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Abstract: This paper presents an innovative approach to enhance the assimilation of high-resolution
simulated observations, specifically targeting Surface Water Ocean Topography (SWOT) Ka-band
Radar Interferometer Sea Surface Height (SSH) products, within the Regional Ocean Modeling System
(ROMS). Responding to the demand for improved assimilation techniques, we developed a multi-
scale Four-Dimensional Variational Data Assimilation (4DVAR) system, building upon validated
fine-scale correction capabilities from prior studies. The multi-scale strategy was extended to the
ROMS-4DVAR system, providing a comprehensive solution for assimilating high-resolution observa-
tions. Leveraging the Observing System Simulation Experiment (OSSE) framework, we conducted a
twin experiment comprising a nature run and a free run case. Subsequently, synthetic SWOT SSH
measurements were decomposed, considering the model configuration resolution. These components,
derived from dense SSH observations, were integrated into a two-step 4DVAR assimilation scheme.
The first cycle targets large-scale features for model field correction, and the updated analysis serves
as the background for the second assimilation step, addressing fine-scale observation components.
Comparisons with the primitive ROMS-4DVAR using a single-scale scheme highlight the superiority
of the multi-scale strategy in reducing gaps between the model and the SSH observations. The Root
Mean Squared Error (RMSE) is halved, and the Mean Absolute Percentage Error (MAPE) decreases
from 2.237% to 0.93%. The two-step assimilation procedure ensures comprehensive multi-scale
updates in the SSH field simulation, enhancing fine-scale features in the analysis fields. The quantifi-
cation of three-dimensional-model dynamic fields further validates the efficiency and superiority
of the multi-scale 4DVAR approach, offering a robust methodology for assimilating high-resolution
observations within the ROMS.

Keywords: SWOT SSH observations; ROMS-4DVAR; multi-scale assimilation

1. Introduction

Numerous studies have documented the critical role of sub-mesoscale progress
(~10 km) in the ocean’s energy cascade [1–4]. However, existing observing approaches
struggle to accurately represent the occurrence and evolution of the target continuously
and accurately due to their sparse and discrete measurements. This situation would be
alleviated by the launch of the Surface Water Ocean Topography (SWOT) mission [5]. The
equipped Ka-band Radar Interferometer (KaRIn) measures the global Sea Surface Height
(SSH) at a 21-day cycle, providing the along- and across-track SSH observations at very
high resolutions (~2 km), and the Low Rate (LR) products that focus on the ocean were
released in December 2023. The new-type SSH observations have been considered an
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effective way to resolve signals with wavelengths down to 15 km [6,7], and they would
enhance the research on sub-mesoscale processes. Recent studies have been performed to
quantify the potential contribution of the SWOT observations in ocean state estimation and
forecasting [8–11].

Multi-scale features, encompassing large-scale currents, mesoscale eddies, and sub-
mesoscale processes, coexist in the SWOT wide-swath maps. However, the amalgamation
of these diverse features may surpass the cognitive capacity of the model. Utilizing as-
similation with a singular decorrelation scale, as highlighted by D’addezio et al. [12], is
likely to result in information loss across other scales and may impede the model’s ability
to capture crucial interactions and feedback between different scales, consequently affect-
ing the overall model performance. To address the issue of observation aliasing in data
assimilation, multi-scale methodologies have been proposed and developed in previous
studies [13–20]. The primary concept of this methodology involves decomposing informa-
tion from high-resolution observations into large-scale and small-scale components. These
components are then integrated separately with the model results at the corresponding
scales or assimilated into the model through a sequential recursive process. In light of the
distinct features exhibited by contemporary high-resolution observational data and the
demands of assimilation, multi-scale assimilation methods are continuously refined and
widely applied across diverse models. For instance, when confronted with locally dense
Glider observations, Carrier et al. [17] implemented a two-step assimilation strategy within
the Four-Dimensional Variational Data Assimilation (4DVAR) framework, a methodology
later refined and extended to assimilate SWOT observations in the Three-Dimensional Data
Assimilation (3DVAR) system [18]. Another illustrative example involves Li et al. [21],
who decomposed SWOT observational data into three scale components and integrated
them individually with the model results at the corresponding scales using an extended
3DVAR method.

To enhance the application of SWOT observations and advance the application of
multi-scale assimilation strategy, we have implemented an extension of multi-scale assimi-
lation methods within the ROMS-4DVAR framework, and the noteworthy positive impact
of the multi-scale assimilation method is verified through an Observing System Simulation
(OSSE). The paper is structured as follows: Section 2 provides a comprehensive overview
of the methods employed in this study, covering the model setup, SWOT synthetic data
simulation, and the implementation of the multi-4DVAR method. Section 3 presents the
research findings, emphasizing assimilation method performance validation and compar-
isons with nature run experiments within the Observing System Simulation Experiment
(OSSE) framework. Finally, Section 4 concludes the study and outlines future perspectives.

2. Methods

In this section, the construction details of an OSSE framework are illustrated. The
primary objective was to enhance the assimilation of SWOT SSH observations. To this end,
a comprehensive twin experiment, encompassing a nature run, a free run, and multiple
assimilation cases, was executed as delineated below. Firstly, a nature run case constructed
using a higher horizontal and vertical resolution was instantiated, and its outcomes were
posited as a representation of the “true” state of the ocean. In the second step, synthetic
SWOT observations were meticulously simulated by sampling the surface elevation field
of the nature run at the predetermined orbit locations. Subsequently, these synthetic
observations were assimilated into the free run, utilizing the primary single-scale and the
proposed multi-scale ROMS-4DVAR system. Finally, the third step involved a rigorous
evaluation of the impact of SWOT observations on the simulation of the ocean state.

2.1. Model Configuration

The Regional Ocean Modeling System (ROMS) was employed to generate three-
dimensional oceanic fields and quantify the assimilation of SWOT observations within
the OSSE system. The primitive equations governing ROMS were formulated under
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the hydrostatic and Boussinesq assumptions. This study is centered on the Northern
South China Sea (NSCS) domain, spanning from 105.5◦E to 125.7◦E and from 14.5◦N to
26.5◦N. Within the OSSE framework, a twin experiment featuring two cases was conducted,
with horizontal resolution and vertical S-coordinate configuration set at 1/36◦ × 1/36◦

(1/10◦ × 1/10◦) and 50 (30), respectively. The topography fields for the two cases were
derived from the General Bathymetric Chart of the Oceans (GEBCO) data and the ETOPO1
global relief model integrated topography. The modeling minimum and maximum depths
across the entire domain were set at 10 and 5000 m, respectively. Figure 1 illustrates the
smoothed bathymetry used in the nature run. Model inputs, encompassing the initial state,
surface air–sea forcing fields, and boundary conditions for both the nature run and free
run, are detailed in Table 1.
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Table 1. Configuration of model inputs for free run and nature run.

Surface Forcing Boundary Tide Bathymetry

Free Run ECMWF (0.25◦, 6 h) SODA (0.25◦, day) No ETOPO1
Nature Run ECMWF (0.125◦, 3 h) HYCOM (0.08◦, 3 h) OTIS GEBCO

The initialization of surface water elevation and three-dimensional temperature, salin-
ity, and velocity fields for both the nature run and free run was accomplished utilizing the
HYbrid Coordinate Ocean Model and Navy Coupled Ocean Data Assimilation (HYCOM
and NCODA) global reanalysis dataset. For the nature run, the atmospheric forcing fields
were derived from the European Centre for Medium Range Weather Forecasts (ECMWF)’s
ERA-interim reanalysis [22] with a 3 h temporal resolution and a spatial resolution of
0.125◦ × 0.125◦ while the free run utilized data with a 6 h temporal resolution and a spa-
tial resolution of 0.25◦ × 0.25◦. The analysis and forecast products of ERA-interim were
integrated for this purpose. Boundary conditions were established using the 5-day and
monthly Simple Ocean Data Assimilation (SODA) reanalysis dataset, providing temper-
ature, salinity, sea surface height, and velocity fields. Additionally, tide forcing along
the open boundaries for the nature run was incorporated from the global Oregon Tidal
Inverse Solution (OTIS). The vertical mixing process was parameterized using the level
2.5 Mellor–Yamada method [23].
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2.2. Simulated SWOT Observations

The SWOT observations were synthetically simulated using the results from the
nature run. Previous investigations emphasizing SWOT Calibration/Validation (Cal/Val)
underscored the critical importance of reproducing realistic internal tide energy in the
nature run [8,12]. To ensure the reliability of the simulated SWOT observations, an initial
exploration that focused on the SSH accuracy in the nature run case was conducted.
Considering the introduction of tide forcing in the modeling process, the barotropic tidal
signals involved in the surface evaluation field were removed, employing the harmonic
analysis method based on the Least Squares Fit technology.

Qualitatively, the monthly mean nature SSH filed for June 2012 exhibits favorable
comparability with assimilative HYCOM reanalysis data. As depicted in Figure 2a,b,
the spatial patterns, including height magnitude and location, demonstrate noteworthy
similarity, particularly along the Kuroshio western boundary current. The assimilation of
multi-platform data such as satellite altimeter observations, in-situ temperature and salinity
profiles from XBTs, Argo floats, and moored buoys by HYCOM contributes to a more
realistic reconstruction of mesoscale characteristics. Additionally, we also explored the
daily variation in sea surface elevation from 1 January to 31 June 2012. The spatial averaged
value of the daily SSH derived by HYCOM and nature run is presented in Figure 2c. The
consistent tendency in the seasonal cycle captured by the two SSH data series is observed,
and the difference with the HYCOM reanalysis product had been effectively controlled
since the middle of February.

Remote Sens. 2024, 16, x FOR PEER REVIEW 4 of 14 
 

 

Inverse Solution (OTIS). The vertical mixing process was parameterized using the level 
2.5 Mellor–Yamada method [23]. 

2.2. Simulated SWOT Observations 
The SWOT observations were synthetically simulated using the results from the na-

ture run. Previous investigations emphasizing SWOT Calibration/Validation (Cal/Val) un-
derscored the critical importance of reproducing realistic internal tide energy in the nature 
run [8,12]. To ensure the reliability of the simulated SWOT observations, an initial explo-
ration that focused on the SSH accuracy in the nature run case was conducted. Consider-
ing the introduction of tide forcing in the modeling process, the barotropic tidal signals 
involved in the surface evaluation field were removed, employing the harmonic analysis 
method based on the Least Squares Fit technology. 

Qualitatively, the monthly mean nature SSH filed for June 2012 exhibits favorable 
comparability with assimilative HYCOM reanalysis data. As depicted in Figure 2a,b, the 
spatial patterns, including height magnitude and location, demonstrate noteworthy simi-
larity, particularly along the Kuroshio western boundary current. The assimilation of 
multi-platform data such as satellite altimeter observations, in-situ temperature and salin-
ity profiles from XBTs, Argo floats, and moored buoys by HYCOM contributes to a more 
realistic reconstruction of mesoscale characteristics. Additionally, we also explored the 
daily variation in sea surface elevation from 1 January to 31 June 2012. The spatial aver-
aged value of the daily SSH derived by HYCOM and nature run is presented in Figure 2c. 
The consistent tendency in the seasonal cycle captured by the two SSH data series is ob-
served, and the difference with the HYCOM reanalysis product had been effectively con-
trolled since the middle of February. 

  

 
Figure 2. Comparison of sea surface elevation between nature run outputs and HYCOM reanalysis 
product. Here, (a,b) are the monthly mean SSH fields of June 2012 and (c) presents the temporal 
variation in daily SSH (after spatial variation averaged over the whole domain). 

Figure 2. Comparison of sea surface elevation between nature run outputs and HYCOM reanalysis
product. Here, (a,b) are the monthly mean SSH fields of June 2012 and (c) presents the temporal
variation in daily SSH (after spatial variation averaged over the whole domain).

Furthermore, the internal tidal energy contained in the surface elevation field was
examined. For simplicity, a subdomain proximal to the Luzon Strait, demarcated by the
red box in Figure 1, was selected for analysis. The two-dimensional power spectral density
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(PSD) was computed for each grid spanning the period from 1 January to 31 August
2012. The spatially averaged energy spectrum is depicted in Figure 3. The observed
spectrum reveals prominent peaks near semidiurnal and diurnal frequencies. The power
spectral densities adjacent to these frequencies reach values as high as 10−1 m2/cpd,
underscoring the substantial reproduction of primary internal tidal energy within the
nature run. Consequently, the demonstrated feasibility of utilizing the SSH fields from the
nature run for simulating SWOT measurements is established.
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Figure 3. Spatial averaged energy spectrum analysis of the Luzon Strait subdomain. The Power
Spectral Densities (PSDs) are calculated and illustrated in the frequency of cycle per day (cpd). The
black solid line represents the analyzed PSDs, while the dashed red lines denote the 0.97 and 1.93 cpd.
Two large peaks near the semidiurnal and diurnal frequencies are accurately reproduced, and there
exists some spurious and weak energy at frequencies higher than 2 cpd, which is caused by the
simulation errors of the nature model.

To generate the SWOT observations, we employed the SWOT-simulator software of
version 1.2.4 [5] developed by the Jet Propulsion Laboratory (JPL). The simulated SWOT
measurements were sampled instantaneously, utilizing the 3-hourly surface elevation
outputs from the nature run. The wide-swath capability of SWOT was set at 120 km while
the along- and across-track resolutions were configured typically as 2 km, consistent with
previous studies [18]. Figure 4 presents the 5-day simulated SWOT observations, with
detailed magnifications of measurement particulars along the wide-swath track near the
Luzon Strait provided in the right panel.
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Figure 4. Simulated SWOT observations during the period from 5 to 10 January 2012. The enclosed
box denotes the location of the magnified tracks in the right panel.
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2.3. Data Assimilation Method

The multi-scale assimilation method used in this study was developed based on
the ROMS and 4DVAR system [24]. The target of primitive 4DVAR is to identify the
best estimate circulation by minimizing the difference between the model background
and the observations, subject to prior hypotheses about errors and possibly additional
constraints. Generally, the variational cost function for the incremental approach is given
by the equation below:

J(δx) =
1
2
δxTB−1δx +

1
2
(Hδx − d)TR−1(Hδx − d), (1)

Here, y is the observation sequence and xb represents the model background state.
H denotes the observation operator that maps the model state fields to the observation
position. δx represents the increment of the state variable, surface forcing, and open
boundary conditions and d = y − Hxb is the innovation vector representing the difference
between observations and model value. As stated by Moore et al. [24], the innovation
vector d = (· · ·di · · · ) represents the combination of all the observations located in the
specified window, and the matrix B and R vectors are block diagonals with blocks Bi and
Ri, respectively.

The analysis increment δxa derived by minimizing J(δx) in a least-squares sense is
added to the background xb to form the analysis solution xa, so we have

xa = xb + δxa, (2)

and the increment δxa could be expressed as

δxa = Kd = BHT
(

HBHT + R
)−1

d. (3)

Here, K denotes the gain matrix. According to Weaver and Courtier [25] and Moore
et al. [24], the background error of ROMS-4DVAR could be expanded as follows:
B = KbΣCΣTKT

b . Kb is the multivariate balance operator, utilizing hydrostatic and
geostrophic balance to constrain different model variables. In the case of rough topography,
the balance operator can be disabled. Moreover, the tangent linear model and adjoint
model enable the transfer of information between variables through model dynamics, and
thus, disabling the usage of Kb would not destroy the solutions. Σ denotes the standard
deviation matrix and is calculated using the free run model results for a period that is long
enough to compute meaningful circulation statistics like mean and standard deviations for
all prognostic state variables.

The ROMS-4DVAR system has been efficiently applied to assimilate multi-platform
oceanic observations. Particularly, dense datasets originating from instruments such as
gliders and the SWOT mission have significantly contributed to enhancing the correction
of the model state at higher resolutions. The process of “thinning” observations has been
employed as an immediate step to accommodate high-frequency sampling measurements.
This involves a reduction in the number of observations within a specified radius based
on the local decorrelation length scale, thereby constraining the spatial density of retained
observations. Consequently, the full utility of dense measurements becomes challenging.
To figure out the reasonable assimilation of observations beyond mesoscale, the reliable way
is to adopt the multi-step strategy, which involves performing the large-scale corrections to
the background field in the first cycle and updating the modified analysis using small-scale
innovation. Several analogous multi-scale assimilation frameworks have been implemented
in prior studies [8,15–21]. In this study, we developed a multi-step 4DVAR system based on
ROMS, which splits the high-resolution observations into different scales and corrects the
model state accordingly, thus avoiding the scale aliasing between the model background
and observation fields.
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In the development of the multi-step ROMS-4DVAR framework, we followed the
established two-step assimilation methodology as outlined in prior literature [13,15,16].
This approach entails the assimilation of large-scale features during the initial step, followed
by the adoption of the modified analysis field as the background for the second step.
The overall analysis increment, denoted as δxa, is further decomposed into two distinct
components, namely δxa

L and δxa
H. These components arise from the low- and high-

resolution observation assimilation cycles, respectively. Thus, we have

δxa = δxa
L + δxa

H. (4)

In the computational process, the estimation of the analysis increment is accomplished
through Equation (3). By decomposing the high-resolution observation vector, denoted as
y, into its low- and high-frequency components (designated as yL and yH) and segregating
the large- and small-scale information inherent in the model outcomes, specifically xb =
xb

L + xb
H, the innovation vector (dL, dH) for the two-step procedure could be reformulated

as dL = yL −Hxb
L and dH = yH −Hxb

H. Consequently, the large-scale increment component
can be articulated as

δxa
L = K

(
yL − Hxb

L

)
, (5)

and the small-scale increment is expressed as

δxa
H = KdH = K

(
yH − H

(
xb − xb

L

))
= K

(
y − Hxb −

(
yL − Hxb

L

))
. (6)

Supposing the large-scale field has been corrected in the first step, the term yL could

be estimated using H(x b
L + δxa

L

)
. Consequently, Equation (6) can be represented as

δxa
H = K

(
y − Hxb − Hδxa

L

)
= K

(
y −

(
Hxb + δxa

L

))
. (7)

By combining (5) and (7), the comprehensive analysis for the multi-step ROMS-4DVAR
is accomplished. Notice that the increment in the first step, guided by (5), is calculated
using the large-scale component of the background field. In this study, we adopted the
approach introduced by [18], which approximates the increment term in (5) as the complete
one. Similarly, the first-step analysis is conducted as follows:

δxa
L = K

(
yL − Hxb

)
. (8)

Considering the limited capability of the primary model in simulating small-scale
features, the biases and uncertainties introduced by this approximation are generally
manageable.

For the two-step assimilation, the high-resolution SWOT observations were initially
organized into bins corresponding to model grid cells. If multiple measurements fell into the
same model cell, these observations were averaged to generate the “super observations”.
By doing this, the coupled features were split into the spatial averaged terms and the
corresponding departures. Furthermore, the error covariance C was configured following
the methodology outlined by Carrier et al. [17]. The static background error variance was
computed from the history file of the preceding model run and the decorrelation scales
were set proportionally to the Rossby deformation radius. Specifically, the typical averaged
Rossby deformation scale in the domain is 50 km [26] and the proportionality constants
used in the two-step analysis were 1.0 and 0.5 in our study.

3. Results

The assimilation experiment spanned from 1 January to 30 June 2012, employing both
the developed multi-scale and primitive ROMS-4DVAR formulations simultaneously. The
assimilation window for the two-step analysis was set at 7 days. It is worth noting that a
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shorter assimilation interval could potentially enhance small-scale analysis, particularly in
the second step, a facet reserved for subsequent investigations.

The analysis fields produced by both the multi-scale and primitive ROMS-4DVAR
methodologies were exported at 3 h intervals. Initial evaluations entailed assessing the bias
relative to the assimilated observations. Throughout the 6-month assimilation duration,
over 700,000 synthetic SWOT measurements were assimilated into the 4DVAR system. Let{

yb
i

}
denote the model outputs mapped to the observations’ locations. The error statistical
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Here, N is the total number of the assimilated observations, {yi} represents the observa-
tions, and yi is the averaged observation value.

As illustrated in Figure 5, the model analysis states derived from both the single-scale
and multi-scale assimilation approaches are consistent with the observations. However,
the statistical error comparison between the two assimilation approaches indicates that
the multi-scale strategy acquires better gap reduction towards the SSH observations. The
coefficient of determination between the multi-scale corrected model fields and the obser-
vations has a certain improvement, from 0.991 to 0.998, the RMSE is significantly reduced
by half, and the MAPE decreases from 2.237% down to 0.93%. Moreover, the points in
the multi-scale panel are more concentrated near the diagonal line, and after fitting the
two scattered “model-observation” data using the polynomial basis, the approximation
function of the multi-scale case moves closer to the line y = x. Therefore, the enhancement
optimized by the proposed multi-4DVAR scheme is validated by analyzing the residual
difference between the model state and the assimilated observations.
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Figure 5. The residual difference between the observations and model state value wherein the latter
had been corrected by the single-scale ROMS-4DVAR (a) and the proposed multi-scale 4DVAR scheme
(b). The color represents the data density and was calculated by counting the number of scattered
points located in each meshed grid, while the solid (black) and dashed (red) lines denote the diagonal
line y = x and the fitted curves of the scattered data.
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Moreover, the error inter-comparison between single-scale and multi-scale ROMS-
4DVAR schemes was conducted and is presented. As illustrated in Figure 6, the bias of
the single-scale approach is located at [−0.1, 0.1] while the one of the multi-scale 4DVAR
is reduced significantly and restricted in the interval [−0.04, 0.04], indicating that the
posterior analysis after the two-step correction comes closer to the target observation
than the primitive 4DVAR. Given the two-step assimilation process, wherein large-scale
features are corrected in the initial round and the subsequent analysis step primarily
focuses on updating small-scale features, we delve into the respective increments for the
two assimilation cycles. The results, presented in Figure 7, encompass both the large-scale
(a) and fine-scale (b) components of increments along with their summation (c). The two-
step assimilation procedure ensures the comprehensive updating of multi-scale features
in the SSH field, thereby circumventing the scale aliasing of errors mentioned in a prior
study [12].
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Figure 6. The bias comparison between single-scale and multi-scale components. The left panel
(a) shows the residual difference of the posterior surface elevation analysis at the observation position
while the right panel (b) compares the bias distribution of the two assimilation schemes wherein the
error has been normalized.
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Figure 7. The increments of the sea surface elevation field derived from the two-step assimilation
process on 24 June 2012. Here, (a) is the increment after the first assimilation cycle (R1), (b) gives the
net increment of the second step (R2), and (c) shows the total variation introduced by the multi-scale
4DVAR assimilation.

The robustness of the proposed multi-scale modification for the ROMS-4DVAR system
has been substantiated through an examination of the congruence between the corrected
model state and the assimilated observations. To further assess the efficacy of the updated
surface elevation fields achieved through multi-scale assimilation, the true state gener-
ated by the nature run is employed here. An analysis of the errors in surface elevation
concerning the nature run from 1 January to 31 June is presented in Figure 8. Firstly, the
high-resolution SSH field of the nature run series was mapped onto the coarse grid of the
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free run. Subsequently, the averaged mean absolute error (MAE) was calculated across the
entire region for the free-run, single-scale, and multi-scale 4DVAR assimilation scenarios.
The temporal progression of the MAE underscores the beneficial impact of the assimilation
procedure on model state correction, evident in both the single-scale and multi-scale strate-
gies. The accuracy of SSH fields following the first assimilation step was comparable to that
derived from the single-scale analysis and, in certain instances, exhibited a slight superior-
ity. Furthermore, it is noteworthy that the single-scale analysis may encounter challenges
in specific situations, as illustrated by the dashed rectangle in Figure 8. These arise when
multi-scale features, aliased in high-resolution SWOT measurements, are directly injected
into the model, leading to a subsequent negative correction. In contrast, for the multi-scale
assimilation process, a global enhancement in accuracy was observed, decreasing from
3.97 cm to 3.04 cm following the correction of large-scale features. A notable error reduction
of 1.0 cm was noted after the assimilation of fine-scale information.

Remote Sens. 2024, 16, x FOR PEER REVIEW 10 of 14 
 

 

a slight superiority. Furthermore, it is noteworthy that the single-scale analysis may en-
counter challenges in specific situations, as illustrated by the dashed rectangle in Figure 
8. These arise when multi-scale features, aliased in high-resolution SWOT measurements, 
are directly injected into the model, leading to a subsequent negative correction. In con-
trast, for the multi-scale assimilation process, a global enhancement in accuracy was ob-
served, decreasing from 3.97 cm to 3.04 cm following the correction of large-scale features. 
A notable error reduction of 1.0 cm was noted after the assimilation of fine-scale infor-
mation. 

 
Figure 8. The regional averaged mean absolute error (MAE) with respect to the nature run case and 
the time series covering the period from January to June. The SSH accuracy values of the free run 
and the single-scale and multi-scale assimilation were evaluated. 

Moreover, to delineate the distinctive performances of the single- and multi-scale as-
similation schemes, a spatial analysis of errors was undertaken. Initially, a representative 
scenario depicting horizontal SSH updates is presented in Figure 9, with a comparison 
between the free run and nature run serving as a reference for comprehensive evaluation. 
In summary, the findings align with the earlier regional averaged mean absolute error 
(MAE) analysis in the time series, indicating overall improvements in SSH analysis fields 
across the entire region for all assimilation cases. 

The efficacy of the single-scale method is comparable to that achieved in the first as-
similation step using the multi-scale scheme. This suggests that, when adopting a single-
scale assimilation, efficient absorption is confined to the large-scale features present in the 
observations. Furthermore, the analysis outcomes following the two-step assimilation 
processes demonstrate the highest accuracy, with the second assimilation cycle primarily 
contributing to modifications at fine scales, particularly in regions surrounding islands. 
As an illustrative example, the analyzed SSH fields in the vicinity of Taiwan Island exhibit 
a substantial reduction in the number of errors. This notable improvement is particularly 
noteworthy given the challenges arising from the intricate topography and the coupling 
of multi-scale ocean dynamic activities including tides, Kuroshio, and coastal currents. 
The diminished error in these areas underscores the efficiency of the second-step assimi-
lation in updating smaller-scale patterns. Table 2 provides the RMSE and MAE for each 
experimental group. The accuracy values for the first step of multi-scale and single-scale 
assimilation are equivalent, with MAE and RMSE values of approximately 5.3 cm and 8.3 
cm, respectively. 

Figure 8. The regional averaged mean absolute error (MAE) with respect to the nature run case and
the time series covering the period from January to June. The SSH accuracy values of the free run
and the single-scale and multi-scale assimilation were evaluated.

Moreover, to delineate the distinctive performances of the single- and multi-scale
assimilation schemes, a spatial analysis of errors was undertaken. Initially, a representative
scenario depicting horizontal SSH updates is presented in Figure 9, with a comparison
between the free run and nature run serving as a reference for comprehensive evaluation.
In summary, the findings align with the earlier regional averaged mean absolute error
(MAE) analysis in the time series, indicating overall improvements in SSH analysis fields
across the entire region for all assimilation cases.

The efficacy of the single-scale method is comparable to that achieved in the first
assimilation step using the multi-scale scheme. This suggests that, when adopting a single-
scale assimilation, efficient absorption is confined to the large-scale features present in
the observations. Furthermore, the analysis outcomes following the two-step assimilation
processes demonstrate the highest accuracy, with the second assimilation cycle primarily
contributing to modifications at fine scales, particularly in regions surrounding islands. As
an illustrative example, the analyzed SSH fields in the vicinity of Taiwan Island exhibit a
substantial reduction in the number of errors. This notable improvement is particularly
noteworthy given the challenges arising from the intricate topography and the coupling of
multi-scale ocean dynamic activities including tides, Kuroshio, and coastal currents. The
diminished error in these areas underscores the efficiency of the second-step assimilation in
updating smaller-scale patterns. Table 2 provides the RMSE and MAE for each experimental
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group. The accuracy values for the first step of multi-scale and single-scale assimilation are
equivalent, with MAE and RMSE values of approximately 5.3 cm and 8.3 cm, respectively.
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Figure 9. The horizontal SSH updates on 8 June after the single-scale and two-step assimilation
processes. As a reference, the error result of the free run is provided.

Table 2. MAE and RMSE errors for each group experiment. The presented indicators were calculated
using the daily averaged fields from 8 June.

cm
Free-Run Single-Scale Multi-R1 Multi-R2

MAE 6.55 5.25 5.3 4.35
RMSE 10.15 8.37 8.28 7.01

The comprehensive error analysis of the ocean state, encompassing SSH, three-dimensional
(3D) temperature (temp), salinity (salt), and the eastern and northern velocity components
(u and v) fields resulting from the assimilation cases, was systematically undertaken. To em-
phasize the enhancements and facilitate a comparative assessment of the impacts between
single-scale and multi-scale assimilation, the error reduction was quantified relative to the
accuracy of the free run case. The MAE and RMSE reductions are presented in Figure 10.
Regarding the 3D temperature and salinity fields, the influence of SSH assimilation was
negligible, as the reductions in MAE and RMSE were minimal, occasionally displaying
negative values. In alignment with prior studies [27–29], the direct assimilation of altimetry
measurements proved insufficient for enhancing the estimation of temperature and salinity.
Additional processes are typically required before SSH data assimilation, although this
aspect was not the primary focus of the present study and was left for future exploration. In
addition to the evaluation of water properties, the dynamic model state variables, including
surface elevation and momentum components, demonstrated significant improvement. Re-
markably, the two-step assimilation within the multi-scale process produced better results
compared to the single-scale approach, reinforcing the conclusions previously mentioned.
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4. Summary and Discussion

To address the imperative of assimilating high-resolution observations such as the
SWOT KaRIn SSH products, this study introduced a multi-scale 4DVAR system within
the ROMS framework. Building upon the validated fine-scale correcting capabilities of
multi-scale assimilation schemes [15–18], we extended this approach to the ROMS-4DVAR
system. Employing the OSSE framework, a twin experiment comprising a nature run and a
free run case was executed. The SSH fields estimated by the nature run were validated to
be comparable with HYCOM reanalysis products, affirming their reliability in simulating
realistic internal tide energy and their applicability for reproducing SWOT observations.

Subsequently, synthetic SWOT SSH measurements were decomposed into spatially av-
eraged terms and their corresponding departures, accounting for the model configuration
resolution. These components, derived from dense SSH observations, were then integrated
into the proposed two-step 4DVAR assimilation scheme. The first cycle involved large-scale
features to correct the model fields, and the updated analysis served as the background for
the second assimilation step, targeting the fine-scale observation component. A comparison
with primitive ROMS-4DVAR using a single-scale scheme revealed that the multi-scale
strategy achieved better gap reduction in SSH observations. The RMSE was significantly
halved, and the MAPE decreased from 2.237% to 0.93%. The two-step assimilation process
ensured comprehensive multi-scale updates in the SSH field, enhancing the fine-scale fea-
tures in the analysis fields. A quantitative comparison with the nature run further validated
the efficiency and superiority of the multi-scale 4DVAR approach, demonstrating both
accuracy enhancement and fine-scale correction. Moreover, the equivalence in accuracy
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between the first step of the multi-scale and single-scale approaches suggests that the
single-scale 4DVAR system predominantly captures large-scale features.

The straight assimilation of SSH barely has an impact on improving the oceanic 3D
temperature and salinity fields, and thus, it is essential to project the surface dynamic
measurements onto the water property fields in advance. However, the strategy of dense
SSH observation projection would bring other issues and needs further consideration
of features such as the quality of produced 3D temperature and salinity profiles, the
decomposition of the generated high-resolution underwater pseudo-observations, the
necessary modification of the multi-scale 4DVAR approach, and so on. In addition, the
updates of the spatial–temporal windows and the background error variance during the
assimilation process should be further considered, especially for the fine-scale feature
correction process in the multi-scale assimilation method. Moreover, it is also worth trying
to decompose high-resolution observations into more components with different scales in
order to optimize the multi-scale feature of the model results more precisely. Above all, the
verification in this study was performed in the OSSE framework, and the beta products of
the SWOT KaRIn L2 SSH have been available since December 2023, so the main focus in
the future will be to explore the assimilation of real SWOT observation data.
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