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Abstract: Controlling groundwater table decline could mitigate land subsidence and induced environ-
mental hazards in over-explored areas. Nevertheless, this becomes a challenge in the multi-layered
porous system as (in)elastic deformation simultaneously occurs due to vast spatiotemporal variability
in the groundwater table. In this study, SBAS-InSAR was used to estimate annual land deformation
during 2017–2022 in a specific region of North China Plain, in which aquifers are composed of many
layers of fine-grained compressible sediments and the groundwater table has experienced a pro-
longed decline. The random forest (RF) was applied to establish the nonlinear relationship between
accumulated deformation and its potential driving factors, including the depth to the groundwater
table (GWD) and its change rate, and the compressible sediment thickness. Results show that the
marked subsidence and uplift co-exist in the region even though the groundwater table has risen
widely since the South–North Water Diversion Project. The land subsidence is attributed to inelastic
compaction of the thick compressible deposits in depression cone centers, where the GWD is over
40 m and 90 m in the shallow and deep aquifers, respectively. In contrast, the marked uplift is
primarily attributed to fast rising of the groundwater table (e.g., −2.44 m/a). The RF predictions
suggest that, to control the subsidence, the GWD should be less than 20 and 70 m in the shallow and
deep aquifers, respectively, and the rising rate of the GWD should increase to 2–5 times of current
rates in the depression cones. To mitigate the marked uplift, the rising rate of the GWD should reduce
to 1/2–1/5 of the current rates in the shallow aquifers. The uneven deformations of sediments in
the depression cone centers and uplift in their boundaries may exacerbate geohazards. Therefore, it
is vital to implement appropriate governance of groundwater recovery in the multi-layered porous
system.

Keywords: land deformation; SBAS-InSAR; random forest; groundwater table; multi-layered
porous system

1. Introduction

Land deformation, including subsidence and uplift, could result in serious problems,
such as increasing the risk of flooding in coastal areas, damaging buildings and infras-
tructures, destructing local groundwater systems, generating tension cracks on land, and
reactivating faults [1,2]. Land subsidence has typically resulted from over-exploitation of
groundwater and underground space development [3,4]. Roughly 73% of the mapped
subsidence occurs over cropland and urban areas due to subsurface water overdraft [5].
Reducing and ceasing groundwater exploration or artificial recharge could mitigate land
subsidence and even lead to ground rebound or uplift.
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Even though the mechanism by which rock and sediments deform and compact under
the influence of a change in pore water pressure is well understood, land deformation in a
multi-layered porous aquifer system is complicated by the combined influences of the effec-
tive vertical and horizontal stresses over several layered deposits. In particular, a long-term
decline in the groundwater table produces a disturbance that propagates its effect in space
and time through the geological medium [6]. Moreover, compared to land subsidence, land
uplift is a much less observed and recognized event [7]. The fundamental understanding
of land uplift at present is poor. Therefore, accurately predicting the subsidence and uplift
rates and identifying the dominant influencing factors in the multi-layered porous system
are vital for controlling groundwater explorations and preventing induced geohazards.

Effective monitoring is an initial step to estimate the extent of land deformation. Land
deformation is conventionally monitored by geodetic techniques, including the Global
Navigation Satellite System (GNSS), bedrock and layering mark surveying, and leveling
measurements, although these techniques are limited by precise measurements and a small
monitoring range. Satellite technologies, such as Small Baseline Subset Interferometric
Synthetic Aperture Radar (SBAS-InSAR), allow regional-scale mapping and monitoring
of land deformation with lower costs [8]. In particular, the monitoring of large spatial
extent and temporal development of land deformation is possible with the application
of time series radar interferometry by analyzing a series of stacked radar interferometric
data with continuous temporal baselines [9–12]. For instance, Galve et al. [13] performed
SBAS-INSAR calculations based on the European Space Agency’s Geohazard Exploitation
Platform (GEP) on 25 ENVISAT satellite images of southern Spain from 2003 to 2008, and the
ground instabilities were detected. Du et al. [14] effectively identified the surface subsidence
and uplift in Eastern Tianshan Mountain utilizing SBAS-InSAR from 25 December 2017 to
2 January 2021. Furthermore, Nayak et al. [15] extracted ground displacement in Morocco
for the year 2023 based on SBAS to elucidate the impact of earthquakes on the ground.

The ground subsidence magnitude, time of occurrence, and extent of the area depend
on a large number of factors including the amount of groundwater withdrawn, the pore
pressure decline, the depth and permeability of the pumped formation, the geomechanical
properties of the aquifer, and the information of overburden [7]. Over-exploitation of
groundwater causes subsidence because it increases effective stress in the aquifer system
and results in vertical compaction [16]. If the groundwater head declines below the pre-
consolidation head, producing effective stresses greater than the maximum historical stress,
inelastic deformation occurs and the sediments will undergo irreversible compaction. The
inelastic (non-recoverable) compaction is largely concentrated in the aquitards (compress-
ible silt and clay deposits) [17,18]. The uplift can only arise as a result of water pressure
rebound in elastically compaction areas [19]. Therefore, whether the cessation of groundwa-
ter over-exploitation could lead to a ground rebound depends on the extent of the historical
water level and the composition of sediments in the aquifer system.

The theoretical process-based models can be used to predict subsidence and uplift
rates. However, the models require extensive geomechanical and hydrogeologic datasets,
and knowledge of the temporal evolution of head changes driving nonlinear subsidence
processes, which hamper applications in a large-scale multi-layered aquifer system. In
particular, as the groundwater table changes from a decline to a rise in the multi-layered
aquifer system, the shift from draining to re-wetting of pore space results in a change
in the geostatic stress on the underlying sediments. Because of the high-dimensional
and nonlinear problem of variables, identifying the effects of multiple variables on land
deformation is also difficult to achieve by traditional statistics methods [4].

In recent years, machine learning (ML), with its advantage of dealing with multidi-
mensional data, has been frequently used for modeling systems with nonlinear correlation
structures between the dependent and independent variables [20]. In particular, the random
forest (RF) algorithm, as an ensemble machine learning method based on a popular tree-
based ensemble learning algorithm, obtains excellent accuracy when handling multivariate
complex nonlinear problems [5]. RF has been widely used to model complex nonlinear
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relationships, including the problems with aquifers. For instance, Chen et al. [21] utilized
RF to explore the relationship between land subsidence and groundwater in different
aquifers in Beijing Plain during 2011–2018, which indicated groundwater in the second
confined aquifer had the biggest impact on the subsidence of all aquifers. Fu et al. [22]
applied RF to investigate the spatial distribution of temporal correlation, and it could
explain 72% and 60% of the spatial variance between the ground deformation and critical
head/groundwater level, respectively.

The North China Plain (NCP) is one of the regions typified by the long-time evolu-
tionary process of land subsidence [1]. The NCP is a large-scale down-faulted rift basin
formed in the late Paleogene and Neogene. It was then modified by alluvial and river
deposits, resulting in multi-layered aquifer systems composed of numerous lenses or layers
of fine-grained compressible sediments. The NCP has suffered from prolonged ground-
water storage depletion and land subsidence since the 1970s due to the rapidly growing
demand for agricultural, industrial, and domestic water uses [23]. The maximum decline
of the groundwater table even exceeded 100 m in the center of the groundwater depression
zone in the NCP [24]. In order to reduce over-drafting of the aquifer system and miti-
gate the negative effects of land subsidence, the South-to-North Water Diversion Project
began operation to reduce groundwater utilization in 2014. Since then, the groundwater
table has risen, and ground subsidence has been reduced and even rebounded in some
areas. Ground subsidence has been widely investigated, mostly focusing on estimates of
the subsidence rates and groundwater storage in relation to the prolonged groundwater
decline [25–27]. The ground uplifts in some areas have been reported based on limited
observation of borehole extensometer stations [28] and the monitoring by remote sensing
of SAR datasets during the early period of the South-to-North Water Diversion Project and
the groundwater exploitation restriction policy [23,29]. Because of the time-lag between
land deformation and groundwater table variations, these investigations cannot sufficiently
explore where the ground subsidence could be reduced or shifted to rebound with the
consecutive recovery of the regional groundwater level.

The purpose of this paper is to identify subsidence and uplift areas, and to explore
their relations to the driving factors of changes in groundwater table and compressible
sediments in a multi-layered porous aquifer system in the Cangzhou–Hengshui region of
the NCP. The land deformation after the regional rising of the groundwater table from 2017
to 2022 due to a massive water division was extracted using the SBAS-InSAR technique.
The remarkable subsidence and uplift areas were identified based on the deformation rate
being larger or smaller than a threshold (e.g., ±10 mm/a). The RF method was then applied
to identify the main driving factors of subsidence and uplift rates by training decision trees
to establish multi-dimensional relationships between land deformation and its influencing
factors. Finally, the trained RF was used to generate possible deformation rates resulting
from changes in the driving factors, and to select appropriate combinations of driving
factors that could alleviate ground deformation rates. Using the prediction method and
results, one can understand the subsidence evolution under human efforts to recover
the groundwater level and to make regional water management policies considering the
multi-layered porous aquifer system.

Study Area

The North China Plain (NCP) has a total area of about 140,000 km2, and comprises
the megalopolis of Beijing and Tianjin as well as the Hebei Province of China (Figure 1).
The Cangzhou–Hengshui region is located in the east of Hebei Province (37◦03′N~38◦57′N
and 115◦10′E~117◦52′E), with an area of about 2.3 × 104 km2 (Figure 1). This region is one
of the most serious subsidence sites in the NCP, where the accumulative subsidence was
up to −3 m from 1971 to 2003 [25]. The climate is dominated by the continental monsoon,
with annual precipitation ranging from 500 to 600 mm, and 50 to 80% of the total occurring
in the summer monsoon months from July to September.
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The main regional strata are unconsolidated Quaternary sediments with thickness
ranging from 350 m to over 550 m (Figure 2). The aquifer system is composed of sand
and gravel interbedded with fine sand and silt layers, which can be divided into four
major aquifer groups (I–IV in Figure 2) [30]. In the Cangzhou–Hengshui region, the
thickness of the aquifers (I, II, III, and IV) is 20–63 m, 108–194 m, 105–232 m, and 71–279 m,
respectively. The lenses or layers of fine-grained clay and silt occupy a high percentage of
the entire deposit thickness, e.g., over 50% for the confined aquifer III. The top aquifer is
unconfined, while the other three are (semi-)confined. The two upper aquifers (I and II) are
hydraulically connected in most areas due to extensive well drillings and the discontinuity
of the aquitards. Thus, the two upper aquifers (I and II) are usually merged into an
unconfined or a semi-confined aquifer.

The NCP is considered one of China’s productive agricultural regions. It has expe-
rienced a massive expansion of irrigated agriculture since the 1960s [31,32]. Because of
three marine transgressions in the coastal area of Bohai Bay since the Late Pleistocene,
groundwater in the upper aquifer system is saline or brackish in the eastern regions, in-
cluding the Cangzhou–Hengshui region. Because the bottom depth of the saline/brackish
water increases from 40 m in the west to more than 300 m in the east [23], the freshwater
utilizations mainly come from the upper aquifers (I and II) in the northwest of the study
area and primarily pumped water from the confined aquifer systems (III and IV).

2. Data and Methods
2.1. Synthetic Aperture Radar Data

The Synthetic Aperture Radar (SAR) images were obtained from the Sentinel-1 constel-
lation, which was developed for the Copernicus joint initiative of the European Commission
and the European Space Agency. The Sentinel-1 satellite has a revisit period of 12 days. The
single-look complex SAR datasets were acquired in interferometric wide swath (IW) mode,
with Terrain Observation with Progressive Scan (TOPS) imaging geometry. These datasets
are imaged in C-band at an operating frequency of 5.405 GHz in the right-looking geometry.
In this study, 83 ascending Sentinel-1 images (Figure 1) were collected from January 2017 to
December 2022, with an average time interval of 24 days.

2.2. SBAS-InSAR

SBAS-InSAR based on the Differential Interferometric Synthetic Aperture Radar (DIn-
SAR) technique was originally proposed by Berardno [33]. It was improved by combining
the differential interferograms generated from pairs characterized by small orbital baselines
to limit spatial correlation. The SAR images in Track-121 and Track-116 (shown in Figure 1)
at the same monitoring time were spliced to obtain an image that covers the entire study
area. Interferogram generation was completed by sampling and matching the SAR images
according to the baseline threshold. Then, the topographic phase was removed from the
interferometric phase with the 30 m resolution SRTM Digital Elevation Model (DEM).
High-pass spatial filtering and low-pass temporal filtering steps were applied to estimate
and remove atmospheric effects. To solve the series of interferograms characterized by
small spatiotemporal baselines, the least squares method (LSM) was applied to retrieve
deformation information on each small spatiotemporal baseline, and the singular value
decomposition (SVD) algorithm was utilized to solve multiple baseline subsets to obtain the
line of sight (LOS) displacement in the entire time series. Finally, the results of SBAS-InSAR
in each point of the frames were transformed from LOS to the vertical direction by:

dLOS = cosθi·dU (1)

where dU represents surface deformation of the vertical, dLOS represents surface deforma-
tion in the LOS direction, and cosθi represents the radar incidence angles at the i-th point of
the frames.

In this study, the groundwater-induced land deformation is usually dominated by
vertical land deformation, and the horizontal deformation could be negligible. The vertical
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deformation was calculated according to the LOS direction of InSAR-retrieved deformation.
The negative values of pixel deformation represent ground subsidence, while the positive
values represent an uplift.

In order to provide an appropriate sample dataset capacity for RF modeling, the fine
resolution values of land deformation at the pixels (10 m × 10 m) were averaged in a coarse
resolution of grids (500 m × 500 m). The gridded deformation at intervals of 24 days was
accumulated into monthly and annual values from 2017 to 2022.

2.3. The Predictor Variables

The predictor variables can be combined into two groups: (1) the depth to the ground-
water table (GWD) and its change rate, which reflects the effects of the pressure head
on effective stress; and (2) thickness of the compressible sediments (silt and clay), which
quantifies the inelastic (non-recoverable) compaction of the sediments. For the three aquifer
groups (I & II, III, and IV), there are nine predictors in total.

In the study region, the groundwater level or depth was observed at 839 monitoring
wells, among which 370, 212, and 257 wells were set in the aquifers of I & II, III, and
IV, respectively. The recording interval was mostly 10 days (the 1st, 11th, and 21st) in
each month from 2017 to 2022. Additionally, there are core-analysis data at 143 boreholes
(Figure 1) at depths ranging from 25 to 580 m in the study region. According to the data,
the composition of Quaternary sediments can be classified as sand, silt or silty clay, and
clay. Since clay and silty clay have relatively high plasticity, they are identified as highly
compressible sediments [31].

The spatial distributions of the GWD and the thickness of sand, silt, and clay layers
were interpolated using the Kriging algorithm by leveraging the observed water table at
the monitoring wells and the measured thickness at the boreholes. The interpolated spatial
distributions were then used to extract the gridded values with a spatial resolution of
500 m × 500 m, and to obtain the thickness and proportion of compressible sediments in
each aquifer.

The change rate of a variable (e.g., land deformation or GWD) was obtained from the
slope of the fitted linear function for the annual series.

2.4. Random Forest
2.4.1. Construction of Random Forest

The random forest (RF) model was used to analyze the nonlinear relationship between
land deformation and its associated factors, i.e.,

Y = F(x1, x2 . . . . . . xn) (2)

where Y represents the predicted values of ground deformation (the accumulative deforma-
tion in this study), xi represents the ith variable (i.e., mean depth and annual change rate of
the GWD, and compressible deposit thickness in each aquifer), n is the number of varibles,
and F() represents the high-dimensional and nonlinear structure within the random forest
model.

As an ensemble model, RF combines both regression trees and the boosting technique,
which allows the production of a large number of simple tree models and then combines
them into a final optimized model [34]. The RF is useful for handling different types of
predictor variables without prior data transformation or outlier elimination [35]. Random
forests for regression are formed by growing a certain number of decision trees based on
the CART algorithm [36]. Each regression tree is trained based on the generated dataset of
randomly selected variables. The final prediction of an RF predictor is calculated by taking
the average over the results of all the decision trees.

2.4.2. Validation of RF Model

We used a ten-fold cross-validation method to validate the RF model. That is, in the
process of model implementation, 70% of the samples (8649 cells of the subsidence area
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and 4396 cells of the uplift area) were randomly selected for RF regression training and the
remaining 30% (3708 cells of the subsidence area and 1319 cells of the uplift area) were used
for accuracy verification. The ratio of 70% of the dataset for training and 30% for testing is
considered the best ratio for training and validating [37,38]. Since the training dataset is
randomly sampled each time, we repeated the process ten times and took the best value of
accuracy to ensure the reliability of the validation results.

To assess the accuracy of the fitted models, the coefficient of determination (R2) was
used:

R2 = 1 − u
v

(3)

where u represents the residual (between the predicted value and actual value) sum of
squares, and v represents the total sum of squares. R2 ranges from zero to one, where
R2 = 1 means the predicted value perfectly captures the observations.

In addition, mean absolute error (MAE), and root mean square error (RMSE) were
also calculated to validate the RF models as follows:

MAE =
1
N

N

∑
i=1

|Yoi − Yci| (4)

RMSE =

√√√√ 1
N

N

∑
i=1

(Yoi − Yci)
2 (5)

where N is the number of samples, and Yoi and Yci are observed and predicted values at
the ith grid, respectively.

2.4.3. Extraction of Importance Scores

The RF algorithm allows assessment of the relative importance of the input variables,
or the variable importance. The variable importance can be estimated by the permutation
importance as follows [34]:

Ix = ∑K
k=1

[
1
K

(
MSE

xperm
k − MSEk

)]
(6)

where Ix is the importance of variable x, K is the number of trees in the forest,MSE
xperm
k is

the estimation error with predictor x being eliminated for the kth decision tree, and MSEk
is the forecasting error with all predictors included in the kth decision tree. A higher score
of Ix means the variable x is more relevant to the regression. Usually, the importance scores
of all the input variables are summed to 100.

2.4.4. Threshold of Influencing Factors for Deformation Control

Based on the prior distribution of influencing factors (as delineated in Table 1), a random
dataset comprising 100,000 data samples for each variable (xi) was generated. Subsequently,
the predicted deformation values (Y) for each sample were calculated using Equation (1).
Given a deformation threshold range of −10 mm/a to 10 mm/a, those samples whose
predicted values fall within this threshold were then compiled into a dataset.

Table 1. Characteristics of land deformation and its influencing factors, including the groundwater
table depth (GWD) and its change rate, and compressible deposit thickness in the classified areas.

Classified
Area

Area
(km2)

Ground Deformation
(mm/a) GWD (m) Change Rate of GWD

(m/a)
Compressible
Thickness (m)

Mean Range Mean Range Mean Range Mean Range

A
I & II

4036 −22.60 −88.30–10.35
24.96 4.19–41.90 −0.13 −1.16–0.66 75 51.40–112.45

III 46.81 31.58–63.46 −0.28 −1.87–0.60 106 68.62–135.74
IV 49.91 38.28–68.02 −0.84 −2.48–−0.08 104 78.91–123.96
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Table 1. Cont.

Classified
Area

Area
(km2)

Ground Deformation
(mm/a) GWD (m) Change Rate of GWD

(m/a)
Compressible
Thickness (m)

Mean Range Mean Range Mean Range Mean Range

B
I & II

5746 −23.86 −78.83–4.30
13.43 2.79–36.81 −0.57 −0.96–−0.23 83 54.20–122.68

III 74.72 52.28–93.48 −1.16 −2.52–0.30 120 67.43–173.67
IV 79.24 53.77–98.68 −1.30 −2.46–−0.19 95 68.97–129.29

C
I & II

139 −17.45 −46.95 ~−3.78
4.79 4.30–5.32 −0.26 −0.37–−0.22 84 81.77–87.19

III 69.35 66.32–72.03 −0.38 −1.04–−0.04 135 123.98–147.21
IV 61.90 59.37–65.70 −0.60 −1.06–−0.27 87 83.14–91.42

D
I & II

675 14.47 7.13–38.30
6.69 4.30–5.31 −0.78 −1.14–−0.55 100 91.01–103.94

III 49.41 38.99–54.77 −1.84 −2.99–−0.75 138 129.41–160.18
IV 50.72 46.57–56.61 −1.11 −1.47–−0.89 115 107.68–122.03

E
I & II

832 16.76 0.12–28.27
4.51 2.41–5.73 −0.32 −0.46–0 92 76.21–100.84

III 62.62 52.25–73.54 −1.22 −2.57–−0.60 84 60.65–104.52
IV 61.09 53.24–77.13 −1.31 −2.36–−0.40 85 75.94–94.57

F
I & II

716 11.15 4.89–48.36
8.26 6.64–12.78 −0.59 −0.84–−0.39 61 44.01–96.27

III 65.48 44.30–75.44 −2.38 −3.05–−1.19 69 45.82–149.81
IV 72.04 65.42–79.34 −2.44 −2.92–−1.70 99 80.39–111.69

In the field of geoscience, the mean value or average is frequently employed as a
threshold due to its ability to encapsulate the central tendency of data, offering a pivotal
reference point for analysis [39,40]. In addition, the 25% and 75% quartiles are commonly
employed as threshold ranges for controlling variables in datasets, due to their effectiveness
in illustrating the distribution and essential features of the data [41,42]. Thus, in this study,
the compiled dataset underwent statistical analysis to determine key metrics: the mean,
the 25% quartile, and the 75% quartile of each influencing factor. These values were then
established as the thresholds for each influencing factor. Utilizing these thresholds can
guide the range of influencing factors, which in turn could potentially aid in controlling
ground deformation.

3. Results
3.1. Spatiotemporal Variations of Land Deformation and the Identified Subsidence and Uplift Areas

The mean of annual land deformation rate derived from SBAS-InSAR in the study
area is shown in Figure 3. The SBAS-InSAR-derived deformation has been validated using
the monthly GNSS data [27,43].

The mean annual land deformation rate during 2017–2022 varies greatly in the whole
region (−93–47 mm/a). Generally, a large portion of the region showed subsidence while
the uplift was also observed in some of the areas. Here, the deformation rates ≤−10 mm/a
and ≥10 mm/a were set as the subsidence and uplift, respectively. This threshold rates
agree with the global subsidence classification, with the rate <−10 mm/a considered as the
nominal or zero subsidence class [5]. Then we can identify the remarkable subsidence and
uplift areas where the gridded boundary values are equal to −10 or 10 mm/a, respectively.
The identified subsidence areas are labeled as A, B, and C, and the uplift areas are labeled
as D, E, and F in Figure 3. In A, B, and C, the subsidence area is 4036 km2, 5746 km2, and
139 km2, and the areal mean subsidence rate is 22.60 mm/a, 23.86 mm/a, and 17.45 mm/a,
respectively (Table 1). Clearly, B has the maximum subsidence area and rate. Moreover,
within each of the subsidence areas, the deformation rate changes greatly in space, e.g.,
−96.20–19.26 mm/a in A, −73.74–21.02 mm/a in B, and −24.30–6.94 mm/a in C. Therefore,
it is worth clarifying that a small part of the ground rebound exists within the subsidence
area circled using the gridded boundary of −10 mm/a.
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In D, E, and F, the uplift area is 675, 832, and 716 km2, and the areal mean uplift
rate is 14.47 mm/a, 16.76 mm/a, and 11.15 mm/a, respectively. The spatial uplift varies
in a range of 2.96–38.21 mm/a in D, 6.64–49.98 mm/a in E, and 2.42–58.47 mm/a in F
(Table 1). Clearly, the uplift area and annual change rate are much smaller than those of the
subsidence areas.

The cumulative and annual deformation values from 2017 to 2022 at the subsidence
areas of A, B, and C, and the uplift areas of D, E, and F are shown in Figure 4. Generally,
the subsidence tends to be mitigated, particularly in A and B (Figure 4a,b). In A, the areal
mean subsidence rate reduced from 36.35 mm/a in 2017 to 23.27 mm/a in 2022. In B,
the areal mean subsidence rate enhanced in the first three years of 2017~2019 and then
rapidly mitigated during 2020–2022, resulting in reduction in the subsidence rate in 2022
(13.70 mm/a), compared with 21.91 mm/a in 2017. The annual subsidence rate in C shows
a great variation in the period of 2017–2022 (Figure 4c).

In the uplift areas, the cumulative deformation from 2017 to 2022 reached 144 mm in
D, 82 mm in F, and 152 mm in E. The annual uplift rate shows a sustained increase in F
and a decrease in E during 2017–2022. In D, the uplift rate increased to the maximum of
29.56 mm/a in 2020 and then decreased. Such differences in annual subsidence and uplift
rates in these areas may result from different variations in GWDs and deposited properties
in space (Table 1).
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3.2. Spatiotemporal Variations of the Influencing Factors
3.2.1. Groundwater Table Depth and Its Change Rate

As shown in Figure 5, the three uplift areas (D, E, and F) are located at the areas
with a high groundwater level (e.g., D) and the depression cone boundaries in the deep
aquifers (III and IV) (e.g., E and F). Therefore, we postulate that the ground rebound could
be sensitive to changes in the groundwater table, since the shallow groundwater areas
and boundary areas easily produce great variations in the groundwater table and high
hydraulic gradients when groundwater extraction reduces or ceases.

The change rate of the annual GWD in space is illustrated in Figure 6. The negative
change rate occupied 90.45%, 85.78%, and 97.91% of the study area in the aquifers I & II,
III, and IV, respectively, which indicates that the groundwater level has risen widely since
2017. The obvious rise is especially marked for the deep aquifers (III and IV) and in the
uplift areas of D, E, and F (Figure 6b,c), with the rising rate of 0.61–3.05 m/a for aquifer III,
and 0.41–2.91 m/a for aquifer IV. This indicates that the uplift pattern should be attributed
to the head rise due to the restriction of groundwater exploration policy.
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The decline in the groundwater level with a maximum rate of 0.60–0.72 m/a is only
noticeable in the subsidence area of A for the aquifers I & II (Figure 6a), indicating that the
subsidence is mainly due to groundwater declines for A. For the other subsidence areas
of B and C, the groundwater level shows an increasing trend except for a small portion
of B (2.78% of the B area). This indicates that the subsidence is continuing even though
the groundwater level has stopped falling. However, the rising of groundwater level has
mitigated subsidence since its annual subsidence rate has reduced (Figure 4).

3.2.2. Thickness of Compressible Sediments

The spatial distribution of thickness for compressible sediments in the three aquifers
is shown in Figure 7. For the shallow aquifers of I & II in Figure 7a, the compressible
thickness ranges from 43 to 124 m, and is smaller at the southern part of A and covers the
largest area in F. In the deep aquifers of III and IV, the small thickness is located at E and F,
while the large thickness of over 100 m is located in the areas of D and C, the depression
cone in B, and the northern part of A. The proportion of compressible sediments in the
whole aquifer in Figure 7d highlights less compressible silt and clay deposits (<50% of
the total thickness) in the southern part of A, and the whole area of F and E, and greater
compressible sediments (>55% of the total thickness) in the northern part of A, and most of
the areas of D, B, and C.
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The spatial distribution of compressible sediments indicates the potential for highly
elastic (recoverable) areas in E and F, and highly inelastic (unrecoverable) compaction areas
in D, B, and C. Thus, rising in the groundwater table should lead to a greater ground
rebound in E and F, and less rebound in D, B, and C. However, the high water level in
D (<50 m depth) in Figure 5 could increase the pore pressure, thus lowering the effective
stress and inelastic compaction. As a result, the ground rebound in D is similar to that
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in E and F when the groundwater table rises (Figure 6). In contrast, in spite of the rise in
the groundwater level, the highly inelastic compaction plus the lowest water table (>70 m
depth) in the deep confined aquifers of III and IV leads to significant subsidence in B and
C (Figure 5b,c). This indicates that the groundwater level still stays below the threshold
for initializing the upward rebound of strata. In A, the rapid decline in the groundwater
table plus the large compressible thickness in the north can strengthen the effective inelastic
compaction, whereas the rise in the water table and less compressible sediments in the south
of A significantly reduce the effective inelastic compaction even though the groundwater
table is relatively lower.

3.3. Prediction of Land Subsidence and Uplift
3.3.1. The RF Prediction Accuracy

The training dataset was randomly sampled and thus each training result could be
different. In this study, we found that repeating the modeling process ten times using RF
can yield stable results (stable R2, RMSE, and MAE). The fitted lines between the observed
and stably predicted value of deformation in the test set using the least square regression
(red line in Figure 8) are close to the 1:1 line (black dotted line in Figure 8). Specifically, R2

is 0.95 and 0.93 for the validation dataset in the subsidence and uplift areas, respectively.
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A kernel-density estimate is used to represent the correspondence between the ob-
served value and the predicted value (Figure 8). The high frequency (>0.01) is concentrated
in the range where the observed and predicted values are nearly equal, which occupies
69.63% and 80.89% of the entire dataset in the subsidence and uplift areas (Figure 8a,b),
respectively. In addition, the MAEs are 12.77 mm and 6.03 mm, and the RMSEs are
17.45 mm and 8.65 mm, in the subsidence and uplift areas, respectively. Overall, the RF can
well explain the relationship of the gridded land deformation with the driving factors in
subsidence and uplift areas.

3.3.2. The Relative Importance of the Influencing Factors

Equation (6) was used to calculate the importance score of each input variable. As a
result, the importance scores of features are ranked in Figure 9. In the subsidence areas A,
B, and C, the compressible thickness of the confined aquifer III (X8) is highlighted to be the
main driving factor for the land subsidence, with the highest score of 21.73% (Figure 9a).
The change rate in annual GWD for the confined aquifer IV (X6) ranks second with the
importance score of 18.62%. The other factors are the change rate of annual GWD for the
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confined aquifer III (X4) and the shallow aquifers I & II (X2), as well as the mean annual
depth in the shallow aquifer (X1) and the two deep aquifers (X3 and X5), with the scores
of 8.16–10.21%. The low-influence variable is the compressible thickness of the shallow
aquifers and the deep aquifer IV (X7 and X9), which have the score of 7.75% and 6.94%,
respectively.
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Figure 9. The importance score of the influence variables (a) in the subsidence areas and (b) in the
uplift areas (X1 and X2: mean and change rate of the depth to groundwater table (GWD) in I & II
aquifer, respectively; X3 and X4: mean and change rate of GWD in III aquifer, respectively; X5 and X6:
mean and change rate of GWD in IV aquifer, respectively; X7, X8, and X9: the compressible deposit
thickness in aquifers of I & II, III and IV, respectively).

In the uplift areas of D, E, and F, the highest score (40.04%) is found to be the change
rate of annual GWD in the shallow aquifers I & II (X2) (Figure 9b), demonstrating that the
rise in the shallow groundwater table contributes most to the ground rebound. Moreover,
the change rate of annual GWD in the deep aquifer IV (X6) ranks second with the score of
20.44%. The four other features (X5, X1, X4, and X3) are associated with mean GWD and its
change rate, which have scores in the range of 5.19–9.73%.

Among these influencing factors in the subsidence and uplift areas, the annual change
rate of GWD in all aquifers contributes a total score of 38.19% in the subsidence area, much
smaller than the total score of 65.92% in the uplift area. In particular, the change rate
of annual GWD in the deep aquifer IV (X6) ranks second in both subsidence and uplift
areas. The importance score of mean annual GWD is almost the same in the three aquifers
(8.16–8.63% for X1, X3, and X5 in Figure 9a) in the subsidence area, with a total score of
25.39%. This total score is a little larger than the score of 22.69% in the uplift area. In
contrast, the importance of compressible thickness of all aquifers contributes a total score of
36.42% in the subsidence area, much higher than the value of 11.38% in the uplift area. The
thickness in the confined aquifer III (X8) is emphasized by comparing the scores with other
aquifers. These results suggest that the change in the groundwater level plays a significant
role in land deformation, particularly for ground uplift when the groundwater level rises
in the shallow aquifers (e.g., X2). The changes in the groundwater level have almost the
same effect as the compressible thicknesses on land subsidence (e.g., X6 and X8).

3.3.3. The Appropriate Values of Influencing Factors for Mitigating Land Deformation

It is well known that land subsidence has caused multiple adverse impacts, while
fast rebounding could also result in geohazards. For example, a fast recovery of the
piezometric head caused infrastructure damages by buoyant forces acting on the building
foundations and groundwater seeped into the basement floor of buildings and tunnels
in Tokyo [44]. Therefore, the subsidence and uplift should be mitigated via controlling
their influencing variables, such as the groundwater level and its change rate. In our study
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region, the deformation rate within −10–10 mm/a is widespread and has yet to cause
severe environmental disasters. Thus, from the RF generations of deformation rates in
relation to possible changes in the driving factors, we selected the gridded values of the
combinations of influence variables that meet the deformation rate within −10–10 mm/a
(Figure 10). Figure 10 and Table 2 exhibit that, in the subsided areas of the shallow
aquifers I & II, the areal mean GWD (MGD) should be controlled to 15.22 m (ranging
within 7.04 m–19.73 m for the 25% and 75% quartile) and its elevated rate is controlled to
be 0.69 m/a (range of 0.59–0.77 m/a), respectively. In aquifer III, MGD and its elevated
rate should be controlled to be 53.59 m (range of 41.72–64.27 m) and 1.50 m/a (range
1.34–1.65 m/a), respectively. In aquifer IV, MGD and its elevated rate should be controlled
to be 58.94 m (range of 49.22–67.75 m) and 1.53 m/a (range of 1.05–2.06 m/a), respectively.
In particular, compared with the measured MGD and elevated rate (Table 2), the controlled
MGD should be smaller than 19.7, 64.27, and 67.75 m (the 75% quartile in Figure 10) in the
depression cone centers for the aquifers of I & II, III, and IV, respectively. Meanwhile, the
rising rate of the groundwater level should be increased to 2–5 times of the current rates in
the depression cones of A and C. Moreover, as the compressible thickness of the confined
aquifer III (X8) is the most important driving factor, a compressible thickness of less than
84.91 m (65.09 m–104.36 m) should be retained in the aquifer subsidence (Figure 10).
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~0.23)
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The uplift areas of E, F, and D are located at the shallow aquifers of I & II and around
depression cones of the deep aquifers of III and IV (Figure 5). In the shallow aquifers of I
and II, MGD is suggested to be 4.8 m (3.48 m–5.69 m) and maintains a slowly rising rate
of 0.15 m/a (0.05–0.23 m/a). This controlled rate is about 1/2–1/5 of the measured rates
in D, E, and F (Table 2), indicating a slowly rising rate can mitigate the uplift. In the deep
aquifers, reducing the rise rate of the groundwater table, particularly for F (e.g., −1.0 m/a),
can prevent the significant uplift.

4. Discussion
4.1. The Effect of Groundwater Level Rising on Land Subsidence

The rising of the groundwater level has been widely distributed in our study region,
especially in the deep aquifers in recent years (Figure 6). However, large areal ground
subsidence still occurred, such as in B and C (Figure 3). Holzer [45] suggested that signifi-
cant subsidence in the field might not be observed until hydraulic heads declined >30 m
in many aquifer systems, or until the natural pre-consolidation stress is reached. Our
analysis shows that the three remarkable subsidence areas (A, B, and C) are located at
groundwater depression cones where groundwater table decreases by >40 m in the shallow
aquifers for A, and >90 m in the deep aquifers for B and C (Figure 5). Moreover, the
highest subsidence rate of over 90 mm/a in the depression cone is much larger than the
historical highest value of over 50 mm/a found in Cangzhou during 1971–2015 [46], and
60 mm/a during 1990–2010s in the northwest of Cangzhou [25,47]. Moreover, the regions
with high compressible thickness (especially higher than 84.91m in the third aquifer) are
more likely to experience land subsidence, which should be noticed. This suggests that
the rise in the groundwater table has not raised the effective stress to be higher than the
natural pre-consolidation stress after the prolonged water table decline in the study region.
Compared to sand with hard quartz grains, a large proportion of clay in our study areas is
prone to compaction when increased load upon it or reduced support within it can cause
its property of being easily deformed [48].

Nevertheless, the subsidence rate tends to be reduced in some areas as the groundwa-
ter table rises (Figure 4). For example, the areal mean subsidence rate in A reduced from
36.35 mm/a to 23.27 mm/a during 2017–2022 because of ceasing or reducing groundwater
abstraction in recent years. Here, in terms of the gridded mean values of subsidence ac-
counted in an interval (e.g., 0.1 m/a in Figure 11a) of the change range in the subsidence
areas, we illustrate the relationship of the subsidence rate with each of the influencing
factors in A, B, and C (Figure 11). Figure 11 clearly shows that annual land subsidence is
generally proportion to the compressible thickness in deep aquifers (Figure 11a), and the
groundwater table depth in the aquifers (Figure 11b,c,e). So, the increase in the groundwa-
ter level and consequent reduction in the compressibility of the clay could substantially
mitigate subsidence.

Figure 11 also exhibits that the multidimensional data have nonlinear correlation
structures between the predictor (land subsidence) and variables (driving factors). As
shown in Figure 11a, the subsidence sharply increases with the compressible thickness of
confined aquifer III when the thickness is smaller than 120 m and then fluctuates around a
steady value.
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Figure 11. Relationship of land subsidence rate with the influencing factors (a) compressible deposit
thickness in aquifer III; (b) change rate of GWD in aquifer IV; (c) change rate of GWD in aquifer III;
(d) change rate of GWD in aquifers I and II; (e) mean of GWD in aquifers I and II; (f) mean of GWD
in aquifer III; (g) mean of GWD in aquifer IV; (h) compressible deposit thickness in aquifers I and II;
(i) compressible deposit thickness in aquifer IV (ranked based on factor importance results obtained
by the random forest (RF)).

4.2. The Effect of Groundwater Table Rising on Land Uplift

An appreciable portion of the study region shows ground uplift. The largest areal
mean uplift rate is 16.76 mm/a in E and could reach over 50 mm/a at some specific sites
of the area. With the rising groundwater level, uplift tends to happen because of the
related effective stress unloading. This uplift rate was larger than 12.6 mm/a when the
over-exploitation of groundwater was initially banned and the hydraulic head rose quickly
to 37.6 m in Cangzhou during the early 2000s (2000–2013) [28]. The largest uplift rate of
over 50 mm/a in the depression cone center is also larger than the uplift center rates of
up to 25 mm/a during 2017–2020 in the Taiyuan basin of North China [49]. In the aquifer
characterized by multiphase materials, the coupling between pore fluid and the soil skeleton
can be considered elastic [16]. The higher uplift rate with the rise in the groundwater level
in recent years suggests that the consecutive elevation in the groundwater level in the
stratified aquifer systems could stimulate an increase in elastic porous storage and aquitard
re-pressurization, leading to the poroelastic rebound mostly in the shallow aquifers. To
control subsidence, MGD less than 20 and 70 m is suitable in the shallow and deep aquifers,
respectively, and the increasing rate of MGD should be higher than 0.69 m/a and 1.50 m/a
in the shallow and deep aquifers, respectively.
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The relationship of land uplift rate with each of the influencing factors in the uplifted
areas (D, E, and F) is illustrated in Figure 12. The uplift rate is proportional to the negative
change rate of GWD, particularly in aquifers of I & II and IV, suggesting that the rise in the
groundwater level in aquifers can significantly make the ground rebound. The nonlinear
correlation structures between the dependent and independent variables also exist, as
shown in Figure 12. In Figure 12a, when the shallow groundwater level rises at a rate
larger than 0.5 m/a, the rebound rate reaches its peak value and does not respond to the
further change in the groundwater level. In Figure 12b, the effective ground rebound can
be found only when the rise rate of the groundwater table in deep aquifers is larger than
2.0–2.4 m/a. This indicates that a smaller rise in the groundwater level in aquifer IV may
not significantly elevate pore pressure to a critical value (e.g., 60 m) that leads to a ground
rebound (see Figure 12b).
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Figure 12. Relationship of ground uplift rate with the influencing factors (a) change rate of GWD
in aquifers I and II; (b) change rate of GWD in aquifer IV; (c) mean of GWD in aquifer IV; (d) mean
of GWD in aquifers I and II; (e) compressible deposit thickness in aquifer III; (f) change rate of
GWD in aquifer III; (g) mean of GWD in aquifer III; (h) compressible deposit thickness in aquifer
IV; (i) compressible deposit thickness in aquifers I and II (ranked based on factor importance results
obtained by RF).

Comparatively, the uplift areas and rates are smaller than those of subsidence since clay
subsidence is largely a one-way process as its inelastic property cannot be recovered [49,50].
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Thus, land subsidence can permanently reduce available groundwater, especially in zones
with large compressible thickness. The estimated permanent loss of groundwater stor-
age capacity can reach 9.41 billion m3 per meter decline of the confined water level in
Cangzhou [18]. The inelastic compaction accounted for 87.4–87.9% of total groundwater
storage depletion in Cangzhou [24].

5. Conclusions

In this study, SBAS-InSAR data from January 2017 to December 2022 were used to
delineate the land deformation in the multi-layered porous aquifer system in the Cangzhou
and Hengshui region of the NCP. We found that even though the groundwater table has
risen widely in the study area, land subsidence and uplift, with a rate of >10 mm/a, co-exist.
In the identified three remarkable subsidence areas, the areal mean subsidence rate ranges
from 17.45–23.86 mm/a, mostly located in the depression cones where the depth to the
GWD has lowered to over 40 m and over 90 m in the shallow and deep aquifers, respectively.
Even though the subsidence rate significantly reduces with rising of groundwater level, the
inelastic compaction continues, as shown in the accumulated subsidence, indicating that
effective stress is still higher than the natural pre-consolidation stress. Meanwhile, three
noticeable land uplift areas are identified. The uplift rate ranges from 11.15 to 16.76 mm/a,
mostly located in the declining areas of the groundwater level in the shallow aquifers and
the depression cone boundaries in the deep aquifers where the groundwater table rose
markedly during the study period.

The RF method was proven to be effective for identifying complex relationships with
high dimensionality between land deformation and the influence variables, such as mean
GWD and change rate, as well as compressible thickness in each aquifer. R2 is 0.93 for the
validation dataset in the subsidence areas and 0.95 in the uplift areas. The importance scores
based on the trained RF successfully delineate the importance of the influencing factors in
the subsidence and uplift areas. Since the subsidence occurs in the depression cones, the
thick compressible layer of the confined aquifer is the main driving factor, whereas the rise
in the GWD plays an important role in reducing the inelastic compaction. Comparatively,
the fast rises in the groundwater table in the shallow aquifers (−0.34 m/a) and the deep
aquifers (−1.14 m/a) are the main driving forces for making ground elastically rebound.

Mitigation of the fast land deformation, including subsidence and uplift, could prevent
occurrence of environmental hazards. Based on the RF predicted possible deformation
rates resulting from changes in the driving factors, we selected appropriate combinations of
driving factors that could hamper ground deformation rates. To control the subsidence, the
appropriate MGD is less than 20 and 70 m in the shallow and deep aquifers, respectively,
and the rising rate of MGD increases to 2–5 times of the current rates in the depression
cones. The exerting pressures in the confined aquifers could avoid compressibility of the
clay for the compressible thickness <84.91 m. To mitigate the uplift, the appropriate rising
rate should be reduced to 1/2–1/5 of the current rates in the shallow aquifers.

The land subsidence can permanently reduce available groundwater, especially in
zones with a large compressible thickness. Uneven land deformations, such as subsidence
at the depression cone center and uplift at its boundary, may exacerbate geohazards.
Therefore, it is vital to implement appropriate governance of groundwater recovery for
hazard prevention. Furthermore, in this study, the data of groundwater level are annual; the
research could be improved by using monthly data for the future study of seasonal features
or the time lag between them and land deformation under the groundwater exploitation
restriction policy.
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