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Abstract: UAV transmission tower inspection is the use of UAV technology for regular inspection and
troubleshooting of towers on transmission lines, which helps to improve the safety and reliability of
transmission lines and ensures the stability of the power supply. From the traditional manual tower
boarding to the current way of manually selecting target camera shooting points from 3D point clouds
to plan the inspection path of the UAV, operational efficiency has drastically improved. However,
indoor planning work is still labor-consuming and expensive. In this paper, a deep learning-based
point cloud transmission tower segmentation (PCTTS) model combined with the corresponding
target point localization algorithm is proposed for automatic segmentation of transmission tower
point cloud data and automatically localizing the key inspection component as the target point for
UAV inspection. First, we utilize octree sampling with unit ball normalization to simplify the data
and ensure translation invariance before putting the data into the model. In the feature extraction
stage, we encode the point set information and combine Euclidean distance and cosine similarity
features to ensure rotational invariance. On this basis, we adopt multi-scale feature extraction,
construct a local coordinate system, and introduce the offset-attention mechanism to enhance model
performance further. Then, after the feature propagation module, gradual up-sampling is used to
obtain the features of each point to complete the point cloud segmentation. Finally, combining the
segmentation results with the target point localization algorithm completes the automatic extraction
of UAV inspection target points. The method has been applied to six kinds of transmission tower
point cloud data of part segmentation results and three kinds of transmission tower point cloud data
of instance segmentation results. The experimental results show that the model achieves mIOU of
94.1% on the self-built part segmentation dataset and 86.9% on the self-built instance segmentation
dataset, and the segmentation accuracy outperforms that of the methods for point cloud segmentation,
such as PointNet++, DGCNN, Point Transformer, and PointMLP. Meanwhile, the experimental results
of UAV inspection target point localization also verify the method’s effectiveness in this paper.

Keywords: deep learning; point cloud; transmission tower; UAV inspection; part segmentation;
instance segmentation; target point localization; attention mechanism

1. Introduction

The transmission tower is one of the essential components of the power transmis-
sion system [1]. It is vital for carrying transmission lines, regulating line tension, and
safeguarding power safety. The structure of various transmission towers varies based
on their designs and intended purposes [2]. However, it typically comprises many vital
components, including the tower body, cross arms, insulator strings, lightning lines, and
additional auxiliary equipment [3–5]. The transmission tower is a complex system; the
structures complement each other to undertake the function of power transportation jointly,
and some parts are easily affected by internal and external environmental impact and aging
damage, thus causing power accidents resulting in economic losses [6]. Therefore, it is
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necessary to regularly inspect transmission towers to protect the normal operation of the
power transmission system [7].

Manual inspection requires workers to use telescopes for visual inspection, or they
have to climb up for inspections, and there are problems such as high labor intensity,
low work efficiency, and high impact of human factors, and the inspection status cannot
be recorded in real time [8]. Therefore, inspection robots have gradually emerged to
replace manual inspection efficiently. Ground inspection robots are generally suitable for
performing inspection tasks in simple power scenarios such as small substations; flying
robots (e.g., UAVs) and hybrid robots are more suitable for performing inspection tasks in
complex power scenarios such as large-area substations and transmission corridors [9,10].

With the increasing maturity of UAV technology, there is a growing trend among
electric power companies and maintenance firms to adopt novel technologies, including
UAVs, to enhance the efficiency and precision of inspections [11–13]. UAV electricity in-
spection is generally divided into transmission corridor inspection and transmission tower
component inspection. This paper focuses on the methods applied to the latter. Current
commonly used transmission tower UAV inspection technology heavily depends on the
process of prepared in-door UAV route planning, in which the precise 3D coordinates of the
key tower components of the tower need to be identified and collected from transmission
tower point cloud data point by point in advance and then manually input to produce the
UAV waypoints and camera shooting events [13,14]. After the flight path has been planned,
the electricity inspection multi-rotor UAV uses the planned routes to complete autonomous
flights and take the component photos at the planned waypoint [15], i.e., normally 3–5 m
away from the target on the tower. The route planning work is usually a key, cumbersome,
and labor-intensive process. It also increases the UAV safety risk due to manual ignorance
and fault. Therefore, the automatic identification and locating of the inspection target point
coordinates have been a means of improving the efficiency of route planning.

To automatically extract the UAV inspection target points, the corresponding locations
need to be found first, and then the segmentation is accomplished by using a deep learning
point cloud segmentation algorithm with specific dataset training. In the field of deep
learning, there are various public datasets adapted to different needs, among which the
ShapeNet dataset [16] is widely used for testing part segmentation [17–19]. For research on
using point cloud data for segmentation tasks, there are three main types of segmentation:
projected image-based segmentation, voxel-based segmentation, and direct point-based
segmentation [20,21]. Both projected image-based segmentation and voxel-based segmen-
tation essentially involve converting the point cloud data into other forms first. The core
idea of the former is to use 2D-CNN [22] to extract features from the projected image in
3D and then fuse these features for label prediction. In the latter, the point cloud is first
converted into voxels, similar to pixels in a 2D image, and then processed using a 3D
convolutional network. SqueezeSeg is a 3D point cloud real-time segmentation network
proposed by Wu et al. [23] after getting inspiration from SqueezeNet [24], where the 3D
point cloud is subjected to spherical projection for feature extraction and segmentation, and
then conditional random field (CRF) [25] is used as a recurrent layer to refine the results.
Similar to the 2D semantic segmentation network, Liu et al. introduced a network called
3DCNN-DQN-RNN [26], which fuses 3D-CNN and DQN to control the eye window to
achieve fast localization and segmentation and then further refine the parsing accuracy of
the point cloud by 3D-CNN and Residual RNN. Since the point cloud data presents irregu-
lar distribution in three-dimensional space, the applicability of traditional two-dimensional
and three-dimensional convolutional neural networks is limited, and the segmentation
methods directly based on the points, at present, mainly contain three categories based
on multilayer perceptron [27], point convolution, and graph convolution. PointNet [28]
pioneered the direct processing of point clouds and subsequently improved and upgraded
the process; the original authors released PointNet++ [29], which uses a shared MLP to
extract features, completes the segmentation of the point cloud after capturing and learning
global and local features, and also provides the basic framework for many subsequent
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methods. The Point Transformer model [30–33] is proposed based on the transformer [34]
architecture, which has been used in a large number of natural language processing and
image processing tasks and has made essential breakthroughs; the attention mechanism is
applied to the processing of a three-dimensional point cloud, and each point in the point
cloud is regarded as an element in the sequence, which is coded to capture inter-point
relationships and neighborhood information, and finally decoded to obtain the results, with
this mechanism also achieving excellent results. The DGCNN model [35] combines the
ideas of the graph convolutional neural network (DCN) and dynamic graph construction,
and the EdgeConv module is designed to incorporate the relationship between points
into the point cloud processing and recalculate the domain of the sampled points in each
layer of the feature space and update the graph model, which can better allow the in-
formation to propagate among the similar structures and accelerate the learning of local
semantic information.

Despite the commendable performance of current deep learning models on public
datasets, they encounter certain challenges when applied in the practical application of
power inspection. For example, the data quality of the training samples is uneven, and the
number is small [36]; the number of points in different point cloud data varies considerably,
and the coordinates of the point cloud data with factual geographic information are very
different from each other, and the direction is variable, and so on. Hu et al. [37] combined
PointNet++ [29] with a self-attention mechanism [38] and then utilized positional coding
to somewhat alleviate the challenges posed by sparse point clouds and the issue of the
disproportionately small proportion of insulator string point clouds. Huang et al. [39]
improved the PointNet++ [29] model by adjusting the model feeling field and extracting
point cloud features using core point convolution [40], which improved segmentation
accuracy slightly compared to the classical PointNet++ model [29].

Considering the advantages and shortcomings of the existing methods, in order to
better solve the above problems, this paper proposes a new point cloud transmission
tower segmentation (PCTTS) model for accomplishing the automatic segmentation task
of transmission towers. The method employs specific preprocessing for the original point
cloud data to make the point cloud distribution more reasonable and uniform, while the
unit ball normalization ensures the translation invariance. Utilizing rotationally invariant
features to fuse multi-scale feature extraction with the offset-attention mechanism can
solve the problem of variable orientation of transmission towers while improving the
feature extraction capability of the model, which ensures rotational invariance. Finally, the
segmented results are used to extract the location coordinates of the UAV inspection target
points using a specific target point localization algorithm to help improve the efficiency
of UAV route planning. The method has the advantages of low cost, high efficiency, and
strong generalizability. It can greatly reduce the manual, repetitive, and cumbersome
operation steps, effectively shorten the operation time of route planning in UAV electric
power inspection, enhance the operational efficiency of the staff, and have high practical
application value.

2. Data Preparation
2.1. Data Acquisition Area

The original transmission corridor point cloud data from several high-voltage trans-
mission lines are located in multiple provinces in China, including dozens of lines such as
the Yangu Line. The location of the measurement area is shown in Figure 1. The transmis-
sion voltage level ranges from 220 kV to 1000 kV. There are various types of transmission
towers; six of the most widely used tower types are adopted to carry out this study, and
each subsequent tower type that is different is indicated by a different capital letter.
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Figure 1. Schematic location of the survey area.

2.2. Datasets Preparation

Since transmission route planning mainly focuses on the transmission tower compo-
nents, which are almost always located in the upper part of the transmission towers, only
the point cloud data of the upper part of each transmission tower, the so-called “upper
half-tower”, is used, which is also beneficial for the improvement of segmentation accuracy.

After obtaining the “upper half-tower” point cloud data of individual transmission
towers, it is necessary to carry out the denoising process according to the actual situation
of the data and then calculate the normal vector information. A search radius of 0.75 m
is used to calculate the normal vector for each “half-tower” point cloud data so that each
point feature changes from (x, y, x) to (x, y, z, nx, ny, nz).

Two types of datasets containing a total of 316 “half-tower” point cloud data are
produced; one of the “upper half-tower” point cloud data is used to do part segmentation,
which is divided into four categories, i.e., the tower body, transmission lines, lightning lines,
and insulator strings, respectively. A total of six types of towers are categorized, denoted
as A–F, as shown in Figure 2, where blue is the tower body, green is the transmission
lines, yellow is the lightning lines, and red is the insulator strings. If subsequent target
point localization experiments use the results of part segmentation, separating different
individuals within the same class is necessary first. In order to streamline the process to
achieve a more efficient one-step approach, the other “upper half-tower” point cloud data
are used to do instance segmentation, which splits the tower head and insulator strings
one by one and categorizes the remaining parts into other classes. Since the shape of
transmission towers is mostly a left–right symmetrical structure, this kind of segmentation
is more delicate. Referring to the results of part segmentation, the data quality would have
a greater impact on the final segmentation accuracy, so we chose three tower types, A–C,
with higher data quality, in which the color of each part is different, as shown in Figure 3.
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3. Methodology

In the UAV automatic refinement inspection process of transmission tower, one im-
portant task is to find the locations of the camera shooting target point and then plan the
UAV flight route based on this information. At present, route planning relies heavily on
human visual interaction to find the tower target point in the transmission tower point
cloud data. The target points are mainly distributed on the tower head, insulator string,
and each structural connection. Generally, there is one target point at each end of the tower
head, and each insulator string corresponds to 2–3 target points depending on the length.

In this paper, an automatic target point localization method is proposed, which is car-
ried out in three steps: the first step is data preprocessing; in the second step, segmentation
of each structure of the transmission tower is completed based on the PCTTS; and in the
third step, the target point localization of the UAV’s automatic inspection is carried out.
The technical flow of the method is shown in Figure 4.
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The first step is to carry out some basic processing of the transmission channel point
cloud data, such as removing redundant information and standardizing the format to
facilitate subsequent operations according to the specific needs of the actual completion of
the denoising, cropping, calculation of normal vectors, and other operations. Subsequently,
the preprocessed data are input into the PCTTS network to acquire segmented results. We
have carried out experiments with two different segmentation methods, which are divided
into part segmentation and instance segmentation, and there will be different effects in
different situations. At this point, we have obtained individual point cloud data for each
structure, and in the case of obvious errors, post-processing corrections or even manual
intervention are required. Finally, the center point fitting is carried out on the point cloud
data of each component individually, the center point coordinates are obtained, and then
the corresponding processing is carried out to obtain the final UAV inspection target point



Remote Sens. 2024, 16, 817 7 of 26

coordinates, and the result inspection is completed by superimposing the obtained target
point with the corresponding transmission tower point cloud data.

3.1. General Architecture of the PCTTS Network

As shown in Figure 5, the overall architecture of our proposed PCTTS network is
redesigned based on the structure of PointNet [28] and PointNet++ [29], which mainly
consists of four parts, namely, the data preprocessing module, the feature extraction mod-
ule, the attention mechanism module, and the feature propagation module, which are
complementary to each other and ultimately realize the effective segmentation of the point
cloud data of transmission towers.
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The data preprocessing module mainly undertakes some functional transformation
operations before inputting the point cloud data into the neural network, such as down-
sampling, rotational transformation, normalization, etc. Among them, the operation of
down-sampling can not only simplify the data according to the specific practical needs,
which can be hundreds of thousands or even millions of points thinned down to a few
tens of thousands or even a few thousands of points, but also plays an auxiliary role in
the process of extracting the local features in the follow-up. The operation of rotational
transformation not only serves as a data enhancement during training but also serves
as a function to check the generalizability of the model during testing. The operation
of normalization can solve the problem of the point cloud data of different transmission
towers having too much difference in individual coordinates due to the difference in the
actual location or the problem of large differences in the coordinates of each structure due
to the use of different scenarios and different actual sizes of the same type of transmission
towers. The feature extraction module is one of the most important parts of the whole
network, which can abstract the collection of transmission tower point cloud data input into
the network and extract the global features and local features to be used for learning, which
can help the network understand and analyze the point cloud data better. The attention
mechanism module can improve the performance of the model by selecting and utilizing
information more efficiently, focusing on relatively more important information with higher
weights, ignoring less important information with lower weights, and constantly adjusting
the weight allocation so that more helpful information can be selected in different situations.
The feature propagation module mainly plays the role of feature fusion and feature transfer,
which is essentially an up-sampling operation, combining the global information of the
higher level with the local information of the lower level and then transferring the feature
information upward across the hierarchy to the higher level, updating the obtained features
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upward step by step to the feature vectors of each point and completing the categorization
of the category of each point.

In summary, the workflow of our proposed PCTTS network can be summarized as data
preprocessing→ feature extraction→ feature propagation→ point cloud segmentation,
in which how to better adapt to the transmission tower point cloud data and learn more
helpful feature information from it to make the segmentation results more accurate becomes
the key highlight of this research method.

3.2. Data Preprocessing Module

In addition to some of the most basic operations such as cropping, denoising, and
other preprocessing steps, we also need to carry out the operation of down-sampling to
reduce the data size and minimize the storage and computation needs.

Due to the specification difference between the different LiDAR equipment used to
collect the point cloud and the different methods of collection, the point cloud density and
the data size of a tower may vary drastically. For example, some towers may have millions
of points, while other towers may have only a few tens of thousands of points, which will
significantly influence the neural network training effect and performance. Therefore, we
chose to use the octree [41] sampling method to first thin the data of various transmission
towers to a certain extent. After this processing step, almost all the transmission tower point
cloud data are restricted to 10,000 pts or so. The effect of octree sampling is schematically
shown in Figure 6, which divides the 3D space into a hierarchical structure consisting
of octree nodes and divides the space by recursively dividing a region into eight sub-
regions each time until the division stops after reaching the set conditions. The octree
sampling method is used to down-sample the point cloud data of transmission towers,
which can retain the shape characteristics of the transmission towers well compared to
random sampling; it will also make the sampled point cloud data uniformly distributed
to a certain extent like isometric sampling and also avoids the influence of different point
densities at different locations due to different materials of each part in the data acquisition
stage; it maintains a high sampling while maintaining high sampling quality, and the
computational complexity is much lower than that of the farthest point sampling.
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After down-sampling, two random rotational transformations are applied to the
transmission tower point cloud data, i.e., a random rotation around the Z-axis and a
random SO(3) rotation in three-dimensional space, computed with the rotation matrix
as follows: x′

y′

z′

 = R(θ)×

x
y
z

, (1)

Rz(γ) =

cos γ − sinγ 0
sin γ cos γ 0

0 0 1

, (2)

Rxyz(αβγ) =

 cos β ∗ cos γ − cosβ ∗ sin γ sin β
sin α ∗ sin β ∗ cos γ + cos α ∗ sin γ −sin α ∗ sin β ∗ sin γ + cos α ∗ cos γ −sin α ∗ cos β
− cosα ∗ sin β ∗ cos γ + sin α ∗ sin γ cos α ∗ sin β ∗ sin γ + sin α ∗ cos γ cos α ∗ cos β

, (3)

where R(θ) denotes the rotation matrix, α denotes the angle of rotation around the X-axis, β
denotes the angle of rotation around the Y-axis, and γ denotes the angle of rotation around
the Z-axis.

The former is used to simulate the situation in which different transmission towers in
a realistic scenario have different orientations to be more realistic for data enhancement,
as well as to improve the generalizability of the model; the latter is only used for model
generalizability testing and is not used in practical application.

Finally, a unit sphere normalization operation is applied to the transmission tower
point cloud data. In this way, the point cloud data of a transmission tower located in
different locations, with the same types of towers with different sizes or different tower
types, is uniformly translated and scaled into a unit sphere with the origin (0, 0, 0) as the
center and a radius of size 1, which unifies and standardizes the point cloud data of each
transmission tower. The schematic diagram of the data preprocessing module is shown in
Figure 7.
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Translation and Rotation Invariance

For the transmission tower point cloud data, the coordinates of each point in it cor-
respond to a real position in the real world. If segmentation is operated directly on the
original point set, the locational and geometric differences between two towers will be
significant since they are in different positions and may be oriented in different directions
even if they have identical transmission tower types. In order to solve this problem, we
need to ensure the translational and rotational invariance of the point cloud data in order
to minimize the influence of the coordinate difference on the trained model to realize the
effective segmentation of the various components of the transmission towers.

We adopt the currently commonly used unit sphere normalization method to normal-
ize the data, which can be formulated as the following equations:

centroid(x, y, z) =
(

∑n
i=1 xi

n , ∑n
i=1 yi
n , ∑n

i=1 zi
n

)
, (4)
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m = max
(√

xi
2 + yi

2 + zi
2
)

, (5)

(
x′i , y′i, z′i

)
=
(

xi−centroid(x)
m , yi−centroid(y)

m , zi−centroid(z)
m

)
, (6)

where centroid(x, y, z) denotes the original x, y, and z coordinates of the center of mass
point, n denotes the total number of points in the point cloud, and m denotes the scaling
factor required for the ball normalization operation.

The point cloud data of each transmission tower are processed in turn until all the
transmission towers are normalized into the unit sphere. After the final segmentation is
completed, it is necessary to carry out the inverse normalization according to the unique
coordinate offset parameter and scaling parameter of each transmission tower point cloud
data to restore the coordinates to the real position in the real world.

In order to ensure the rotational invariance of the transmission tower point cloud
data, one solution is to unify all the point cloud data into a standard orientation [42],
and another is to try to weaken the effect caused by rotational transformations through
data enhancement. However, both methods can be problematic in practice. In the former
approach, it is difficult to define a suitable rotation transformation matrix to unify the
orientation of each different transmission tower completely, while in the latter approach,
trying to employ a finite number of random rotations for data augmentation can essentially
only mitigate the effect but does not really solve the problem, since the rotational operation
is infinite in three dimensions. Instead of relying on some preprocessing of the point cloud
data, the approach we take here is to extract features with rotational invariance in the point
cloud to help our model learn the intrinsic rotational invariance feature of the transmission
towers [43]. The schematic diagram of the operation to ensure translation and rotation
invariance is shown in Figure 8.
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3.3. Multi-Scale Feature Extraction and Fusion Module

This module is the core part of the whole network, aiming to extract features from
point cloud data for learning, and the overall structure learns from the multi-scale grouping
(MSG) design of PointNet++ [29], which applies grouping layers with different scales,
using multiple radii, to extract features with different resolutions and splicing them to form
multi-scale features.

The number of points in the transmission tower point cloud data has yet to be stan-
dardized with the preprocessing module; consequently, a random sampling method is
used to reduce each point cloud file to 4096 points before feeding it into the network. The
network then uses the farthest-point sampling method to choose a subset of the points,
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which is performed twice. For the first time, 1024 points are retained, which are used to
establish the center point of the grouping to divide the entire transmission tower point
cloud data into 1024 local point sets. In addition to this central point, each point set will
contain a certain number of neighboring points within a certain radius of the central point.
The same operation is used again and then preserves the 256 local centroids, forming a set
of 256 local points. Note in this step, the advantage of the octree sampling preprocessing
process may also be reflected for the same shape of the point cloud with different point
densities, considering the possibility of missing the more critical structure features if the
point density is too high, as shown in Figure 9.
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After determining the grouping of the local point sets, the center of mass point of
each local point set will be calculated, a local coordinate system will be constructed with
the center of mass point as the origin (0, 0, 0), and the multilayer perceptron (MLP)
will be used to extract features from each local point set. In addition to encoding the
position information and normal vector information of each point, we also calculate the
interrelationships between the center of mass point, center point, and each neighboring
point information in the local point set to extract the feature information of Euclidean
distance and cosine similarity, which are fused with the basic information of the points and
encoded together as the feature information of the point set:

A1 = ∑ F1(x, y, z, nx, ny, nz), (7)

A2 = ∑ F2(d1, d2, d3, θ1, θ2, θ3), (8)

A = mul(A1, A2), (9)

where F denotes a feature encoding function, A1 denotes the features obtained by encoding
the base information of the points, A2 denotes the features obtained by encoding the
interrelationships between the points, di denotes the Euclidean distance, and θi denotes
the cosine similarity, which can correspond to the schematic diagram of the local feature
extraction in the point cloud. The schematic diagram of the local feature extraction of the
point cloud is shown in Figure 10, where the red point C indicates the center point of the
local point set obtained after sampling the farthest point, the blue point O indicates the
center of mass point of the local point set obtained after computation, and the green point
P indicates any neighboring point in the local point set.
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The structure of the multi-scale feature extraction module is shown in Figure 11.
Through the point coordinate information and normal vector information, the required
Euclidean distance information and cosine similarity information can be calculated. The
MSG structure can be hierarchical and scaled to extract a variety of resolutions of the
features, stacked twice, which allows the model to more smoothly increase the sensory
field with more robust feature extraction capabilities. At the same time, we learn from the
design advantages of the ResNet [44,45] network and introduce the residual structure to
optimize the network structure further, avoid the degradation problem, and improve the
model segmentation accuracy. Finally, the features extracted at the three radius scales are
stitched together to obtain more comprehensive information passed to the next module.
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3.4. Offset-Attention Mechanism

The attention mechanism [34] is an important technique used to improve the per-
formance of neural networks. The core idea of the attention mechanism is to find the
correlation between the original data and highlight some of its important features. The
model will assign different weights to each part of the feature map, highlighting key and
vital information and suppressing unimportant information so that the model can make
more accurate judgments.

The offset-attention mechanism we use is improved from the self-attention mechanism,
which was first applied in the point cloud transformer (PCT) network [32]. The self-
attention mechanism is a method for calculating semantic correlations between different
elements in a data sequence. Specifically, we first convert each element into a query, a key,
and a value for an input sequence. We then obtain an attention score by computing the dot
product of the query with all keys, which indicates how well the query matches each key.
Next, we perform a softmax operation on these scores so that they sum to 1, which gives us
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an attention weight. Finally, we weigh and sum the values with this weight, and the result
obtained is the output of the self-attention mechanism. The formula for the self-attention
mechanism is shown below:

Attention(Q, K, V) = so f tmax
(

QKT
√

dk

)
V, (10)

where dk denotes the dimensionality of the bond, and the Q, K, and V contained in the
formula all have their origin in the product of the input sequence X and the weight matrix
and are essentially linear transformations of X.

The offset-attention mechanism calculates the offset between the self-attentive features
and the input features by element-to-element subtraction and then passes this offset to
the subsequent steps instead of the output of the original self-attention mechanism. The
structure of the offset-attention mechanism is shown in Figure 12. In the traditional self-
attention mechanism, the first dimension is scaled to 1√

dk
, and the second dimension is

normalized using softmax. In contrast, in the offset-attention mechanism, the softmax
operator is used in the first dimension, and the L1 paradigm is used to normalize the
attention graph in the second dimension. The offset-attention mechanism will increase
the attentional weight and reduce the effect of noise, which will be more favorable for
downstream tasks. The formula for the offset-attention mechanism is shown below:

Attention(Q, K, V) =

(
so f tmax

(
QKT)

∑k ai,k

)
V, (11)Remote Sens. 2024, 16, x FOR PEER REVIEW 14 of 27 
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3.5. Feature Propagation Module

The difference between the point cloud segmentation task and the classification task is
that classification requires only one overall feature to discriminate the overall point cloud
class. In contrast, segmentation can be understood as classifying each point in the point
cloud, and thus, each point needs to correspond to a separate feature.

PCTTS reduces the number of points sampled layer by layer with the network to ensure
that the network receives enough global information, which is similar to PointNet++ [29].
In order to obtain point features for all the points in the point cloud while avoiding higher
computational costs, we use the known feature points to interpolate to complete the up-
sampling so that the network outputs the same features as the input points.

The nearest neighbor interpolation is used to complete the up-sampling layer by layer,
and the features of the previous layer are spliced with the features of this layer using
the cross-level skip link concatenation strategy of hierarchical propagation to form a new
feature representation. In PCTTS, the specific up-sampling process involves taking the
globally obtained features, copying them first, and then splicing them with the 256 sampled
centroid features from the preceding layer. Subsequently, nearest neighbor interpolation
is applied to the results based on the distance matrix, modifying the feature values—an
operation that can be interpreted as a form of weighting. After completing one round of
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up-sampling, the interpolated point features correspond to the 1024 sampled centroids
of the next higher layer, and the features are spliced once again. This entire operation is
repeated twice, gradually completing the up-sampling process and obtaining features for
each of the 4096 points to fulfill the classification task for each point. The formula followed
for nearest neighbor interpolation is shown below:

f (j)(x) =
w1(x) f (j)

1 (x) + w2(x) f (j)
2 (x) + w3(x) f (j)

3 (x)
w1(x) + w2(x) + w3(x)

, (12)

Here, we use three-point interpolation, where f (j)
(i) (x) denotes the feature of the point,

and wi(x) = 1
d(x,xi)

2 denotes the weight of each point, which is weighted based on distance.

4. Point Cloud Transmission Tower UAV Inspection using Target Point Localization
4.1. Automatic Segmentation of Point Cloud Transmission Towers Based on PCTTS
4.1.1. Part Segmentation

The part segmentation is used to classify the same structure on the same transmission
tower into the same class, as shown in Figure 13. To facilitate the estimation of the location
of each tower part as a camera shooting target position, we need to separate the same class
into individual entities by point cloud clustering. By setting a threshold value, the point
cloud can be segmented into distinct clusters based on the distance relationships between
points, each representing an individual entity. In addition, to locate the junction point
between the tower head and the lightning line, we use the highest point position of the
lightning line instead. However, in some cases, occlusion may result in the absence of point
cloud data for the highest point location of the lightning line. This absence could lead to a
significant deviation, necessitating a slight offset in the post-processing stage based on the
actual circumstances. Despite these problems, the outcomes of part segmentation can still
furnish high-precision foundational data for applications beyond the scope of this study,
such as 3D reconstruction and digital management.
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Figure 13. Cluster segmentation effect of different individuals of the same category.

4.1.2. Instance Segmentation

The instance segmentation is used to segment each part on the same transmission
tower into individual entities without additional processing. When constructing the in-
stance segmentation dataset, distinct entities within the same category are assigned unique
category labels and then utilized for network training. During the detailed inspection
of transmission towers using UAVs, there is no necessity to capture separate photos of
transmission lines and lightning lines. Therefore, we labeled the regions on either side of
the tower head and the insulator string area as samples. The remaining unused areas, along
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with the tower body, were labeled as other categories. After our model is fully trained, each
component can be segmented individually.

4.2. Fitting Center Point Coordinates Based on Segmentation Results

After obtaining the individual point cloud data for each part, the center point coordi-
nates of the part can be obtained for subsequent target point localization. Since the quality
of point cloud data varies, two methods are designed to find the center point coordinates
of the parts. Take the vertical insulator string as an example. In the case of point cloud
data with good quality, i.e., plenty of uniformly distributed points, the mean coordinate
values of all the points can be calculated as the centroid point coordinates of the point
cloud. An additional benefit of this approach is that it can reduce the impact of outliers on
the estimation result. The method can be formulated as follows:

center(x, y, z) =
(

∑n
i=1 Pi(x)

n
,

∑n
i=1 Pi(y)

n
,

∑n
i=1 Pi(z)

n

)
, (13)

For point cloud data with poor quality, the mean coordinate values of the point may
deviate from the central position significantly since the number of points may be less and
the distribution of the points may be more scattered. In this case, the mean value of the
z-axis of the highest point and the lowest point is calculated as the z-axis coordinate of the
central position. The x-axis and y-axis coordinates are still estimated in terms of the mean
x-axis and y-axis coordinate values of all points, as shown in Equation (14):

center(x, y, z) =
(

∑n
i=1 Pi(x)

n
,

∑n
i=1 Pi(y)

n
,

max(Pi(z))−min(Pi(z))
2

)
, (14)

A comparison of the results of the two methods is shown in Figure 14, where the blue
color indicates the fitting results of the former method, the red color indicates the fitting
results of the latter method; the results of the two methods on the left side of the figure
overlap; the right side of the figure demonstrates the significant differences of the results
obtained from the use of the two different fitting methods in the case of poorer data quality
and non-uniform distribution of the points.
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4.3. Target Point Localization and Inspection

After obtaining the geometric center of each part, the target points are located accord-
ing to the coordinates of the center point. The number of target points to be located varies
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for each tower type, depending on the number of tower heads and insulator strings. Each
tower head position requires at least one target point, which is used to photograph the
tower head and the lightning line hanging point during UAV inspection; each insulator
string position normally requires three target points, which are used to photograph the
hanging point at both ends and the insulator string itself. For the target point at the tower
head, we directly use the fitted center point of that part of the point cloud and then add a
fixed offset for each different tower type as appropriate. For the target point at the vertical
insulator string, we first construct the oriented bounding box (OBB) based on the fitting
results of the center point coordinates and then calculate the center coordinates of the top
and bottom surface and geometric center coordinates of the OBB, which correspond to the
target point coordinates at the two ends of the hanging point and the insulator string itself.
For horizontal insulator strings, the coordinates of the center of the left-side and right-side
faces of the OBB are calculated, corresponding to the coordinates of the target point at the
hanging points at both ends, respectively. For the “V-shaped” insulator string structure
in Tower A and Tower E, we consider it as two insulator strings during the segmentation
process, but the bottom two target points will be merged during the target point localization
so that there will be only five target points in the structure. A schematic diagram of the
positioning points for each part of the transmission tower is shown in Figure 15.
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5. Experimental Results and Analysis
5.1. Data Sets and Evaluation Criteria

In order to validate the performance of our proposed PCTTS model, as mentioned
before, we produced two types of datasets: one for part segmentation, which contains six
tower types and 200 “half-tower” point cloud data, and the other for instance segmentation,
which contains three tower types and 116 “half-tower” point cloud data. The specific
number of towers of each tower type and the partition of training and testing sets are
shown in Tables 1 and 2.

Table 1. Part segmentation dataset partition table.

Tower A B C D E F

Training set 37 33 23 28 31 8
Test set 9 8 6 7 8 2
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Table 2. Instance segmentation dataset partition table.

Tower A B C

Training set 37 33 23
Test set 9 8 6

In the above two datasets, the segmentation results of each tower type were evaluated
using the mean intersection over union (mIOU) [46], which is the most commonly used in
point cloud segmentation tasks and is calculated as follows:

mIOU =
1

k + 1∑k
i=0

pii

∑k
j=0 pij + ∑k

i=0 pji − pii
, (15)

where pij and pji denote the number of incorrect predictions, pii denotes the number of
correct predictions, and k denotes the number of categories.

5.2. PCTTS Model Training

We converted our dataset to the same format as the ShapeNet dataset [16], categorizing
each type of transmission tower into a separate class. We carried out the training in two
ways: one was to train all the transmission towers together and end up with a total model
file, and the other was to train each type of transmission tower separately and end up
with their individual model files. The purpose of the latter is to avoid different types of
transmission towers affecting each other to explore whether the segmentation accuracy
will be improved. Ultimately, the higher the segmentation accuracy, the more accurate our
target point localization will be.

For our task, the network is designed and implemented in PyTorch, and all experi-
ments are implemented in the same configuration. Among them, the hardware platform of
the experiment is Intel(R) Xeon(R) Gold 6130 CPU, two NVIDIA GeForce RTX 2080Ti GPUs
equipped with 11 GB memory each, and 128 GB RAM. The experimental software platform
is based on the Windows 10 PyCharm operating system, including CUDA 11.6, Pytorch
1.13.0, and Python 3.8.13. And we adopt the AdamW [47] optimizer and use optimization
techniques such as the cosine learning rate decay strategy, cross-entropy loss function with
label smoothing, etc., to optimize our model. The initial hyperparameters are shown in
Table 3.

Table 3. Training parameters.

Parameter Value

Learning rate 0.001
Minimum learning rate 0.00001

Weight decay 0.0001
Batch size 8

Epochs 200

5.3. Comparative Analysis of Automatic Segmentation Experiments for Point Cloud
Transmission Towers
5.3.1. Comparative Analysis of Part Segmentation Results

Based on our self-constructed point cloud transmission tower part segmentation
dataset, we complete the training to obtain the part segmentation model and compare the
PCTTS model proposed in this paper with the PointNet [28], PointNet++ [29], DGCNN [35],
Point Transformer [30], and PointMLP [48] models to assess the performance of the model.
The results are shown in Table 4.
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Table 4. Comparison of segmentation accuracy of different models on point cloud transmission tower
part segmentation dataset.

Method mIOU A B C D E F

PointNet 53.9% 82.2% 42.6% 56.9% 62.4% 37.7% 41.8%
PointNet++ 85.5% 95.8% 88.5% 87.8% 83.0% 88.1% 70.1%

DGCNN 90.9% 97.4% 91.8% 93.7% 85.6% 90.5% 86.1%
Point Transformer 67.4% 86.7% 70.2% 64.1% 63.3% 77.3% 42.5%

PointMLP 84.0% 94.4% 83.5% 87.8% 77.4% 83.2% 77.6%
PCTTS 94.1% 97.8% 94.2% 92.2% 92.4% 93.8% 94.0%

PCTTS-individual 96.1% 98.7% 97.1% 95.7% 94.1% 96.3% 94.8%

From the results in the above table, it can be seen that our model achieves the overall
optimal segmentation accuracy on the point cloud transmission tower part segmentation
dataset, with an mIOU value of 94.1%. Only the segmentation accuracy of Tower C is
lower than that of the DGCNN model by 1.5%, which proves the effectiveness of the
model. Meanwhile, if each type of transmission tower is trained separately to avoid mutual
interference, the final segmentation accuracy improves significantly, as shown in the last
row of Table 4. Figure 16 shows the segmentation results of the PCTTS model. Figure 17
shows the segmentation results of the other models.
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Figure 16. Visualization of PCTTS point cloud transmission tower part segmentation results, with the
tower body represented in blue, transmission lines in green, lightning lines in yellow, and insulator
strings in red. (a) PCTTS-Tower A. (b) PCTTS-Tower B. (c) PCTTS-Tower C. (d) PCTTS-Tower D.
(e) PCTTS-Tower E. (f) PCTTS-Tower F.
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Figure 17. Visualization of point cloud transmission tower part segmentation results for other models,
with the tower body represented in blue, transmission lines in green, lightning lines in yellow, and
insulator strings in red. (a) PointNet-Tower A. (b) PointNet++-Tower C. (c) DGCNN-Tower D.
(d) Point Transformer-Tower E. (e) PointMLP-Tower B.

As can be seen from the results in Figures 16 and 17, our model shows superior
performance in the part segmentation at the joints of the parts. In addition, the segmentation
results of our model do not have less misclassification in the region, compared to the results
of other models, which can be seen in Figure 17 and are shown as messed up colors. This
kind of misclassification will greatly impact the subsequent target point localization if
corresponding post-processing modification measures are not taken.

In addition to segmentation accuracy, we also compared the parameter count and per-
epoch runtime of the aforementioned models on the dataset for segmenting components
of transmission towers, as shown in Table 5. From the results in the table, it is evident
that there is no absolute relationship between the model’s performance and its parameter
count or runtime; rather, it mostly depends on the model design. Fully connected layers
tend to have a larger parameter count compared to convolutional layers, while transformer
architectures, due to their depth and the relevance of attention mechanisms, result in larger
parameter matrices and longer computation times. Moreover, better optimization strategies
and data parallelization also impact performance. We should balance accuracy, runtime,
parameter count, and other factors according to different usage scenarios. Ultimately, our
goal is to achieve optimal performance across all aspects.
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Table 5. Comparison of parameter count and runtime for different models on point cloud transmission
tower part segmentation dataset.

Method Time/Epoch Params.

PointNet 57 s 7.95 M
PointNet++ 81 s 1.66 M

DGCNN 12 s 1.39 M
Point Transformer 98 s 18.49 M

PointMLP 15 s 15.98 M
PCTTS 26 s 4.99 M

5.3.2. Comparative Analysis of Instance Segmentation Results

Since each component on the transmission tower needs to be photographed and
inspected one by one during the UAV inspection process, the indoor route planning should
identify all components as individual instances and localize their positions. The instance
segmentation experiment is considered here to separate each component. To do so, a point
cloud transmission tower instance segmentation dataset is created to train the instance
segmentation model, as we have described in Section 2.2. The PCTTS model proposed in
this paper, as well as the other above-mentioned models, is also compared to evaluate the
performance differences. The results are shown in Table 6.

Table 6. Comparison of segmentation accuracy of different models on point cloud transmission tower
instance segmentation dataset.

Method mIOU A B C

PointNet 32.4% 46.8% 19.0% 31.3%
PointNet++ 75.2% 89.8% 57.3% 78.4%

DGCNN 83.0% 92.0% 70.9% 86.1%
Point Transformer 50.9% 73.1% 38.7% 40.9%

PointMLP 76.5% 88.6% 68.4% 72.6%
PCTTS 86.9% 91.2% 83.3% 87.6%

PCTTS-individual 91.9% 93.3% 90.5% 92.0%

From the results in the above table, it can be seen that since the instance segmentation
is more refined than the part segmentation, the segmentation accuracies of all the models
have decreased compared to the part segmentation accuracies. However, the PCTTS model
still achieves the overall optimal segmentation accuracy, with the mIOU value reaching
86.9%, with the exception of tower A, which is lower than the DGCNN model by 0.8%.
Furthermore, if each type of transmission tower is trained separately to avoid mutual
interference, the segmentation accuracy improves mIOU by 5%, as shown in Table 6.
Figure 18 shows the segmentation results of the PCTTS model, while Figure 19 shows the
segmentation results of the other models.

As can be seen from the results, the main problems in instance segmentation compared
to part segmentation still lie in the unclear segmentation of the interconnected locations
of the structures, as well as the misclassification of certain regions, which can be seen in
Figure 19 and are shown as messed up colors. Comparing the segmentation results of the
PCTTS model with other models, it is shown that the PCTTS model is superior in terms of
having far fewer misclassification errors and better completeness, which is very helpful for
reducing the error of subsequent target localization work.
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Figure 19. Visualization of point cloud transmission tower instance segmentation results for other 
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Figure 18. Visualization of PCTTS point cloud transmission tower instance segmentation results,
where the color of each part is different. (a) PCTTS-Tower A. (b) PCTTS-Tower B. (c) PCTTS-Tower C.
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Figure 19. Visualization of point cloud transmission tower instance segmentation results for other
models, where the color of each part is different. (a) PointNet-Tower A. (b) PointNet++-Tower C.
(c) DGCNN-Tower C. (d) PointMLP-Tower B. (e) Point Transformer-Tower A.
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5.4. Analysis of Target Point Localization for UAV Inspection of Point Cloud Transmission Towers

After completing the original point cloud transmission tower data segmentation,
we extracted one transmission tower from each type for UAV inspection target point
localization experiments for both part segmentation and instance segmentation results. In
the results of part segmentation, we selected one transmission tower from each of the six
types and separated different individuals of the same structure by first doing a clustering
operation on the segmentation results. Then, according to the lightning line point cloud,
the insulator string point cloud fitting center point is finally calculated to obtain the UAV
inspection target point coordinates. For the special “V-shaped” insulator string position, it
is also necessary to integrate the two lower-end coordinates into one, as shown in Figure 20.
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Figure 20. Example of UAV inspection target point localization based on point cloud transmission
tower part segmentation results. (a) Tower A. (b) Tower B. (c) Tower C. (d) Tower D. (e) Tower E.
(f) Tower F.

In the results of the instance segmentation, we selected one transmission tower from
each of the three types of transmission towers, and the segmentation results were directly
used to fit the center point of each individual point cloud and then calculated to obtain
the coordinates of the target point of the UAV inspection. For the more special “V-shaped”
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insulator string location, it is also necessary to integrate the two lower-end coordinates into
one. The specific results are shown in Figure 21.

Remote Sens. 2024, 16, x FOR PEER REVIEW 24 of 27 
 

 

Figure 20. Example of UAV inspection target point localization based on point cloud transmission 
tower part segmentation results. (a) Tower A. (b) Tower B. (c) Tower C. (d) Tower D. (e) Tower E. 
(f) Tower F. 

In the results of the instance segmentation, we selected one transmission tower from 
each of the three types of transmission towers, and the segmentation results were directly 
used to fit the center point of each individual point cloud and then calculated to obtain 
the coordinates of the target point of the UAV inspection. For the more special “V-shaped” 
insulator string location, it is also necessary to integrate the two lower-end coordinates 
into one. The specific results are shown in Figure 21. 

From the results illustrated in Figures 20 and 21, the two segmentation methods show 
the high consistency of the final location of the UAV inspection target point. The main 
difference lies in the localizing point at the tower head position, where the former is lo-
cated near the lightning line, while the latter is located near the tower head. In general, 
the final results of the two segmentation methods are both acceptable and have trivial 
differences. 

Note here that the incompleteness of the tower point cloud, usually caused by the 
LiDAR data acquisition due to the obscured area, low reflectance of the materials, etc., 
may greatly affect the accuracy of the target point positioning. Therefore, it is not possible 
to automatically obtain the accurate coordinates of the UAV inspection target points 
where the key positions of the point cloud data are missed in a large area. In this case, 
human–computer interaction is necessary to validate and refine the automatic localization 
results. 

 

 
 

(a) Tower A (b) Tower B (c) Tower C 

Figure 21. Example of UAV inspection target point localization based on point cloud transmission 
tower instance segmentation results. (a) Tower A. (b) Tower B. (c) Tower C. 

5.5. Ablation Experiment 
In order to verify the validity of the PCTTS model proposed in this paper, we con-

ducted the following ablation experiments with identical experimental parameter settings 
described in Table 3, and the experimental results are shown in Tables 7 and 8. 

Table 7. Comparison of ablation experimental results for part segmentation of point cloud transmis-
sion towers. 

Method mIOU A B C D E F 
Use only Euclidean distance 92.8% 97.5% 91.5% 91.0% 92.4% 92.1% 92.1% 

Use only cosine similarity 92.3% 97.3% 91.7% 89.7% 91.9% 92.9% 90.5% 

Figure 21. Example of UAV inspection target point localization based on point cloud transmission
tower instance segmentation results. (a) Tower A. (b) Tower B. (c) Tower C.

From the results illustrated in Figures 20 and 21, the two segmentation methods show
the high consistency of the final location of the UAV inspection target point. The main
difference lies in the localizing point at the tower head position, where the former is located
near the lightning line, while the latter is located near the tower head. In general, the final
results of the two segmentation methods are both acceptable and have trivial differences.

Note here that the incompleteness of the tower point cloud, usually caused by the
LiDAR data acquisition due to the obscured area, low reflectance of the materials, etc., may
greatly affect the accuracy of the target point positioning. Therefore, it is not possible to
automatically obtain the accurate coordinates of the UAV inspection target points where
the key positions of the point cloud data are missed in a large area. In this case, human–
computer interaction is necessary to validate and refine the automatic localization results.

5.5. Ablation Experiment

In order to verify the validity of the PCTTS model proposed in this paper, we con-
ducted the following ablation experiments with identical experimental parameter settings
described in Table 3, and the experimental results are shown in Tables 7 and 8.

Table 7. Comparison of ablation experimental results for part segmentation of point cloud transmis-
sion towers.

Method mIOU A B C D E F

Use only Euclidean distance 92.8% 97.5% 91.5% 91.0% 92.4% 92.1% 92.1%
Use only cosine similarity 92.3% 97.3% 91.7% 89.7% 91.9% 92.9% 90.5%

Non-use of offset-attention mechanisms 93.3% 97.9% 92.2% 90.9% 92.8% 93.3% 92.9%
PCTTS 94.1% 97.8% 94.2% 92.2% 92.4% 93.8% 94.0%
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Table 8. Comparison of ablation experimental results, for instance, segmentation of point cloud
transmission towers.

Method mIOU A B C

Use only Euclidean distance 61.2% 55.6% 81.7% 46.5%
Use only cosine similarity 69.9% 77.1% 70.7% 61.5%

Non-use of offset-attention mechanisms 80.8% 88.5% 83.4% 70.6%
PCTTS 86.9% 91.2% 83.3% 87.6%

From the results shown in Tables 7 and 8, it can be seen that the simultaneous use of
the Euclidean distance feature and the cosine similarity feature can effectively improve the
segmentation accuracy both in the point cloud part segmentation and instance segmenta-
tion. The improvement is especially significant in the instance segmentation experiments,
which indicates that the simultaneous use of these two features can effectively improve
the segmentation performance of the model and the ability of the model to differentiate
between individuals of the symmetric structure. Given the lesser amount and slightly lower
quality of data in Tower C compared to Towers A and B, along with the findings from the
ablation experiments, we observe that the offset-attention mechanism is more effective in
enhancing the model’s capability to concentrate on the target region. This improvement
contributes to better segmentation performance, particularly in scenarios with suboptimal
data quality and limited dataset size.

The ablation experimental results verify that the method proposed in this paper, when
using Euclidean distance and cosine similarity as features at the same time and adding
the offset-attention mechanism, is able to improve the performance of the model more
comprehensively, especially in instance segmentation.

6. Conclusions

To reduce the labor work involved in the manual determination of the target point
of UAV inspection, this paper proposes a deep learning-based target point localization
method for point cloud transmission towers by UAV inspection. The method first extracts
the transmission tower from the original transmission channel point cloud data, then
proposes a PCTTS deep learning model to segment the transmission tower point cloud
data automatically and uses the segmented results to locate the coordinates of the target
point of the key component of the transmission tower. The following conclusions can be
drawn from the experimental results of this paper:

(1) The deep learning-based point cloud transmission tower UAV inspection target point
localization method proposed in this paper has the advantages of low artificial de-
mand, high operational efficiency, and low cost. Based on the current experimen-
tal results, this method demonstrates strong generalization capabilities for various
types of transmission towers, providing substantial assistance in periodic power
inspection operations;

(2) Compared with other commonly used models in the field of point cloud segmentation,
the PCTTS point cloud transmission tower automatic segmentation model proposed
in this paper shows a better segmentation effect for transmission tower point cloud
data by solving point cloud down-sampling, translation, and rotation invariance;

(3) The automatic part and component segmentation results of the transmission tower
point cloud data by the PCTTS model, combined with the corresponding target point
positioning algorithm, have the potential to replace the traditional manual selection
of the inspection target point, which may significantly reduce the labor work time
and costs.
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