Time-Domain Electromagnetic Noise Suppression Using Multivariate Variational Mode Decomposition
Abstract
:1. Introduction
2. Methods
Algorithm 1 TDEM signal denoising with MVMD-MDFA |
|
2.1. Multichannel Variational Mode Decomposition
2.2. Multichannel Detrended Fluctuation Analysis
2.3. Parameter Selection
3. Synthetic Results
4. Experimental Results
4.1. System Description
4.2. Test Field Result
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
TDEM | Time-domain electromagnetic |
MVMD | Multivariate variational mode decomposition |
MDFA | Multichannel detrended fluctuation analysis |
IMF | Intrinsic mode function |
SNR | Signal-to-noise ratio |
WT | Wavelet transform |
EMD | Empirical mode decomposition |
EEMD | Ensemble empirical mode decomposition |
WOA | Whale optimization algorithm |
VMD | Variational mode decomposition |
DFA | Detrended fluctuation analysis |
EWT | Empirical wavelet transform |
ICEEMDAN | Improved complete ensemble empirical mode decomposition with adaptive noise |
RTK | Real-time kinematic |
References
- Amato, F.; Pace, F.; Vergnano, A.; Comina, C. TDEM prospections for inland groundwater exploration in semiarid climate, Island of Fogo, Cape Verde. J. Appl. Geophys. 2021, 184, 104242. [Google Scholar] [CrossRef]
- Porras, D.; Carrasco, J.; Carrasco, P.; Herrero-Pacheco, J.L. Deep TDEM Study for Structural and Mining Purposes: A Case Study of the Barbastro Saline-Evaporitic Formation, Spain. Appl. Sci. 2023, 13, 6385. [Google Scholar] [CrossRef]
- Osinowo, O.O.; Fashola, O.E.; Ayolabi, E.A.; Olayinka, A.I. Structural mapping and gold mineralisation potential evaluation from airborne time–domain electromagnetic (TDEM) data of Ilesha Schist Belt, southwestern Nigeria. Explor. Geophys. 2022, 53, 237–254. [Google Scholar] [CrossRef]
- Baawain, M.S.; Al-Futaisi, A.M.; Ebrahimi, A.; Omidvarborna, H. Characterizing leachate contamination in a landfill site using Time Domain Electromagnetic (TDEM) imaging. J. Appl. Geophys. 2018, 151, 73–81. [Google Scholar] [CrossRef]
- Christensen, N.B.; Halkjær, M. Mapping pollution and coastal hydrogeology with helicopterborne transient electromagnetic measurements. Explor. Geophys. 2014, 45, 243–254. [Google Scholar] [CrossRef]
- Pellerin, L.; Beard, L.P.; Mandell, W. Mapping structures that control contaminant migration using helicopter transient electromagnetic data. J. Environ. Eng. Geophys. 2010, 15, 65–75. [Google Scholar] [CrossRef]
- Xie, W.; Zhang, X.; Mu, Y.; Zheng, Y. A subsurface targets’ classification method utilizing gradient learning technique. IEEE Geosci. Remote. Sens. Lett. 2020, 19, 3000305. [Google Scholar] [CrossRef]
- Li, S.; Zhang, X.; Xing, K.; Zheng, Y. Fast inversion of subsurface target electromagnetic induction response with deep learning. IEEE Geosci. Remote. Sens. Lett. 2022, 19, 3006205. [Google Scholar] [CrossRef]
- Mu, Y.; Xie, W.; Zhang, X. The joint UAV-borne magnetic detection system and cart-mounted time domain electromagnetic system for UXO detection. Remote Sens. 2021, 13, 2343. [Google Scholar] [CrossRef]
- Li, G.; He, Z.; Tang, J.; Deng, J.; Liu, X.; Zhu, H. Dictionary learning and shift-invariant sparse coding denoising for controlled-source electromagnetic data combined with complementary ensemble empirical mode decomposition. Geophysics 2021, 86, E185–E198. [Google Scholar] [CrossRef]
- Li, G.; Wu, S.; Cai, H.; He, Z.; Liu, X.; Zhou, C.; Tang, J. IncepTCN: A new deep temporal convolutional network combined with dictionary learning for strong cultural noise elimination of controlled-source electromagnetic data. Geophysics 2023, 88, E107–E122. [Google Scholar] [CrossRef]
- Sun, Y.; Huang, S.; Zhang, Y.; Lin, J. Denoising of transient electromagnetic data based on the minimum noise fraction-deep neural network. IEEE Geosci. Remote. Sens. Lett. 2022, 19, 8028405. [Google Scholar] [CrossRef]
- Lin, F.; Chen, K.; Wang, X.; Cao, H.; Chen, D.; Chen, F. Denoising stacked autoencoders for transient electromagnetic signal denoising. Nonlinear Process Geophys. 2019, 26, 13–23. [Google Scholar] [CrossRef]
- Wu, X.; Xue, G.; He, Y.; Xue, J. Removal of multisource noise in airborne electromagnetic data based on deep learning. Geophysics 2020, 85, B207–B222. [Google Scholar] [CrossRef]
- Asif, M.R.; Maurya, P.K.; Foged, N.; Larsen, J.J.; Auken, E.; Christiansen, A.V. Automated Transient Electromagnetic Data Processing for Ground-Based and Airborne Systems by a Deep Learning Expert System. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5919814. [Google Scholar] [CrossRef]
- Pan, D.; Qi, T.; Feng, G.; Wang, H.; Zhang, Z.; Wei, X. TEM1Dformer: A novel one-dimensional time series deep denoising network for TEM signals. IEEE Sens. J. 2024, 24, 414–426. [Google Scholar] [CrossRef]
- Chen, K.; Pu, X.; Ren, Y.; Qiu, H.; Lin, F.; Zhang, S. TEMDNet: A novel deep denoising network for transient electromagnetic signal with signal-to-image transformation. IEEE Trans. Geosci. Remote Sens. 2020, 60, 5900318. [Google Scholar] [CrossRef]
- Wang, M.; Lin, F.; Chen, K.; Luo, W.; Qiang, S. TEM-NLnet: A deep denoising network for transient electromagnetic signal with noise learning. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5911714. [Google Scholar] [CrossRef]
- Yu, S.; Shen, Y.; Zhang, Y. CG-DAE: A noise suppression method for two-dimensional transient electromagnetic data based on deep learning. J. Geophys. Eng. 2023, 20, 600–609. [Google Scholar] [CrossRef]
- Ji, Y.; Li, D.; Yuan, G.; Lin, J.; Du, S.; Xie, L.; Wang, Y. Noise reduction of time domain electromagnetic data: Application of a combined wavelet denoising method. Radio Sci. 2016, 51, 680–689. [Google Scholar] [CrossRef]
- Wang, G.F.; Deng, P.; Zhang, F.Q.; Ye, J.C. Noise reduction of the transient electromagnetic weak signal under strong noise based on power detection of EMD. Appl. Mech. Mater. 2012, 110, 1606–1612. [Google Scholar] [CrossRef]
- Liu, F.; Li, J.; Liu, L.; Huang, L.; Fang, G. Application of the EEMD method for distinction and suppression of motion-induced noise in grounded electrical source airborne TEM system. J. Appl. Geophys. 2017, 139, 109–116. [Google Scholar] [CrossRef]
- Feng, G.; Wei, H.; Qi, T.; Pei, X.; Wang, H. A transient electromagnetic signal denoising method based on an improved variational mode decomposition algorithm. Measurement 2021, 184, 109815. [Google Scholar] [CrossRef]
- Wei, X.; Feng, G.; Qi, T.; Guo, J.; Li, Z.; Zhao, D.; Li, Z. Reduce the noise of transient electromagnetic signal based on the method of SMA-VMD-WTD. IEEE Sens. J. 2022, 22, 14959–14969. [Google Scholar] [CrossRef]
- Qi, T.; Wei, X.; Feng, G.; Zhang, F.; Zhao, D.; Guo, J. A method for reducing transient electromagnetic noise: Combination of variational mode decomposition and wavelet denoising algorithm. Measurement 2022, 198, 111420. [Google Scholar] [CrossRef]
- Lu, J.-Y.; Lin, H.; Ye, D.; Zhang, Y.-S. A new wavelet threshold function and denoising application. Math. Probl. Eng. 2016, 2016, 3195492. [Google Scholar]
- Dragomiretskiy, K.; Zosso, D. Variational mode decomposition. IEEE Trans. Signal Process. 2013, 62, 531–544. [Google Scholar] [CrossRef]
- Wei, H.; Qi, T.; Feng, G.; Jiang, H. Comparative research on noise reduction of transient electromagnetic signals based on empirical mode decomposition and variational mode decomposition. Radio Sci. 2021, 56, e2020RS007135. [Google Scholar] [CrossRef]
- Ur Rehman, N.; Aftab, H. Multivariate variational mode decomposition. IEEE Trans. Signal Process. 2019, 67, 6039–6052. [Google Scholar] [CrossRef]
- Liu, N.; Li, F.; Wang, D.; Gao, J.; Xu, Z. Ground-roll separation and attenuation using curvelet-based multichannel variational mode decomposition. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5901214. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, H.; Yang, Y.; Liu, N.; Gao, J. Seismic Random Noise Separation and Attenuation Based on MVMD and MSSA. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5908916. [Google Scholar] [CrossRef]
- Li, G.; Zheng, H.; Cai, H.; Chen, C.; Shi, F.; Gong, S. Multi-channel geomagnetic signal processing based on deep residual network and MVMD. Chin. J. Geophys. 2023, 66, 3540–3556. [Google Scholar]
- Mert, A.; Akan, A. Detrended fluctuation thresholding for empirical mode decomposition based denoising. Digit. Signal. Process. 2014, 32, 48–56. [Google Scholar] [CrossRef]
- Naveed, K.; Mukhtar, S.; Rehman, N.U. Multivariate signal denoising based on generic multivariate detrended fluctuation analysis. In Proceedings of the 2021 IEEE Statistical Signal Processing Workshop (SSP), Virtual, 11–14 July 2021; pp. 441–445. [Google Scholar]
- Cicone, A.; Pellegrino, E. Multivariate fast iterative filtering for the decomposition of nonstationary signals. IEEE Trans. Signal Process. 2022, 70, 1521–1531. [Google Scholar] [CrossRef]
- Wang, Z.; Wong, C.M.; Rosa, A.; Qian, T.; Wan, F. Adaptive Fourier decomposition for multi-channel signal analysis. IEEE Trans. Signal Process. 2022, 70, 903–918. [Google Scholar] [CrossRef]
Methods | ICEEMDAN | EWT | VMD-DFA | Proposed Workflow |
---|---|---|---|---|
0 dB Noise | 0.57 | 1.44 | 1.02 | 2.24 |
5 dB Noise | 3.96 | 6.11 | 4.55 | 6.78 |
10 dB Noise | 7.39 | 10.47 | 9.26 | 11.12 |
Methods | ICEEMDAN | EWT | VMD-DFA | Proposed Workflow |
---|---|---|---|---|
Time costs (s) | 26.7 | 1.04 | 7.2 | 30.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xing, K.; Li, S.; Qu, Z.; Zhang, X. Time-Domain Electromagnetic Noise Suppression Using Multivariate Variational Mode Decomposition. Remote Sens. 2024, 16, 806. https://doi.org/10.3390/rs16050806
Xing K, Li S, Qu Z, Zhang X. Time-Domain Electromagnetic Noise Suppression Using Multivariate Variational Mode Decomposition. Remote Sensing. 2024; 16(5):806. https://doi.org/10.3390/rs16050806
Chicago/Turabian StyleXing, Kang, Shiyan Li, Zhijie Qu, and Xiaojuan Zhang. 2024. "Time-Domain Electromagnetic Noise Suppression Using Multivariate Variational Mode Decomposition" Remote Sensing 16, no. 5: 806. https://doi.org/10.3390/rs16050806
APA StyleXing, K., Li, S., Qu, Z., & Zhang, X. (2024). Time-Domain Electromagnetic Noise Suppression Using Multivariate Variational Mode Decomposition. Remote Sensing, 16(5), 806. https://doi.org/10.3390/rs16050806