribution
or the lognormal distribution fits the observations better. Thus, in future research on karst
areas, the examination of the empirical distribution of the doline area is definitely justified
in order to answer this question. In any case, based on our data, it is assumed that the
growth of dolines can be described by a multiplicative model. The essence of this model is
that, during the evolution of dolines, random effects are multiplied (and not added up). It
seems to be a feasible approach if it is assumed that the growth of the doline is proportional
to the precipitation falling into its area, the infiltrating percentage of precipitation, and the
dissolution capacity of the infiltrating water. In other words, the growth is proportional to
the size, but the growth rate itself is influenced by size-independent and random effects
(precipitation, infiltration percentage, dissolution capacity). Further details of a doline
growth model are beyond the scope of this paper.

Another parameter that deserves discussion is the mean denudation thickness value
calculated from doline volumes. This can be used to calculate the mean denudation rate
(i.e., the denudation per time unit) only if the formation time of the dolines is known [108].
To determine the latter, exposure age calculations applied to karst surfaces can be a so-
lution [109–114]. The spatial pattern of denudation is still poorly understood, but it is
supported that doline centers have higher denudation rates [109,115]. So far, there are
only a few measurement data on how the denudation of doline centers and the interdoline
ridges relate to each other. If the interdoline ridges have not yet been narrowed, then it
may be assumed that they preserve the pre-denudation surface. This is not necessarily true,
but let us assume this situation as a hypothesis. Then, the denudation of the interdoline
terrains is close to zero. In this hypothetical case, the absolute value of surface denudation
due to karst processes is well approximated by the total volume of dolines. As mentioned
above, the duration of doline evolution is not known exactly for the study area, but the
literature agrees that karst processes became dominant in this area during the Quater-
nary [65,75–77,79]. Thus, with a very rough estimation, if the duration of doline evolution
is estimated to be 2 million years, then the rate of surface denudation directly due to karst
processes is on the order of 0.2–0.4 m/Ma, which is an extremely slow rate. This explains
why karst plateaus are so often higher than their non-karstic surroundings. Nevertheless,
in the case of Aggtelek Karst and Slovak Karst, differential tectonic uplift also contributed
(probably with a much higher rate) to the local prominence of karst plateaus [85]. In addi-
tion, it is noted that the denudation values calculated from the dissolved carbonate content



Remote Sens. 2024, 16, 737 22 of 27

of the waters flowing out of the karst springs represent the “full 3D denudation” of the
karst, including the corrosion of karst caves within the rock mass; therefore, these “full 3D
denudation” values are significantly greater than the denudation calculated merely from
the lowering of the surface [116,117]. Anyway, the complex discussion of karst denudation
is another topic, but doline morphometrical results can contribute to this topic.

5. Conclusions

In our quantitative analysis, doline morphometric data derived from topographic
maps (TOPO) and from the LiDAR-derived DTM were compared for the Aggtelek Karst
and Slovak Karst. It is found that these two datasets fit each other relatively well, but based
on the LiDAR-derived DTM, the doline density proved to be 25% higher. As for doline
size, the LiDAR-based dataset contains more tiny dolines than the TOPO (i.e., dolines
missing from the topographic map), but the average size of the LiDAR-derived dolines is
larger than that of the TOPO dolines, which can be explained by the different delineation
procedures (DTM-derived versus OCC). The circularity of the shapes of TOPO sinkholes is
closer to a circle than that of LiDAR-derived sinkholes. This is attributed to the smoothing
effect during map creation and digitization. These results provide a clue to re-evaluate
doline morphometric data obtained on the basis of topographic maps in earlier decades
of doline morphometrical research. However, these results can be applied to other areas
only with caution, since the scale and quality of the topographic maps, the resolution and
quality of the LiDAR data, and the typical sizes of sinkholes influence these findings.

Comparing the Aggtelek Karst and Slovak Karst to other temperate-climate doline
karsts, it is stated that the plateaus of this area are in the middle range, considering
their doline parameters. These plateaus are characterized by low (5–10 km−2), moderate
(10–30 km−2), and medium (30–35 km−2) doline densities. Bučina (4), E-Alsó-hegy (14),
and Jósvafő (20) plateaus have the most outstanding values. Sinkholes cover 2–17% of the
area of the plateaus. From this point of view, the record holder of the study area is the
Silická plateau, which has relatively large and densely packed sinkholes. The location of
dolines is strongly determined by the general slope angle, in addition to the geological
characteristics. Sinkholes above a general slope of 12◦ are only rarely found, and 90% of the
sinkholes are formed on terrains with a general slope of less than 8◦. Among the geological
conditions, the distribution of the Wetterstein Limestone is the most decisive for the study
area, as 72.9% of the dolines are located on this bedrock. It is also observed that dolines
formed on this bedrock are typically smaller in size than in the case of other lithologies.

The statistical distribution of the doline area can be relatively well modeled by a
lognormal distribution for most plateaus, while the power law does not fit well to the
cumulative distribution.

Doline depth is influenced by both the position and the dominant bedrock of the
plateau. The sinkholes are shallower on the southern and lower plateaus, while the
sinkholes with the largest depth-to-diameter ratios are found in the central and northern
parts, primarily on Wetterstein Limestone. Based on this parameter, the plateaus of Bučina
(4) and E-Alsó-hegy (14) can be highlighted as the lands with the deepest sinkholes.

Doline volume was used to calculate the mean denudation thickness value, which is
in the range of 0.4–0.8 m for most of the examined plateaus. It is important to note that this
is an absolute value, not a rate indicating change over time.

The volume of sinkholes calculated on the basis of the DTM also provides an opportu-
nity to introduce a new type of parameter characterizing the 3D shape. This is the 3D-shape
parameter (k), which nominally shows how much the expression A·h (area·depth) must be
divided by to obtain the volume of the sinkhole. As for its interpretation, the parameter k
shows whether the 3D shape of the doline is closer to a cylinder, a bowl (calotte), a cone,
or a funnel. In the case of Aggtelek Karst and Slovak Karst, the 3D shape of most dolines
falls between a bowl (calotte) and a cone. Bowl-shaped sinkholes are more typical in the
southern parts, whereas in the northern parts, there is a shift toward the cone shape.
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99. Čeru, T.; Šegina, E.; Gosar, A. Geomorphological Dating of Pleistocene Conglomerates in Central Slovenia Based on Spatial

Analyses of Dolines Using LiDAR and Ground Penetrating Radar. Remote Sens. 2017, 9, 1213. [CrossRef]
100. Davis, J.C. Statistics and Data Analysis in Geology, 3rd ed.; JohnWiley & Sons: New York, NY, USA, 2002; ISBN 978-0-471-17275-8.
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