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Abstract: Leveraging mid-resolution satellite images such as Landsat 8 for accurate farmland seg-
mentation and land change monitoring is crucial for agricultural management, yet is hindered by the
scarcity of labelled data for the training of supervised deep learning pipelines. The particular focus
of this study is on addressing the scarcity of labelled images. This paper introduces several contri-
butions, including a systematic satellite image data augmentation approach that aims to maintain
data population consistency during model training, thus mitigating performance degradation. To
alleviate the labour-intensive task of pixel-wise image labelling, we present a novel application of a
modified conditional generative adversarial network (CGAN) to generate artificial satellite images
and corresponding farm labels. Additionally, we scrutinize the role of spectral bands in satellite image
segmentation and compare two prominent semantic segmentation models, U-Net and DeepLabV3+,
with diverse backbone structures. Our empirical findings demonstrate that augmenting the dataset
with up to 22.85% artificial samples significantly enhances the model performance. Notably, the
U-Net model, employing standard convolution, outperforms the DeepLabV3+ models with atrous
convolution, achieving a segmentation accuracy of 86.92% on the test data.

Keywords: farm segmentation; deep learning; semantic segmentation; NDVI; CGANs

1. Introduction

Satellite images are an important source of data for agricultural and environmental studies,
given their world-level view, especially for addressing the challenges induced by climate change,
such as the considerable reduction in average crop yields. Nearly 800 million people in the
world are in shortage of food supplies, and in a couple of decades, the food demand is expected
to increase by 60% [1]. Remote sensing has helped in monitoring different land cover changes,
including agricultural areas [2—4].

In connection to the agricultural domain, satellite images have proven to be effective
in monitoring farmlands and agricultural fields. Traditional surveys of farmlands are expen-
sive and labour-intensive. Remote sensing can help to extract pixel-level information from
satellite images to develop sustainable agricultural methods and crop planning. The obtained
information can empower various stakeholders to make better-informed decisions in order to
tackle climate change challenges and increase yield productivity at the same time [5].

In order to conduct studies on the effects of climate change on agriculture, a long
history of time series of satellite images, e.g., from previous decades, is required. One
existing source of satellite imagery in this case is the Landsat collection. Landsat is one of
the oldest and most robust satellite programs, launched by NASA in 1967. The program has
maintained impressive continuity over the years [6]. However, Landsat images are in low
spatial resolution, e.g., 30 m per pixel. Therefore, it remains a challenge to segment objects
as the first step of the analysis pipelines for different purposes. Semantic segmentation of
these images to identify farmlands is a crucial step to be able to predict the crop types and
yield and monitor the health of crops.
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This paper investigates three important factors in the segmentation of Landsat images,
particularly in farm areas: the augmentation of data to compensate for the common problem
of a lack of labelled pixels, the model architecture, and the type of spectral bands. We first
pre-process and label the satellite images as one of two categories: farms and non-farms;
then, we use the labelled patches of the data to perform semantic segmentation. In this
study, we focus on supervised semantic segmentation strategies using deep learning models.
The selection of the group of deep learning strategies is due to their superiority in terms
of accuracy compared to other groups of feature extraction and classification methods as
compared in previous studies [7-10]. One of the main challenges in training deep models is
related to the limited availability of labelled images, which can cause model over-fitting and
influence segmentation accuracy. Therefore, data augmentation is conducted. The common
strategies for augmentation are based on applying noise or affine transformation to the
images, which only increases the number of images while keeping the same array of mask
labels between the augmented and original images. However, to the best of our knowledge,
no previous studies have attempted to generate new masks besides images in the field
of remote sensing for farmland segmentation using mid-resolution satellite imagery. We
address this problem by training a CGAN [11] model. In terms of the models, two popular
semantic segmentation pipelines based on U-Net [12] and DeeplabV3+ [13] are compared.
We also evaluate the performance when leveraging transfer learning approaches using
pre-trained networks. Furthermore, the influence of the spectral bands on the segmentation
results is studied. The main contributions of this paper are summarized as follows:

1.  We develop a new labelled dataset of 30 m resolution Landsat 8 images with labelled
farm and non-farm areas from the region of Emilia-Romagna in Italy.

2. We compare two encoder-decoder-based semantic segmentation pipelines using two
different convolution strategies.

3. We compare the effects of different band combinations on segmentation results, such
as RGB, the normalised vegetation index (NDVI), and the combination of the NDVI
and other visible bands.

4. We tackle the problem of label scarcity by data augmentation and generating both
images and the masks using a CGAN, in addition to systematically including the
augmented images to avoid drastic data shifts in the training samples.

The rest of this paper is structured as follows. Section 2 reviews the relevant literature and
describes the necessary background for this study. Section 3 describes the particular study
area, the dataset, and the methodology. Section 4 reports the results of the experiments, and,
finally, we provide a comprehensive discussion of the experimental results in Section 5.

2. Background and Previous Work
2.1. Farm Area Segmentation in Agricultural Studies

Farm area segmentation is an important step in the analysis of satellite images in agri-
cultural studies, such as crop monitoring. Image segmentation is influenced by different
factors, such as the image’s spatial and spectral resolution, the availability of ground-truth
labels, the size of the farms, etc. Although farms usually have large land cover features and
can be detected even with mid-resolution images, having higher-resolution images would
improve the monitoring of crop characteristics and the development of prediction models.
That is especially the case in boundary areas, with mixing pixel issues. However, to develop a
robust time-series crop prediction model, historical data are essential; thus, despite the growth
in a significant number of high-resolution satellite constellations that have been launched
recently, they all are fairly new and lack a legacy of data availability, unlike Landsat imagery.
The resolution of the Landsat images is 30 m and, with rich, historical, worldwide coverage,
which can be used to develop a robust time series-based crop yield prediction model. Due
to continuous improvements in the Landsat program and with the upcoming resolution of
10m in the Landsat 9 mission [14], more accurate image segmentation for the monitoring
of the crop life cycle would be possible in the future. By addressing these two important
factors, i.e., access to historical data and the availability of high-resolution imagery, we can
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remove important barriers in time-series studies of climate change and allow for more accurate
future analyses.

2.2. Traditional Semantic Segmentation Techniques

Before the advent of deep learning models, traditionally, the primitive characteristics
of an image were used to perform semantic segmentation. Just as we humans look at an
object and learn to differentiate by looking at various features, such as colour, texture,
and shape, computer algorithms work similarly. Conventional techniques attempt to find
the critical points of an object and define a descriptor for each object. Some examples
of such techniques are the scale-invariant feature transform (SIFT) [15], the use of the
difference of Gaussian (DoG), and a computationally efficient algorithm named Features
from Accelerated Segment Test (FAST) [16] that attempts to find corner descriptors. This
group of methods attempts to learn different features, such as an edge, boundary, region,
etc. Then, the descriptors can be used for decision-making and object segmentation.

Semantic segmentation methods can be broadly classified into two main categories:
supervised and unsupervised semantic segmentation. Supervised semantic segmentation
relies on labelled training data to train models that can recognize and segment objects or
regions in images. On the other hand, unsupervised semantic segmentation aims to identify
meaningful regions or objects without explicit annotations, using data-driven techniques to
discover patterns and similarities within the image data. Various techniques are available
for segmentation and have distinct characteristics. Threshold-based techniques capture
the intensities of neighbouring pixels and assign local threshold values [17]. The Otsu
threshold [18] is one of the most widely used standards in different applications [19].
Clustering strategies group pixels into different classes based on different types of visual
or spectral features and assign them to separate regions. For example, the Simple Linear
Iterative Clustering (SLIC) algorithm [20] clusters pixels based on similarity. Fuzzy C-
means [21] provide soft clustering and handle noise well, but they may struggle with
sharp boundaries and require careful initialization. Similarly, graph-cut algorithms require
the definition of an energy function to incorporate colour and spatial information [22].
On the other hand, there are more recent models based on deep learning methods such
as REDO [23], which is based on the scene decomposition concept. It combines dilated
convolutions and residual connections for multi-scale context analysis. Their incurred
computational cost and complexity are higher. Furthermore, WNET is based on two UNET
architectures, which are based on reconstruction loss and a graph-cut loss to avoid over-
segmentation [24]. However, the accuracy of the unsupervised methods is usually lower
compared to the supervised strategies.

2.3. Deep Learning Strategies in Remote Sensing

Supervised methods, such as conditional random fields (CRF), incorporate spatial
coherence and contextual information by modelling dependencies between neighbouring
pixels [25], ensuring smoothness in segmentation results. However, CRF may require
handcrafted features and additional processing steps, such as feature extraction, data prepa-
ration, or parameter tuning, which can introduce complexity and additional time to the
overall segmentation process. Then, it can be computationally expensive, particularly for
large images. Mask R-CNN combines object detection with instance-level segmentation,
delivering accurate and detailed segmentation, yet it is computationally intensive during
training and necessitates a substantial amount of labelled training data for optimal perfor-
mance [26]. U-Net, DeepLab [27], and Transformers [28] are three recent popular models
for semantic segmentation tasks. U-Net is an encoder-decoder architecture with skip
connections, enabling it to capture both local and global context information. It excels at
handling small objects but may suffer from a limited receptive field. Its loss function often
includes pixel-wise cross-entropy and dice loss, which can effectively address the class
imbalance. However, U-Net may struggle with complex boundary delineation and large
dataset requirements compared to Mask R-CNN. On the other hand, the DeepLab family
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of models utilizes atrous convolutions (dilated convolutions) to enlarge the receptive field,
enabling it to capture extensive context information. It may employ various loss functions,
such as cross-entropy, Lovasz-Softmax, or bootstrapped cross-entropy, which handle object
boundaries better than U-Net. DeepLab performs well with large datasets but may not be
as effective with smaller ones. In contrast, the Transformer model, originally designed for
natural language processing, can be adapted to semantic segmentation using self-attention
mechanisms. This allows it to capture long-range dependencies effectively. It often employs
the Dice loss function or a combination of cross-entropy and Dice loss. Transformers excel
in handling long-range context but may struggle with fine-grained details, leading to less
precise segmentation results. They also require substantial computational resources and
may not be well-suited for real-time applications.

Many of the above-mentioned methods have been adopted for the segmentation of
objects in satellite images. In the case of agricultural fields, the segmentation is influenced
by spatial and spectral resolution, the type of bands, labels, farm size and nature of the
farm patterns, and environmental conditions such as cloud coverage and illuminations.

For example, the intensity of light in satellite images varies greatly depending on the
time of the year and day and weather conditions. Segmentation in such a dynamic scenario
is not easy. Although some work has been done [29,30] to alleviate this challenge, overall,
traditional algorithms fail to develop models with high generalization for complex field
structures and seasonal illumination. In particular, the traditional semantic segmentation
techniques have numerous disadvantages as compared to deep learning-based architec-
tures, including lower accuracy and limited ability to handle complex images with multiple
objects or overlapping regions. Traditional techniques fail to capture the full context of an
image, whereas convolutional architectures learn stronger features with abstraction from
raw data [31,32].

Supervised deep learning strategies have been widely adopted in the field of remote
sensing for semantic segmentation and have outperformed the traditional methods in vari-
ous applications, ranging from pre-processing to segmentation and object detection [33].
However, the performance of the models relies heavily on good ground-truth labels to
make meaningful predictions. The most common satellites, such as Landsat and Sentinel2,
provide visible, NIR, and SWIR wavelengths, allowing for the utilization of different stan-
dard wavelengths and combinations thereof. Since satellite images are usually complex
based on the diversity of land cover types, including various spectral bands would provide
additional information depending on the nature of the desired land cover, such as texture,
colour, temperature, water content, and other physio-chemical characteristics. Besides
the original bands, a combination of them based on vegetation indices such as the nor-
malised vegetation index (NDVI) has been used for satellite image segmentation. Several
works [34-37] have utilised various band combinations to identify crops and to categorise
land use.

2.4. Addressing Data Scarcity and Quality

Another important factor, especially in the case of supervised segmentation strategies,
is the amount of training data. Given the challenges in labelling satellite imagery, insuffi-
cient training labels are usually a challenge. Reviewing the literature [38—40] shows that
image augmentation methods have been used to alleviate this problem. Augmentation
methods that incorporate geometric transformations and image quality corruption have
been demonstrated to enhance the model’s accuracy by effectively expanding the dataset
size. Another recent approach to this problem of data scarcity is to generate synthetic im-
agery using generative adversarial networks (GANSs). In [41], GANs were used to perform
style transfer on remote sensing images to change the content and meaning of the images.
The work transferred styles in between seasons to produce images and different land cover
types using the pix2pix [42] GAN architecture. Marin et al. proposed a new network to
generate satellite images from available ground-truth labels [43]. GANs are also heavily
used to remove clouds in satellite imagery [44].
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3. Data Description and Pre-Processing
3.1. Study Area: Emilia-Romagna, Italy

The region of Emilia-Romagna, located in northern Italy (Figure 1), is one of the
country’s most advanced regions in terms of agricultural production. The region covers
an area of 22,446 sq. km. It benefits from favourable geographical, land and climatic
conditions, allowing for the cultivation of a diverse range of crops. Wheat and sugar beets
are the major crops grown in this region, together with other vegetables. The region enjoys
a mild continental climate year-round, with January being the coldest month, when the
temperature drops to 6 °C, and the hottest temperatures are usually recorded in July, at
around 30 °C. Rainfall in the region is fairly evenly and distributed throughout the year,
with two peak rainfall seasons in the spring and autumn [45]. We selected this region as
our region of interest for this study as it has a good spread of farmlands [46], which are
clear enough to be segmented in 30 m resolution satellite images.

REGGIO
EMILIA

BOLOGNA.

Figure 1. Region of Emilia-Romagna, Italy.

3.2. Experimental Data

The Earth observation satellite mission called Landsat 8 was launched and operated
jointly by NASA and the United States Geological Survey (USGS) in 2013. The mission
consists of two major sensors divided into different band ranges, and a total of 11 bands
are available. The satellite is capable of operating in near-infrared and visible light to
thermal infrared bands.Each band is categorised by different wavelengths. Operational
Land Imager (OLI) and the Thermal Infrared Sensor (TIRS) are the two main instruments
responsible for providing earth coverage at 30 m resolution for visible, infrared, and near-
infrared light—100 m for thermal and 15 m for panchromatic. Landsat 8 captures at an
interval of 16-day frequency, with 740 daily scenes [47]. In the context of Landsat images,
a “scene” refers to a specific area on Earth’s surface that is captured by a single sweep of
a Landsat satellite. These scenes are organized and indexed according to the Worldwide
Reference System to make it easy to locate and access images of particular regions. Table 1
describes the different band information.

Satellite imagery from Landsat OLI 8 Collection 2 Level-2 covers the region of interest
(ROI) in two tiles/scenes as seen in Figure 2. Landsat OLI 8 scenes from Emilia-Romagna
(44.5968°N, 11.2186°E), for July 2020, with less than 10% cloud coverage, were used for this
study and were downloaded from EarthExplorer [47], out of which it was ensured that
only cloud-free, clear image tiles were selected after generating patches.
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Table 1. Description of Landsat 8 bands.

Band No. Name Wavelength (um) Resolution (m) Sensor
1 Coastal aerosol 0.43-0.45 30 OLI
2 Blue 0.45-0.51 30 OLI
3 Green 0.53-0.59 30 OLI
4 Red 0.63-0.67 30 OLI
5 Near-Infrared (NIR) 0.85-0.88 30 OLI
6 Short-wave Infrared (SWIR) 1 1.57-1.65 30 OLI
7 Short-wave Infrared (SWIR) 2 2.11-2.29 30 OLI
8 Panchromatic 0.50-0.68 15 OLI
9 Cirrus 1.36-1.38 30 OLI
10 TIRS 1 2.11-2.29 30 (100) TIRS
11 TIRS 2 10.60-11.19 30 (100) TIRS

1100000 1200000 1300000 1400000

Region of Interest- Emilia Romagna, Italy !

5700000

5550000

5400000

5250000

0 25 50 75 100 125km
— e —

1100000 1200000 1300000 1400000

Figure 2. Landsat OLI 8 scene covering the region of Emilia-Romagna in two tiles/scenes (path
192-193 and row 029). Image obtained from USGS EarthExplorer [47].

3.3. Satellite Imagery Pre-Processing
3.3.1. Radiometric Band Correction

Radiometric band correction eliminates the effects of atmospheric, illumination, and
other errors incurred by the sensors to enhance the quality of satellite imagery. The
corrections are applied by first converting the digital number to spectral radiance, and
then into reflectance. To make the satellite images ready for analysis/experiments, certain
pre-processing steps need to be implemented. Some of the most commonly followed steps
are conversion to radiance, solar correction, atmospheric correction, topographic correction
etc. [48]. The Landsat 8 imagery is radiometrically corrected, and more on these corrections
can be learned in detail from the Landsat 8 handbook [49].

In this study, the image tile downloaded from Landsat OLI 8 consists of various bands
mentioned in Table 1 in the GeoTIFF format. They are available as 16-bit images with
unique multi-spectral bands at 30 m resolution. Combinations of these bands, when used
in varying configurations, result in composite images. For example, the band combination
(4, 2, 3) yields a natural composite image [50].

3.3.2. Dark Object Correction (DOC)

Dark object correction (DOC) is a pre-processing technique commonly used in remote
sensing and image processing to mitigate the effects of atmospheric scattering in satellite or
aerial images (Figure 3). It involves identifying dark objects in the image, such as bodies of
water or regions with low reflectance, which are assumed to represent areas with minimal
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contribution from surface features. By using these dark objects, the technique estimates the
contribution of atmospheric scattering. The estimated scattering values are then subtracted
from the original image values, resulting in a corrected image that reveals more accurate
information about the underlying surface features. In some cases, each pixel in the image is
subtracted by a reference value, which is typically chosen as the lowest value found in the
near-infrared (NIR) band. This reference value serves as a baseline and helps eliminate the
impact of haze and atmospheric scattering, further enhancing the clarity of the corrected
image [51,52]. All bands were converted to radiance and DOS-corrected using the free free
QGIS Desktop 3.22.11 software [53].

(A) (B)

Figure 3. Dark object correction (DOC). (A) Originally dark raw Landsat 8 scene with values for
different intensities at each pixel. (B) DOS- and colour-corrected Landsat tile.

4. Methodology

In this work, supervised semantic farmland segmentation is performed using deep
neural network-based architectures and pre-trained networks. To improve the performance
of the models, we further explore different strategies to increase the accuracy by leveraging
the use of different band information. The imagery dataset is also expanded by adding
transformations, such as geometric transformation and corruption of pixels by adding
noise. Synthetic image generation is widely used in medical fields to expand the limited
data, and this paper attempts to generate image and mask pairs using conditional GANs to
generate more training samples. The overall experimental analysis followed is described in
Figure 4.

Step 3
| Identifying the optimum band combination ‘
Step 1 Step 2
. Identifying the optimum
Pre-processing semantic segmentation Comparing RGB with NDVI-Green-Blue
f’f Landsat-8 OLI deep learning model (RGB)
imagery

[ Comparing RGB with Healthy Vegetation (NIR, ]

[| U-net | | Deeplab V3+ q SWIR1 and Blue)
I l Step 4

X Evaluation of the effect of data augmentation
Generating Best model chosen for ) .
X on semantic segmentation
patches and further experiments
labelling \
Farms(1) and [ RGB + augmented images with noise J
Non-farms(0)

[ RGB+ Synthetic cGAN generated data ]

Figure 4. The overall analysis plan for the paper.

4.1. Supervised Semantic Segmentation

Since the main aim of this current study is farm area segmentation, everything other
than farmlands is considered as the non-farm category. The farms are labelled as 1 and
non-farms as 0. To generate training patches of an image, the tile was divided into patches
of size 256 x 256 as illustrated in Figure 5. In the following, the two main segmentation
strategies employed in this study will be explained briefly.
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256x256 m (256x256). 8-bit 64K

RGB Image 256X256 Patches Labelled Mask

Figure 5. Landsat image converted into 256 x 256 non-overlapping patches.

4.1.1. Multi-Scale Feature Fusion Based on U-Net

In a deep learning architecture, the higher-level features extracted at deeper layers
hold more information about the semantics but fail to capture the spatial details due to
stride convolutions and pooling. It is essential for the lower-layer features and the features
extracted at deeper levels to work together to boost the performance of the model. Fully
convolutional networks (FCNs) [54] introduced feature enhancement techniques by using
the skip connection strategy. The feature for prediction and the features located in the
middle layers are connected via a skip connection. This strategy has improved semantic
accuracy. Rooneberger et al. [12] proposed the U-Net architecture in 2015 for biomedical
image segmentation. The architecture (Figure 6) is an encoder—decoder, which extracts the
features from each layer by using skip connections. The encoder acts as the contraction path,
learning the latent representation of the input image. It reduces the spatial dimension and
doubles the number of feature channels at every encoder block, whereas, at the opposite
end of the architecture, the decoder acts as the expansion path, retrieving the compressed
information by doubling the spatial resolution. The skip connection ensures that the feature
maps to the decoder so that it learns better and produces better output.

The U-Net architecture has gained popularity in medical image segmentation and has
also found applications in segmenting urban images. By employing a softmax function, the
model generates segmentation results that can effectively delineate objects of interest in
the input images. What sets U-Net apart from other CNNSs is its ability to achieve accurate
segmentation with a smaller training dataset. This means that U-Net can effectively identify
and label specific regions within an image, resulting in higher precision when compared to
alternative CNN architectures [55].

C1+256x256x8
C9 256x256x8

Input 8 8 256x256x16
256x256x3
— C1256°256*8
Output
256x256x1
C2+128x128x16

16 16 128x128x32
usﬂzgxs C2128*128*16
C8 128x128x16
32 32 C3+ 64x64x32 16 16
64x64x64
64x64x16 €3 64x64x32 C7 64x64x32
Padding = Same
64 64 Ca+ 32x32x64 Convolution 3x3 ReLU
c4 32x32x64 32X32X128 32 32 Maxpool 2x2
32x32x32 —_— C6 32X32X64 Upsample 2x2
128 128 = Final Convolution

/ 64 64 1x1
16x16x64 . . . cs

16x16x128
Figure 6. Adapted U-Net architecture.

4.1.2. Contextual Features Based on Atrous Filtering

This group of methods looks at the full context of the image to make the model aware
of the semantics, not just at the pixel level but at the overall picture/context of the image.
Context information can boost the performance of the models. Dilated-Net [56] is one such
popular method; by aggregating the different multi-scale contexts on dilated convolution,
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it leverages the use of dilation rates based on the receptive field. The larger the receptive
field, the higher the dilation rate for the convolution. Five different dilation rates, i.e., 1,2, 4,
8, and 16, are used to derive contexts. A CNN combined with conditional random fields is
used to extract the patch-wise context in the multi-scale pyramid pooling module (PPM) [13].
The module has laid the foundation for some very popular methods, such as the DeepLab
family [27], which leverages atrous spatial pyramid pooling (ASPP) and replaces the pooling
with atrous convolution, as illustrated in Figure 7.

Normal 3x3 3x3
convolution Atrous Atrous
Convolution Convolution
Stride 2 Stride 3

Figure 7. Atrous convolution spatial pyramid pooling: different convolution rates explore the image
to enhance the visual receptive fields [27].

The Deeplab family of models is based on atrous convolutions. DeepLabv3+ as shown
in Figure 8 is implemented using the encoder-decoder architecture. It overcomes two
problems faced while using fully convolutional network-based algorithms for semantic
segmentation; first, it compromises feature resolution by pooling operations and because
the objects exist at multiple scales [13]. As the name suggests, the model comprises two
parts: the encoder, which is responsible for reducing the feature maps and extracting the
semantic features, and the decoder, which recovers the spatial information. The advantage
of DeepLabv3+ over its former version, Deeplabv3 [57], is that the encoder bi-linearly
upsamples by a factor of 4 instead of 16 to avoid any loss of features and, thereafter,
combines with the low-level feature from the encoder with the same spatial resolution. The
architecture can be seen in Figure 8 below.

” _.'

3x3 convRate6 —

1x1 conv
—
3x3conv Rate 12 —>

—

3x3conv Rate 18

|

1

1

( i

1

Image Pooling —> ' :
1

Encoder

Output
by ™~

Rt

P () — e o) g}‘i.
Conv i N

X ‘-.ﬁ

v
Up-sample by 4

T
I
I
I
I
I
I
I
I
|
i
i
|
; i
Low-level features]
i
i
I
+

Decoder

Figure 8. DeepLabV3+ architecture.

The CNN architecture with integrated atrous convolutions enables the capture of
multi-scale contextual information without significantly increasing computation. This is
crucial for segmenting farmlands with varying sizes and complexities. The ASPP (atrous
spatial pyramid pooling) module in DeeplabV3+ further enhances context aggregation
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by using multiple parallel atrous convolutional layers with different dilation rates. This
enables the model to capture both local and global features, aiding in farmland boundary
delineation. Moreover, the skip connections and feature fusion through the decoder part
of DeeplabV3+ help refine segmentation maps by combining low-level and high-level
features, allowing it to effectively capture intricate details in farmland imagery. In the
implemented DeepLabv3+ model, after some initial tests with different stride values, a
stride of 16 was found appropriate for the model.

4.2. Spectral Images for Semantic Segmentation

The interaction of electromagnetic energy with the vegetation in different band spaces,
such as red, green, blue, and other infrared bands, helps to formulate different indices. In
agriculture and environment studies, different indices are used by combining the visible and
NIR bands of the satellite images. Transforming multiple spectral bands into one vegetation
index allows the farmland or land cover vegetation objects to be better distinguished and
enhances segmentation in satellite imagery.

4.2.1. Normalized Difference Vegetation Index (NDVI)

The health of vegetation can be directly estimated using the NDVI [58]. The NDVIis a
popular vegetation index due to its ability to provide a direct indication of the health of
vegetation. It effectively captures vegetation health by utilizing a normalized difference
calculation and focusing on the areas where chlorophyll absorbs and reflects light the most.
This characteristic enables NDVI to be highly informative across various conditions. The
vegetation can be highlighted using simple thresholds of higher values, removing the other
lower reflecting surface materials. The NDVI is calculated as follows:

NIR — Red
DVl= ———— 1
N NIR + Red’ @
The values the range between +1, indicating healthy vegetation, and —1, indicating no/poor

vegetation (Figure 9).

BN No Vegetation

Bare Area

Low Vegetation
I Moderate Vegetatior]
Il High Vegetation

Figure 9. Illustration of a 256 x 256 patch of an NDVIimage randomly selected from Emilia-Romagna,
covering around 1966.0 km?. The pixels in different levels of vegetation using the NDVI standard
range are depicted in different colours. Translating the colours to numerical values, the no/low-
vegetation areas are closer to —1, while the high-vegetation parts are close to +1.

4.2.2. Agriculture Band Composite Imagery

Band combinations of the NIR, SWIR1, and blue ranges are widely used for crop
monitoring. As illustrated in Figure 10, land with healthy crops is distinguished by shades
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of orange, red, and brown, whereas uncultivated areas with soil are black to brown, and
other land cover, such as residential areas, is cyan blue [59]. The NIR band’s range indicates
the highest plant leaf-based reflectance, making it ideal for crop monitoring.

Figure 10. Illustration of the same 256 x 256 patch shown in Figure 9 in the format of an agriculture
composite image shaped using SWIR, NIR, and blue bands. The patch is randomly selected from
Emilia-Romagna, covering around 1966.0 km?. The healthy vegetation (vibrant green colour) appears
different from the bare earth (magenta) and non-crop vegetation (pale green) [59].

4.3. Data Augmentation

Image augmentation is essential when there is a scarcity of labels for supervised se-
mantic segmentation. In this context, data augmentation refers to the process of generating
new training samples by applying various transformations to the existing labelled im-
ages [60-62]. This technique effectively increases the diversity and quantity of the available
training data, which, in turn, enhances the performance and generalization of the super-
vised semantic segmentation model. The significance of data augmentation lies in its ability
to alleviate the effects of label scarcity. Since obtaining accurate pixel-level annotations
for semantic segmentation can be time-consuming and costly, the availability of labelled
images is often limited. However, by augmenting the existing labelled data, new samples
can be generated based on two main strategies. (i) Image corruption and transformation,
such as rotation, adding noise, and pixel distortion, can be employed. This only expands
the number of images, but no new labels are generated. (ii) A data-driven strategy based
on GAN s can also be used. To generate new images, as well as labels, a CGAN can be used.
This artificially expands the training dataset, allowing the model to learn more robust and
discriminate features, improving its ability to handle diverse real-world scenarios.

Nevertheless, there is a risk associated with augmenting data excessively. When data
augmentation is applied excessively, it may lead to over-fitting [62—-64]. Data augmentation
can also introduce model shift problems. Model shift refers to the phenomenon where the
performance of a model deteriorates when it is exposed to data that significantly differ
from the training distribution. If the augmentation techniques used during training do not
adequately represent the real-world variations in the test data, the model may struggle to
accurately segment the unseen images. This can result in a significant drop in performance
when deploying the model in real-world scenarios. To mitigate these risks, it is crucial
to strike a balance between the amount of data augmentation applied and the diversity
of the augmented samples. One of the challenges encountered in the analysis of readily
available satellite images lies in the absence of structured and labelled datasets, which is
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particularly true for developing countries. Consequently, preparing a substantial dataset
of labelled imagery for the specified area presents a formidable challenge. To enhance the
existing datasets for deep learning models, the adoption of data augmentation techniques
becomes imperative. This paper aims to elucidate the two augmentation methods, one
encompassing various strategies such as image transformations and corruption and the
other by generating images using CGANSs.

4.3.1. Image Augmentation Based on Transformation and Noise

In order to increase the training samples, we experimented by injecting noise into
the dataset to expand the existing imagery. As seen in Figure 11, different noises, such as
Gaussian, salt, pepper, a combination of salt and pepper,local var, speckle, and Poisson,
were added. To add geometric transformation, the images were rotated 90 degrees to the
right, as illustrated in Figure 12 below.

Guas:
N

Localvar
y

Figure 11. Hlustration of a 256 x 256 patch of the image randomly selected from Emilia-Romagna, covering
around 1966.0 km?. The original image patch, as well as the results of applying various types of noises to the
same patch, is visualised, showing how the training images were augmented in the dataset.
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We used the free Python image processing toolbox scikit-image [65]. The probability
of noise was set to 0.05 to avoid any major deterioration of pixels.

Figure 12. Geometric transformation.

4.3.2. Conditional Generative Adversarial Models (cGANSs) for Data Augmentation

A generative adversarial network (GAN) is a generative model consisting of two
main components: the generator and the discriminator. The role of the generator is to
produce new images from given training samples such that the discriminator is not able to
discriminate them from real samples. ‘Adversarial’ indicates that the training is conducted
simultaneously in a zero-sum fashion, i.e., the better the discriminator performs, the worse
the performance of the generator and vice-versa if the discriminator fails to identify real or
fake (generated) images. They compete against each other, and eventually, both components
improve together. In 2014, conditional GANs were developed to achieve the controlled
generation of synthetic images [11]. The generator and discriminator are provided with
additional information about the images in the form of ‘labels’. The coupled loss function
of the network is described in the following equation:

mingmaxp V(D,G) = Ex[logD(x|y)] + Ez[log(1 — D(G(z]y)))], @

where D(x|y) represents the discriminator’s probability of guessing that x is real, given
the condition/label i, whereas Ey is the expected value for all real data. G(z) is the output
generated by the generator given noise z. D(G(z|y)) is the discriminator’s prediction
that the fake sample is real. E, signifies the average value we expect to obtain from the
generated fake instances when considering all potential inputs.

In our work, the limited dataset is expanded using conditional GANSs for the gen-
eration of synthetic images and mask pairs. To implement this, we adapted the method
proposed in the works of Neff et al. [66], which was originally developed for medical
image segmentation using a DCGAN [67]. In this study, we adopt a modified, diagram-
matically represented in Figure 13 CGAN model [66]. The original work was developed
for X-ray images, to generate synthetic image-mask pairs. However, there are differences
between the satellite imagery data and the previous work on medical X-ray images in
terms of their texture, pattern distribution, and resolution. Satellite images consist of
diverse textures and distributions of patterns due to the wide range of the viewed land
covers and environmental factors, e.g., weather conditions. Another challenge is that there
is not necessarily a balanced number of pixels from all land cover types in the view of
satellite images. Moreover, their lower resolution (1 pixel = 30 m) due to the far view of the
sensor poses challenges for accurate synthetic image generation. Thus, the heterogeneous
patterns in satellite imagery require the capture of diverse features and the learning of a
greater number of data distributions by the generator of the CGAN model. That is more
challenging using adversarial loss in a CGAN compared to the more homogenous classes of
patterns in medical X-ray images. Although the adopted CGAN pipeline parameters were
optimized for the remote sensing data, the effect of the induced challenges as described
causes challenges in reaching convergence in adversarial training and influences the images
synthesized by the model generator that attempts to convincingly mimic real-world scenes.
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Therefore, two further experiments were conducted for the evaluation of the synthesized
images in terms of sharpness and color, which will be described in the following sections.

Real Image/Mask Pair

> Discriminator > Real or Fake?
—

Noise
N Generator

T

Label

Figure 13. Modified CGAN with two-branched generators.

The model architecture includes a generator that is divided into two channels, as
shown in Figure 14: one for the image and the other for the mask. This is forwarded to the
discriminator, which, now, instead of classifying a single image, takes into consideration an
image—mask pair for classification (for more details, refer to the implementation reported
in [66]). The input data were re-scaled to fall within the [-1, 1] range, and an Adam
optimizer [68] was employed, utilizing a learning rate of 0.0002. A batch size of 128 was
deployed to generate samples. RELU [69] was in all layers of the generator, except for
the output layer, where the hyperbolic tangent (tanh) activation function was used. The
discriminator, on the other hand, used LeakyRELU [70] to allow values less than zero and
performs better than using RELU [71].
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Figure 14. (A) The generator is bifurcated into two channels: the top branch (visualized in orange),

—> Real or fake?

producing the generated image, and the bottom branch (visualized inside the grey box), producing
the matching label/mask. (B) The discriminator architecture takes both the real and generated
image-mask pairs as inputs to make predictions.

Mode collapse, as described in reference [72], refers to a situation in which the genera-
tor acquires the ability to associate multiple distinct noise vectors (inputted as z) with a
single resulting image (G(z)). In our work, the ‘farm’ class dominates the dataset; thus,
the generated population majorly comprises farms. To tackle this phenomenon to a certain
extent, we evaluated and chose a good mix of variety (including ‘farms” and ‘non-farms’)
as input to the GAN architecture. The generated images and masks exhibit a remarkable
similarity to the training population. However, some slight blurriness is noticeable in the
generated images, as illustrated in Figure 15. This blurriness can be attributed to limitations
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in the generator’s ability to accurately capture the edges and subtle characteristics of the
minority class, as well as sudden changes in objects within the images [73].

Figure 15. (A) Generated images and (B) the corresponding generated masks. The white (1) label
represents farms, and black (0) represents non-farms.

To measure the significance of the deviation of the generated images from the original
training samples, they are compared in terms of sharpness and colour. For the former, the
Laplacian variation of the two image populations is calculated. The Laplacian captures the
sudden changes in intensities and is therefore capable of identifying the edges in an image.
If the variance of the Laplacian-applied image is low, it indicates low responses due to a
lower number of edges. The blurrier the image, the fewer edges and vice-versa for a clear
image. The Laplacian is a second-derivative operator that is used for image edge detection.
Given an image array (f), this operator is defined as follows:

Pf o2
VVf =V = (aé*aé) ®)

where x corresponds to columns (width) and y corresponds to rows (height) of the image array:.

The Wilcoxon p value was used to compute statistical the significance of the deviation
between the sharpness of the two image groups. Furthermore, the colour histogram of the
two groups was considered to check their colour deviations.

4.3.3. The Proposed Augmentation Strategy

The limited labelled RGB imagery dataset was augmented by introducing various
types of noise, as explained in the above sections. The noise was applied to the input
images to create additional variations, thereby expanding the dataset. This augmentation
technique aims to increase the model’s robustness to noise and improve generalization
by exposing it to a wider range of training examples. Secondly, to mitigate potential data
shift issues caused by introducing synthetic data, we incorporated the synthetic data in
small batches during training. This approach prevents major discrepancies between the
synthetic and real data distributions and reduces the likelihood of over-fitting or biased
model behaviour. By introducing the synthetic data gradually, the model can adapt and
learn from both the real and synthetic data sources.

4.4. Evaluation Metrics
4.4.1. Pixel Accuracy

As the name suggests, pixel accuracy is the number of pixels correctly predicted as
compared to the ground-truth labels. High pixel accuracy alone does not indicate that
the model is accurate; it is therefore cross-checked with other metrics, such as MIoU, as
explained in the following section.
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TP+ TN
Pixel Accuracy(PA) = TP & FNTF TN + FP @

4.4.2. Intersection over Union (IoU)

Intersection over union overcomes the partiality of accuracy in semantic segmentation,
especially for problems where there exists class imbalance. IoU uses a fraction of the inter-
section/overlapping area to the union between predicted labels and the ground-truth labels.
Absolute overlap between the union and intersection indicates perfect overlap and yields 1
for the highest score and 0 for no overlap in segmented areas compared to the true labels. In
binary and multi-class cases, the mean of the IoU (MIoU) for each is calculated,

True positives(TP)

IoU =
0 True positives(TP) + False positives(FP) + False Negatives(FN)

(5)

4.4.3. Matthew’s Correlation Coefficient (MCC)

MCC was first developed to study chemical structures and was later leveraged as a
metric in machine learning models [74]. MCC gives equal importance to both the positive-
and the negative-class prediction of a dataset. The values range between —1 and 1, where
1 indicates exact prediction as ground-truth labels and —1 denotes other cases. It strikes
a balance between all four values in a confusion matrix (6), giving a score based on the
output for both classes. It is formulated as shown in Equation (6) below.

— TP-TN—FP-FN
MCC = \/(TP+FP)-(TP+FN)-(TN+FP)-(TN+FN) 6)
Regarding the importance of these three metrics, pixel accuracy measures the overall
proportion of correctly classified pixels; however, it does not account for class imbalance
or error types; thus, when classes are imbalanced, relying solely on this metric can lead to
misleading conclusions. MCC considers the true positives (TPs), true negatives (TNs), false
positives (FPs), and false negatives (FNs), providing a balanced measure of performance,
especially for data with class imbalance cases. In this paper, the dataset is skewed towards
the farm class, accounting for more than 60% of the pixels. IoU shows the success of the
model in segmenting the boundaries of the class of interest (farms in this study) compared
to the wrongly segmented boundaries in both the positive-class (FP) and negative-class
(FN) sides. Therefore, it is valuable for tasks with precise object boundary localization.
Therefore, in this study, we employed all three metrics to better gauge the perfor-
mances of the models. When they are not consistently agreed upon, the methods showing
success in most metrics can be considered. Then, in some cases, appropriate post-processing
techniques can be employed to further refine the segmentation results in parts connected
to the less successful metrics. For example the small gaps among large, segmented farms
could be filled at a post-processing stage.

5. Results

The segmentation models were trained using PyTorch 1.10. The train—test split was
fixed at 70-30% for all the experiments. The data used for training and testing were selected
at random from the available image patches. We employed a random sampling process
to mitigate the risk of any unintentional data leakage between these sets. There are no
overlaps between the training and testing sets.

5.1. Supervised Semantic Segmentation

The first set of experiments is based on the utilization of the original training of RGB
images, where the two selected segmentation modelling strategies, U-Net and Deeplabv3+,
were compared. The U-Net model performed comparatively better with transfer learning
strategies on a small dataset as compared to Deeplabv3+. U-Net achieved the highest
overall MloU score of 83.12. Overall, the Resnet model outperformed the other models and
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provided results consistent with those of the U-Net architecture for all three metrics. The
results are summarized in Tables 2 and 3 below.

Table 2. Results for U-Net model using RGB images; best model highlighted in bold.

Exp. No. Pre-Trained Networks Train Accuracy Test Accuracy MIoU MCC
1 VGG16 79.57 76.77 73.30 0.647
2 ResNet50 89.34 86.92 83.12 0.763
3 ResNet101 87.32 83.41 79.20 0.714
4 MobileNetV2 74.29 70.47 68.38 0.608

As seen in Table 3, we learn that despite the atrous spatial pyramid pooling networks
in the Deeplabv3+ models, the results are relatively low as compared to the U-Net models.
These results show that the role of the mid-level features carried via the skip connection
in the U-Net architecture are more important than the atrous filtering in the DeepLabv3+
model. That might be connected to the texture type of the farms in the satellite images.
Since the algorithm attempts to find all different farms with diverse kinds of crops as
one class, the non-farm class is also very heterogeneous. Therefore, different levels of
features contribute better to discrimination as compared to multi-scale features. It is also
reported that the latter method works better for the segmentation of a single large object in
high-resolution images [75]. However, the Landsat images are not in high resolution, and
farms are not necessarily the most extensive land cover type in all patches of images used
in this work. All three metrics agree in terms of the achievement of the best results using
the VGG16 model.

Table 3. Results for DeeplabV3+ using RGB images; best model highlighted in bold.

Exp. No. Pre-Trained Networks Train Accuracy Test Accuracy MIoU MCC
5 VGG16 76.34 74.29 70.44 0.682
6 ResNet50 69.59 67.32 65.73 0.638
7 ResNet101 62.51 60.99 60.18 0.651
8 MobileNetV2 73.94 71.45 68.24 0.619

The performance difference between U-net and DeeplabV3+ can be observed in
Figure 16 below.

EEm U-Net

80 B DeeplabV3+

20

Test Accuracy(%)
Ny (=)}
o o o

Pre-trained networks

Figure 16. Test accuracy comparison between U-net and Deeplabv3+ models.
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It is worth noting that, for the training of deeper convolutional models, a higher
number of training samples is required compared to shallower models. Although we
performed transfer learning on the previously trained models, fine-tuning based on the
existing labelled data was conducted. Then, as the models grow deeper, they tend to fail to
generalize well on new satellite images and perform comparatively less accurately. Hence,
considering the limited availability of satellite RGB images with 30-meter resolutions,
ResNet50 and VGG16 outperformed the deeper models, like ResNet101 and MobileNetV2,
due to their less complex architectures and lower numbers of parameters. The reduction in
model depth also reduced the risk of over-fitting, allowing the models to capture intricate
features effectively rather than memorising the training data to survive. Comparison of the
performance of the model trained using RGB images from scratch reported in Table 4 with
the results of the pre-trained models reported in Tables 2 and 3 shows a similar range of
results, with a slight drop in a few cases supporting this. Figure 17 shows the best model
result from Table 2.

Table 4. Comparison of segmentation results using different combinations of bands based on a newly
trained U-Net model.

Bands Train Accuracy  Test Accuracy MIoU MCC

R-G-B 87.84 82.77 79.30 0.689
NDVI-G-B 92.96 90.49 72.90 0.700

NIR, SWIR1 and Blue 88.23 84.42 68.76 0.652

U-Net

Figure 17. Resultant segmentation maps. In the mask array, the black (0) represents non-farms, and
the white (1) represents farms in the masks. The model’s outputs for the segmentation of farms are
visualized based on colours. Segmented farms are green, whereas red in the top row and blue in the
bottom row are segmented non-farms.

On the other hand, none of the pre-trained models was developed based on spectral
satellite images, and we could only use the RGB bands to match the input requirements of
the pre-trained models. That also influences the success of the models, since the NIR bands
are correlated with the chemical characteristics of the objects and play an important role in
the detection of land cover in the remote sensing domain. For this reason, we performed
segmentation using different combinations of the visible and other NIR and IR bands,
which will be presented in the following section. In this paper, when building a model from
scratch using other wavelengths, a systematic search from shallower to deeper architecture
was conducted, and once the models started to over-fit, the depth was kept fixed, and no
further layers were added.
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5.2. Model Sensitivity Analysis Using Randomly Sampled versus Specific Geo-Location
Training Data

In this section, the two segmentation models are analysed regarding their sensitivity
to the use of image patches from separate geo-locations for the train and test sets. The idea
is to compare the effect of random sampling versus separate geo-locations on the model’s
performance. Since the land cover characteristics vary from region to region in terms of
types of materials and components, patterns of land use, and structures in both non-farm
and farm area, e.g., types of crops, the nature of selected training, validation, and test image
patches might vary when they are randomly selected over the whole ROI or when they are
selected from different areas within the ROI, as shown in Figure 18. The former might lead
to some sort of data leakage; therefore, a test for distinct geographical separation within the
dataset was conducted. For this aim, the training image patches were exclusively sourced
randomly from farms situated at distinct GPS coordinates compared to the testing set,
ensuring a maximal geographical separation to prevent any spatial proximity between the
two. Moreover, the validation image patches were curated deliberately from random farms
positioned spatially between the training and testing areas. They were strategically chosen
to maximize the overall geographical distance from both sets. This separation methodology
guarantees enhanced robustness to data leakage and a certain degree of generalizability
of the models, as it was tested on unseen data from locations that are significantly distant
from those encountered during training. The image patches were meticulously selected
from diverse locations across the Emilia-Romagna region, as shown in Figure 18, adhering
to these stringent geographical criteria for a more comprehensive evaluation of the model’s
accuracy. In Figure 19, the updated accuracy computations based on this curated testing
dataset using RGB bands are presented. The best models from Tables 2 and 3 were selected
for this test. This refined separation strategy ensures that our model was evaluated for
geographically distant data points, emphasizing its ability to generalize across diverse
spatial settings within the region of interest.

Train set

Validation
set

Test set

Figure 18. The RGB image patches for train/test/validation sets were chosen randomly from different
geo-locations in the ROI to avoid unintentional data leakage.
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Figure 19. Comparison of testing accuracy for random data sampling and selected geo-location-
based sampling.

5.3. Spectral Bands for Image Segmentation

To inspect the performance of multi-spectral band combinations we chose the U-Net
architecture, which performed best for RGB imagery. All models for this set of experiments
were trained from scratch without any pre-trained networks using the randomly sampled
image patches from the ROL Three sets of band combinations were tested: first, the regular
RGB imagery; second, the red band was replaced by the NDVI index (as illustrated in (1),
the NDVI was derived using the combination of red and NIR wavelengths); and, finally,
third, we considered the band combination of NIR, SWIR, and blue. The results obtained
are summarised in Table 4. It demonstrates the important role of additional information
obtained by the multi-spectral band combination in improving the segmentation accuracy
and MCC for farmlands. However, the MloU shows some level of disagreement. Con-
sidering the importance of each of the three used metrics explained earlier at the end of
Section 4.4.3, the second band combination, achieving the best performance in two of three
metrics, can be considered, and to compensate for the MIoU results, some post-processing
analyses can be carried out to fill the small non-farm pixels in the middle of the detected
large farm regions to possibly improve the results in the segmented farm area. However, in
this paper, only the original segmentation results are reported.

5.4. Synthetic Data Augmentation
5.4.1. Noise and Geometric Augmentation Results

We added noise, as well as geometric transformation, to the training data to expand
them further. Salt-and-pepper noise, Gaussian noise, and random rotation were added.
We continued to use the best model from Table 2 for all data augmentation experiments.
The addition of noisy images and geometric transformation increased the performance of
the best model marginally by 2.03%, to 90.97%, as compared to the test accuracy of 88.94%
without any noise (Table 2).

5.4.2. Testing the Quality of GAN-Generated Images

Two tests were performed to compare the quality of the generated images and the
original training images. As shown in Figure 15, the generated image seems blurry. The
variance and maximum of the Laplacian-applied images that were used for the evaluation
of the edges are visualized in Figure 20. The Wilcoxon p value, as shown in Figure 20, is
relatively small for the generated images, showing that the two populations are significantly
different and supporting what was observed in blurry images. Furthermore, Figure 21
shows that the two image groups are very similar in terms of colour histogram distributions.
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Figure 20. The high variance in plot A and the maximum of Laplacian measures shown in plot B
were calculated for the real and CGAN-generated images. The comparison graphs show differences
between the two groups of images, i.e., high for the original real image population, whereas the
synthetic data showcase low values, indicating blurriness present in the GAN-generated imagery.
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Figure 21. The RGB colour histograms of the real population and the generated images. The overall
colour scheme is identical.

5.4.3. Segmentation Results Using Synthetic Imagery

To avoid major population deviation in the training sample, experiments were con-
ducted with synthetic images in batches. Instead of adding all the generated images to
the training dataset at once, small batches of synthesized images were introduced gradu-
ally, and the validation performance was considered to decide about adding any further
augmented images. In earlier steps, 15 synthesized samples were added at each step, as
shown in Figure 22. As can be seen, after adding a total of 40 artificial samples, the accuracy
started to reduce. Therefore, it was concluded that the appropriate number of artificial
samples to be added to the 175 original images in the train set of pure real samples is 40,
corresponding to a percentage of (40 x 100/175 = 22.85%) of the real training samples. The
results are summarised in Table 5.

CGAN-generated synthetic data further proved that accuracy can be improved if we
expand the dataset; however, the quality of images and the number of generated images
impact the model strongly.
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Table 5. The train and test accuracy using UNET when synthetic data were introduced gradually to
the 175 original RGB training images to avoid drastic data shifts.

Real Synthetic Total Train Accuracy Test Accuracy MIoU MCC
175 10 185 80.92 88.45 77.25 0.640
175 25 200 80.92 77.25 74.34 0.634
175 40 215 91.12 90.71 88.30 0.716
175 55 230 90.65 86.52 82.53 0.686
175 70 245 89.26 85.95 80.72 0.649
175 95 270 78.64 74.73 75.11 0.582
175 110 285 71.26 68.18 72.96 0.532
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Figure 22. Illustration of the accuracy when synthetic data were added incrementally to the training
set. The accuracy increases up to a certain point. However, it starts to degrade at some point (after
adding more than 40 synthetic samples) due to the drift in the data population. The number of
original real images was kept constant (175).

In this paper, only RGB images were used to generate synthetic data, as they are easy and
faster to train for GANs and have also produced decent accuracy in the past [76]; however,
their use for generating other band combination images will be explored in future studies.

6. Discussion

This paper’s primary objective is to provide a comprehensive explanation of two
distinct augmentation methods. The first method involves a diverse range of strategies,
encompassing techniques such as image transformations and corruption. The second
method centres on the generation of images using conditional generative adversarial
networks (CGANSs). The experimental results demonstrate the important role of the three
identified factors in the semantic segmentation of farmlands. The results show that the
segmentation model type and architecture, the type of used wavelengths, and the amount of
training data can all influence the accuracy of the farm detection task. Below, we summarize
the experimental findings with respect to model performance.

6.1. Effect of Deep Learning Architectures

In the case of supervised models, U-Net, though computationally expensive, per-
forms the best with a limited dataset. Additionally, the inference time of both U-net
and DeeplabV3+ were tested by taking an average of 10 runs on 10 test samples, and
it was found that U-net (16.7 ms on average) consistently performs faster as compared
to DeeplabV3+ (23.0 ms on average). In future research, we encourage the community
to explore the potential of recent semantic segmentation models in addressing the chal-
lenge of semantic segmentation of farmlands. While this study is concentrated on U-Net
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and DeepLabv3+, we believe that the application of emerging models may offer valuable
insights and advancements in this field.

6.2. Effect of IR Bands on Semantic Segmentation of Farmlands

Given the correlation of the IR band with the chemical characteristics of the land cover
types, such as water stress in agricultural areas, the addition of the IR bands beside the
visible bands improved the model performance.

6.3. Effect of Data Augmentation

Data augmentation showed a positive impact. It is crucial to not overwhelm the model
with a large population of synthetically generated images and to maintain a good mix of
real and synthetic images. In the case of the data used in this study, we found that adding
22% of synthetic images to the training set achieves the best results. In particular, our
proposed strategy for systematic augmentation of CGAN-generated images was effective
in improving the model’s accuracy. Overall, based on our findings, we conclude that
leveraging the use of spectral bands and synthetic data can aid in accuracy improvement
for limited amounts of labelled satellite imagery.

6.4. Effect of Training Data Sample Strategy

The analysis of segmentation models’ sensitivity when utilizing image patches from
separate geo-locations for training and testing sheds light on the critical aspect of geo-
graphical diversity in dataset selection. We observe that the model is sensitive to different
geo-locations, as demonstrated in Figure 19. By comparing the impact of random sampling
versus distinct geo-locations on model performance, this study underscores the significance
of considering regional variations in land cover characteristics. The deliberate separation of
training and testing sets based on geographical coordinates ensures a rigorous evaluation
process, mitigating the risk of data leakage and enhancing the models’ generalizability.
This approach not only safeguards against spatial proximity bias but also facilitates a more
comprehensive assessment of model accuracy across diverse landscapes within the ROL.

This paper’s findings can aid in developing robust models for identifying farmland
from satellite images for applications requiring crop monitoring and yield prediction,
which are significant, given the current urgent need to tackle world hunger. In this study,
only single-season imagery was utilized. It would be worth exploring how these models
perform for different seasons and times of the year using transfer learning strategies in
the future. Finally, label scarcity can be averted by looking at unsupervised strategies
for semantic segmentation; however, they are not as effective as the supervised suite of
techniques. The lack of labelled training samples can lead to poor accuracy, especially for
remote sensing images, as explicit knowledge about classes is vital to distinguish between
different land cover types. The trained models might suffer from subjective error while
labelling satellite images. On the other hand, unsupervised strategies struggle to capture
contextual information from complex satellite imagery, given the diversity of land cover
types; inter- and intra-class variation also impacts the segmentation maps adversely.

7. Conclusions

This paper thoroughly investigated and analyzed the pivotal factors influencing the
efficacy of farm segmentation in mid-resolution satellite images. The study delved into
various aspects, including the influence of distinct spectral bands, diverse model architec-
tures, and the utilization of conditional generative adversarial networks (CGANSs) for data
augmentation, as well as the proposed systematic augmentation approach of gradually
introducing synthetic images to the training population to test the performance improve-
ment in conjunction with other image corruption and geometrically based augmentation
techniques. Among the tested models, the combined employment of the U-Net model
and ResNet exhibited the highest accuracy. Nonetheless, it is noteworthy that DeeplabV3+
models exhibit substantial potential for more accurate segmentation, considering the im-
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agery’s resolution and complexity. The segmentation model’s accuracy was also studied
in response to training and testing with image patches from distinct geographic locations,
highlighting the impact of varied land cover characteristics. Additionally, perhaps the use
of NIR bands could further improve the accuracy when trained on different GPS locations.
Notably, this study highlights the imperative to develop new GAN architectures capable of
generating both images and corresponding masks. Optimizing the augmentation strategy
by determining the ideal number (about 22.85% of synthetic data) of augmented images to
supplement the original training set helped to improve the semantic accuracy further when
when a limited real labelled training samples were available. The promising outcomes from
these experiments augur well for future advancements in both the precision and efficiency
of farmland segmentation.

Moving forward, to enhance the quality of CGAN-generated images for future re-
search, it is essential to focus on refining the architecture and training process of CGANS.
Exploring techniques like progressive training, spectral normalization, and attention mech-
anisms can contribute to more stable and better-performing CGANs. Additionally, lever-
aging advanced loss functions such as perceptual loss or feature matching can guide
CGANSs to generate images with enhanced realism and finer details. Fine tuning the
hyper-parameters, optimizing the generator—discriminator balance, and conducting rig-
orous evaluations of generated images against the ground truth can collectively lead to
higher-quality image synthesis and pave the way for more accurate segmentation outcomes
in subsequent studies. Moreover, the transfer of a pre-trained model to different seasons
and/or different regions could lead to a shift in model accuracies due to various factors,
such as the weather at the time of acquisition, illumination, angle of the satellite, etc. Differ-
ent regions possess different characteristics, such as farming practices, crops grown, and
seasons. These challenges underscore the importance of exploring potential solutions in
future research endeavours.
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