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Abstract: Transformer models have great potential in the field of remote sensing super-resolution
(SR) due to their excellent self-attention mechanisms. However, transformer models are prone to
overfitting because of their large number of parameters, especially with the typically small remote
sensing datasets. Additionally, the reliance of transformer-based SR models on convolution-based
upsampling often leads to mismatched semantic information. To tackle these challenges, we propose
an efficient super-resolution hybrid network (EHNet) based on the encoder composed of our designed
lightweight convolution module and the decoder composed of an improved swin transformer.
The encoder, featuring our novel Lightweight Feature Extraction Block (LFEB), employs a more
efficient convolution method than depthwise separable convolution based on depthwise convolution.
Our LFEB also integrates a Cross Stage Partial structure for enhanced feature extraction. In terms of
the decoder, based on the swin transformer, we innovatively propose a sequence-based upsample
block (SUB) for the first time, which directly uses the sequence of tokens in the transformer to focus
on semantic information through the MLP layer, which enhances the feature expression ability of
the model and improves the reconstruction accuracy. Experiments show that EHNet’s PSNR on
UCMerced and AID datasets obtains a SOTA performance of 28.02 and 29.44, respectively, and is
also visually better than other existing methods. Its 2.64 M parameters effectively balance model
efficiency and computational demands.

Keywords: remote sensing image super-resolution; convolution neural network; Swin Transformer;
efficient hybrid network; sequence-based upsample

1. Introduction

The technique of Single Image Super-Resolution (SISR) employs software algorithms to
compensate for lost details in a low-resolution (LR) image, restoring it to a high-resolution
(HR) counterpart. This technology has seen extensive application across various fields,
notably in video surveillance [1], medical diagnosis [2], and remote sensing [3,4]. In remote
sensing, high spatial resolution images are very important in many scenarios, such as target
detection [5], change detection [6], and object tracking [7].

Image sensors are the main limiting factor in the spatial resolution of remotely sensed
images, and increasing the pixel density of sensors will significantly increase the cost of
hardware. The remote sensing image super-resolution (RSISR) reconstruction technique
is a method that can obtain high-resolution remote sensing images more efficiently than
upgrading imaging equipment to improve image spatial resolution.
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Image super-resolution reconstruction is an ill-posed problem, resulting in a scenario
where one low-resolution input image can correspond to multiple high-resolution solutions.
To overcome this issue, image prior information is typically used to constrain the solution
space for HR reconstruction. Deep learning methods, applied to SR tasks in recent years,
have shown capabilities to reconstruct images with clearer textures and edges compared to
earlier learning-based SR approaches like those based on sparse coding [8] and local linear
regression [9]. Super-Resolution Convolutional Neural Network (SRCNN) [10], the first
CNN-based image super-resolution method, initiated this trend by learning an end-to-end
nonlinear mapping from LR to HR images through a three-layer convolutional network.
Since then, numerous CNN-based SR methods have been proposed, emphasizing residual
blocks [11,12], dense connections [13,14], and recursive structures [15,16].

Because the receptive field of the convolution kernel is limited, the convolutional
neural network can only perceive local information of the image. Researchers used pooling
methods to expand the receptive field by building deeper models. However, the process of
reducing the resolution of feature maps will lose some information. By fusing feature map
information of different resolutions, the receptive field can be expanded while avoiding
information loss during pooling. UNet [17], a classic Convolution Neural Network(CNN)
architecture typically employed in image segmentation tasks, uses an encoder to extract
features and downsample to lower-resolution feature maps, followed by a decoder that
incrementally upsamples and merges these features through skip connections. Inspired
by the success of the UNet structure in image segmentation, researchers have proposed
various UNet variants, such as UNet++ [18] and Attention U-Net [19]. RUNet [20] is the
first model to adapt the UNet architecture for image super-resolution tasks.

In recent years, due to the success of transformers [21] in the field of natural language
processing, transformers have also attracted great attention in computer vision. The Multi-
Head Self-Attention (MSA) mechanism, capable of establishing long-range dependencies and
adaptively weighting different positions in a sequence, has proven particularly adept at pro-
cessing image details and grasping global semantics. Vision Transformer (ViT) [22] is the first
pure transformer structure for image recognition, achieving comparable performance to other
convolution-based state-of-the-art (SOTA) methods. Following the introduction of ViT, many vi-
sion tasks have started to incorporate transformer-based models, including object detection [23]
and image segmentation [24,25]. Image Pretrained Transformer (IPT) [26] is the first model to
apply transformers to low-level tasks such as image super-resolution and denoising.

For pixel-level visual tasks like image restoration and segmentation, the computation
cost of ViT-based models increases significantly with the resolution of the input image. Addi-
tionally, ViT usually requires a fixed sequence length, while in practical vision tasks, image
sizes are variable. As transformer models discard the inductive biases of CNN, a large amount
of training data is typically required to achieve good accuracy with ViT. The swin trans-
former [27] is a model based on window attention and shifting windows that substantially
overcomes these drawbacks. SwinIR [28] is a SOTA method for SISR tasks based on the swin
transformer. It outperforms previous models based on both pure convolutional structures and
ViT-based architectures in public datasets like DIV2K and DF2K.

Existing algorithms usually choose to increase the number of network layers in order
to more adequately extract features from low-resolution images and improve the quality
of reconstructed images. However, too many layers may bring other negative effects on
the performance of the network, for example, gradient vanishing, network degradation,
and overfitting. In recent years, there have been some lightweight super-resolution models
such as feature enhancement networks (FeNet) [29] and Omnisr [30], all of which have
less computational resource consumption but poor reconstruction quality. Larger network
models generate higher-quality super-resolution images but consume a large number of
resources. Achieving a balance between reconstruction quality and model complexity is an
important goal in image super-resolution research.

This paper presents an Efficient Super-Resolution Hybrid Network (EHNet) based on
a UNet-like architecture that adeptly fuses CNN and Swin Transformer. It also introduces a
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novel sequence-to-sequence upsample method that focuses more on semantic information,
diverging from the previous convolution-based method. The patch merge module in the
original Swin Transformer is not used in SwinIR to downsample the feature maps to get
feature maps with different resolutions to extract features at different scales, so the feature
extraction ability of SwinIR is weakened compared to the original Swin Transformer. UNet’s
inherent encoder-decoder structure enables it to have better feature extraction capabilities.
We use the encoder part to first downsample to extract features and then use the decoder
part to upsample to recover the detailed information. We design a convolution-based
Lightweight Feature Extraction Block (LFEB) as the fundamental module in the encoder,
which gradually downsamples to extract semantic features. Convolutional structures, being
more cost-effective than self-attention mechanisms, are better suited for extracting image
features. To further reduce computation costs, we employ depthwise convolutions. For
the decoder, we utilize Swin Transformer as the backbone network because it can establish
long-range dependencies through self-attention, enhancing the restoration of image details.
Its window attention mechanism also significantly reduces the model’s computational cost.
On the other hand, almost all super-resolution tasks utilize convolution-based upsampling
methods, like the widely-used sub-pixel convolution method [31]. However, data in the
transformer flow in the form of a sequence of tokens. Our experiments demonstrate that
employing convolution-based upsampling methods between two transformer layers may
inadvertently introduce extraneous semantic information unrelated to the target. This can
potentially reduce the model’s accuracy. Thus, we propose a new upsampling module
tailored for the attention mechanism of sequential data, the sequence-based upsample
block (SUB).

The principal contributions of this paper are summarized as follows:

1. We propose the Efficient Super-Resolution Hybrid Network (EHNet), a lightweight
RSISR network that efficiently fuses CNN and Swin Transformer within a UNet-like
structure. This hybrid model is capable of utilizing both the inductive bias of convolution
and the long-range modeling capability. On the other hand, the multi-scale capability of
UNet and skip connection can reconstruct images with richer details;

2. We design a lightweight and efficient convolutional block as the fundamental unit for
image feature extraction. The dual-branch design of CSP enables the integration of
features from different stages, aiding the model in understanding and utilizing these
varied stage features. In addition, we found that SELayer can also realize channel
feature combinations with much less computational cost than pointwise convolution;

3. In the decoder, we innovatively propose an upsampling method SUB based on a
sequence of tokens. Compared with convolution-based upsampling methods, our
SUB is more suitable for transformer-based models and can improve image detail
recovery capabilities by focusing on semantic information.

2. Related Works

We divide the existing SR methods into two categories: natural images and remote
sensing images, according to application scenarios. Nature images contain objects, scenes,
and people from everyday life. These images often have more detail and are more accessible.
Remote sensing images typically come from satellites or aircraft to obtain information
about the Earth’s surface. These images can contain features such as topography, land
use, vegetation cover, etc. Additionally, remote sensing images are often difficult to obtain
and have a small amount of data. In recent years, there have been many advanced SR
models applied to natural images, and most of the SR models of remote sensing images are
improved from advanced models of natural images. Table 1 lists the current SOTA methods
for some of the SR tasks.
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Table 1. Some SISR SOTA methods in recent years. The application scenarios of these methods, the
number of parameters, and a brief description of the method are listed in the table.

Method Application Scenarios Params Description

SRCNN [10] Natural Image 69 K The first SISR method using deep learning
VDSR [11] Natural Image 671 K A 20 layers model with residual learning
RCAN [32] Natural Image 15.2 M A 200 layers model with channel attention

IPT [26] Natural Image 115.5 M An SISR method using standard transformer
SwinIR [28] Natural Image 3.87 M An SISR method using Swin Transformer except for patch merge

HAT [33] Natural Image 5.29 M A SISR method activating more pixels based on SwinIR
LGCNet [34] Remote sensing 193 K The first RSISR method combining local and global features

DCM [35] Remote sensing 1.84 M An RSISR model with a network-in-network structure
CTNet [36] Remote sensing 349 K An RSISR method using lightweight convolution

HSENet [37] Remote sensing 5.29 M A hybrid-scale self-similarity exploitation network
TransENet [38] Remote sensing 37.3 M A transformer-based enhancement network

2.1. SISR Methods of Natural Images

SRCNN [10] was the pioneering method utilizing deep learning to establish a nonlinear
mapping between LR and HR images, achieving state-of-the-art performance on some
public datasets with only three convolutional layers. Later, many scholars proposed deeper
CNN models to obtain better performance. Very Deep Super-Resolution (VDSR) [11]
expanded the network depth to 20 layers through residual learning, achieving better results.
Fast Super-Resolution Convolutional Neural Networks (FSRCNN) [39] gave up the idea
of interpolating the image to the target image size in advance but greatly reduced the
parameters and calculation amount by adding a deconvolution layer at the end of the
network. Efficient Sub-pixel Convolutional Neural Network (ESPCN) [31] proposed an
efficient sub-pixel convolution module to achieve upsampling. Sub-pixel convolution
is used by a large number of super-resolution models due to its excellent performance.
Residual Channel Attention Network (RCAN) [32] considers the relationship between
each channel and constructs a deep network with up to 200 residual blocks. The excellent
performance of RCAN, a model based on channel attention, has led more researchers to
start focusing on the attention mechanism. Second-order Attention Network (SAN) [40]
proposed a second-order attention mechanism, which establishes feature relationships by
calculating second-order feature statistics so that the model has better feature representation
capabilities. Holistic Attention Network (HAN) [41] not only utilizes channel attention and
spatial attention to learn the channel and spatial interdependence of features of each layer
but also introduces a layer of attention to explore the correlation between layers.

IPT [26] is an image restoration model based on standard transformer, but the excellent
performance of IPT requires a large amount of data (1.1 M images) for training and a com-
plex model (115.5 M parameters). SwinIR [28] proposed an image super-resolution method
based on Swin Transformer [27], which is mainly composed of W-MSA and SW-MSA.
Unlike the VIT-style model, window attention greatly reduces the computation and param-
eters of the model because the calculation of attention only needs to be performed within
each window. Nevertheless, such window-limited attention computations impinge upon
the transformer’s intrinsic capability for modeling long-range dependencies. However, the
sliding window attention mechanism adeptly compensates for this shortcoming, endowing
swin with the advantages of both CNN and Transformer. Hybrid Network of CNN and
Transformer (HNCT) [42] proposed a lightweight image super-resolution model that mixes
CNN and Transformer. HNCT considers both local and non-local priors and extracts deep
features that are beneficial to super-resolution reconstruction, while maintaining the model
is lightweight enough. A Hybrid Attention Transformer (HAT) [33] adds channel attention
based on SwinIR, which makes up for the shortcomings of insufficient utilization of infor-
mation between Transformer channels. In addition, HAT also introduces an overlapping
cross-attention module to better aggregate cross-window information.
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2.2. SISR Methods of Remote-Sensing Images

Spatial resolution is a crucial metric for assessing the performance of remote sensing
satellites. Remote sensing images with higher spatial resolution are capable of containing
more target information and enhancing the accuracy of subsequent tasks like classification,
segmentation, or detection. Merely interpolating images can only increase the resolu-
tion without adding additional effective information. Recently, learning-based image
super-resolution methods have become mainstream for enhancing the resolution of remote-
sensing images. Inspired by natural image SR networks, Lei et al. [34] first proposed an
SR network that combines local and global features using deep learning, termed LGCNet.
Haut et al. [35] introduced the Deep Compendium Model (DCM), which integrates residual
blocks, skip connections, and a network-in-network structure. Pan et al. [43] presented the
Residual Dense Backprojection Network (RDBPN) to address higher super-resolution mag-
nifications, using a residual backprojection block structure for utilizing residual learning
both globally and locally. Dong et al. [44] proposed a Second-order Multi-scale network
(SMSR), which captures multi-scale information by reusing features learned at varying
depths. Zhang et al. [45] extracted features of different scales using convolutions with
varying kernel sizes and channel attention modules. Huan et al. [46] developed a new
Pyramid-style Multi-Scale Residual Network (PMSRN) by merging hierarchical features to
construct a Multi-Scale Dilated Residual Block (MSDRB). Leveraging the self-similarity of
remote sensing images, Lei et al. [37] devised a Hybrid-scale Self-similarity Exploitation
Network (HSENet), utilizing a Single-scale Self-similarity Exploitation Module (SSEM) to
learn feature correlations at the same scale and also designed a Cross-scale Connection
Structure (CCS) for capturing recurrences at different scales.

Lei et al. [38] proposed a Transformer-based Enhancement Network (TransENet),
where the transformer is employed to extract features at different stages, and the multi-stage
design allows for the fusion of high-dimensional and low-dimensional features. Tu et al. [47]
combined the Swin Transformer with generative adversarial networks (GANs) to propose
SWCGAN, where the generator is composed of both convolution and swin and the discrim-
inator consists solely of the Swin Transformer. Shang et al. [48] designed a hybrid-scale
hierarchical transformer network (HSTNet) to acquire long-range dependencies and effec-
tively compute the correlations between high-dimensional and low-dimensional features.
Wang et al. [36] created a lightweight convolution called the contextual transformation layer
(CTL) to replace 3 × 3 convolutions, which can efficiently extract rich contextual features.
Zhang et al. [29] proposed a FeNet that strikes a balance between performance and model
parameters, where the lightweight lattice block (LLB) acts as a nonlinear extraction module
to improve expressive ability.

3. Methodology

In this section, we first introduce the overall architecture of EHNet. Then, we introduce
our proposed lightweight feature extraction module (LFEB) and a new sequence-based
upsample block (SUB) in detail.

3.1. Network Architecture

Figure 1 displays the overall architecture of our EHNet, which designs an advanced
encoder-decoder pattern based on the UNet structure. The encoder part uses efficient
convolutional layers designed by us to capture the low-level features and spatial context
information of the image, while the decoder part uses swin transformer to reconstruct image
details. Additionally, following the Swin Transformer, there is a specialized upsampling
module designed for the sequence of tokens. This module can more richly express the
characteristics of the sequence of tokens, as it operates directly at the sequence level,
avoiding the potential information compression and loss caused by convolutional layers.
Moreover, it can perform SR reconstruction of images based on semantic information during
upsampling. To compensate for the possible spatial information loss when reshaping
feature maps into sequences, we have incorporated skip connections between the encoder
and decoder. This network architecture design of EHNet not only facilitates the effective
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integration of local details with global information but also enhances the performance of
the model in performing image super-resolution reconstruction by utilizing the focused
semantic information. This leads to significant improvements in image clarity and richness,
making our model particularly suitable for application scenarios requiring high-quality
image reconstruction.
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Given an LR image, we first interpolate it to the target resolution and then use a
3 × 3 convolution to transform it into a feature map, thereby extracting the initial features
f0. This process can be expressed mathematically as follows:

f0 = Conv(Interpolate(ILR)) (1)

where the Conv denotes a convolutional operation and f0 represents the initial feature,
which will be the input of the following feature extraction part.

We use three LFEGs to construct the encoder within the UNet structure. The primary
function of these LFEGs is to extract low-level features at various scales from the image.
Each LFEG is composed of multiple stacked LFEBs. The feature map is downsampled
1
2 for each LFEG, so the resolution of the feature map after three LFEGs is 1

8 of the HR.
The output of the encoder part can be written as follows:

fn = LFEGn(fn−1), n = 1, 2, 3 (2)

where LFEGn(·) and fn represent the operation of ith LFEG and its output.
After passing through the encoder composed of convolutional structures, we will use

Swin Transformer Blocks (STB) and SUB to gradually upscale and restore image details.
STB is the basic module of Swin Transformer, which divides the image into a series

of windows, and all the Attention is computed only within the window. This windowed
attention mechanism greatly reduces the amount of computation. However, only calcu-
lating the attention within the windows weakens the long-term modeling ability of the
transformer, so there is also a window sliding mechanism in the Swin Transformer to
transfer the information between the windows.

In our EHNet, STB is mainly used to extract higher-dimensional semantic features for
SUB, while our specially designed SUB uses these features to recover the image details and
upsample the feature maps by a factor of 2. The output of each upsampling is concatenated
with the corresponding output of the encoder part before being used as the input of the
next layer. This feature fusion operation compensates for the loss of spatial information
due to downsampling.

Fn =

{
SUBn(STBn(fn)), n = 3

SUBn(STBn([Fn+1, fn])), n = 2, 1
(3)
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where SUBn and STBn represent the operation of ith sequence-based upsample block and
Swin Transformer block, and Fn represent the output after ith upsample.

Finally, after concatenating the output of the decoder, F1, with f0, and then passing it
through another convolutional layer, we can obtain the final SR image.

3.2. Lightweight Feature Extraction Block (LFEB)

In this section, we design an efficient feature extraction module that can extract rich
features for the decoder to use with low computation. The LFEB is the base unit of the
encoder, and we stack multiple LFEBs and incorporate residual learning to form a residual-
in-residual structure of the LFEG, which is capable of constructing deeper networks without
gradient explosion. Each LFEG ends with a pooling layer to downsample the feature map.
Finally, three LFEGs form the encoder part. The encoder of our EHNet is shown in Figure 2.
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LFEB’s overall structural design concept is similar to the Residual Channel Attention
Block (RCAB) [32]. RCAB mainly consists of standard convolution and Channel Attention
(CA) in tandem with it. Our LFEB is mainly composed of CSP and lightweight convo-
lution modules. The dual-branch design of CSP effectively integrates information from
different stages with minimal computational cost. On the other hand, the lightweight
convolution modules, consisting of depthwise convolution (dwconv) and Squeeze and
Excitation layer [49] (SELayer), are able to extract features efficiently. The SELayer enables
cross-channel feature fusion while reducing the computational cost caused by the pointwise
convolution (pwconv) in separable convolutions. Whereas in our LFEB, we use depthwise
convolutionin tandem with SELayer as the basic combination. In many lightweight convo-
lutional designs, dwconv with pointwise convolution (pwconv) is a common combination,
and pwconv is used to compensate for the lack of information fusion between channels in
dwconv. However, in our experiments, it is demonstrated that this combination design is
not necessarily helpful for super-resolution tasks, and SELayer can also take on the function
of channel information fusion instead of pwconv, with lower computation effort.

SELayer adaptively recalibrates the feature responses between channels by explicitly
modeling their interdependencies. Specifically, SELayer learns to automatically obtain the
importance of each channel and then enhances useful features and suppresses features that
are less useful according to this importance. The main operation of SELayer is to globally
average pool the feature map to obtain 1 × 1 × C features (Squeeze) and then predict
the importance of each channel through the fully connected layer, obtaining channel-level
attention weights (Excitation), which are used to recalibrate the feature maps.

Because of the success of CSPDarknet in Yolov4 [50], we also add our own design of
Cross Stage Partial (CSP) connection to extend the channel space in LEFB, and the addition
of CSP hardly increases the computation and also improves the performance of the model
to a certain extent. The structure of LFEB is shown in Figure 3.
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CSP allows for the fusion of features at different network stages due to its dual-branch
design. Doing so helps to integrate and propagate features from lower and higher levels more
efficiently, improving the model’s understanding and utilization of features from different
levels. In super-resolution tasks, this fusion can help the network better understand image
details and facilitate more accurate detail reconstruction. The CSP structure in our LFEB
divides the input 2C feature maps fin into two branches, each with a number of channels C.
This process can be written in the following form using Equation (4):

fin = [f1, f2] (4)

where f1 and f2 denotes the feature map at the beginning of the two branches.
In branch1, features are extracted as usual through the subsequent two convolutional

layers. In branch2, f2 is directly concatenated with the features extracted in branch1. Finally,
a 1 × 1 convolution is used for information fusion, producing the output feature fout.
This process can be mathematically described as follows:

fout = Conv1×1([f1, branch2(f2)]) (5)

where ‘branch2’ represents the convolutions, batch normalization (bn), SELayer, and all
other operations within ‘branch2’.

The branch2 of our LFEB consists mainly of a tandem stack of dwconv and SELayer,
both of which have low computation cost, with a BN layer added to speed up convergence.

3.3. Sequence-Based Upsample Block

In super-resolution tasks, most of the models use convolution-based upsampling
methods such as transposed convolution or sub-pixel convolution. The design inspira-
tion for our SUB originally came from the patch expanding layer by Cao [51], which can
achieve upsampling and feature dimension change without using convolution or inter-
polation. Compared with sub-pixel convolution and bilinear interpolation, this type of
upsampling has achieved higher segmentation accuracy in segmentation tasks. Based on
this sequence-based upsampling concept, we propose a new upsampling module SUB that
is more suitable for super-resolution tasks. And our SUB can focus more on the semantic
information of the image to obtain better reconstruction results, which is the first time that
this sequence-based upsampling method is proposed for super-resolution tasks.

The structure of our SUB is shown in Figure 4. The input sequence of tokens is
first dimensionally transformed through the MLP layer, where the MLP layer is able to
introduce nonlinear transforms to enhance the model feature learning and expression
capabilities, and also to double the channel dimension. The MLP is then followed by a
layer of Swin Transformer to recover more details of the image. There are three layers
of Swin Transformer in the decoder, each of which corresponds to three downsampling
layers in the encoder part. After one layer of transformer, we rearrange the sequence of
tokens into feature maps of B × 2C × H × W and then go through a Pixel Shuffle operation
to change the resolution of the feature maps to 2× of the input and the dimension of the
channels to 1

4 of the input. Finally, we change the sequence of tokens into the form of
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feature maps mainly to facilitate the fusion with the features extracted from the convolution
in the encoder.
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In summary, our SUB effectively upsamples the sequence of tokens in transformers
and restores more precise and accurate details in super-resolution tasks. To demonstrate the
effectiveness of our SUB module, we used Local Attribution Maps (LAM) [52] to analyze
which pixels in the input LR contribute most to the SR (Super Resolution) reconstruction.
LAM is a method for attribution analysis based on integrated gradients. By selecting a
region of interest in the image, LAM can identify pixels that significantly contribute to the
SR reconstruction of that area.

We applied LAM to analyze both the convolution upsampling method and our SUB,
with results shown in Figure 5. In the airplane scene, we selected the engine part as the
target region. It can be seen that there are many pixels in the LAM results sampled on the
convolution that do not match the semantic information of the airplane, also have an impact
on the SR results, and this additional introduction of extraneous pixel information degrades
the quality of the SR reconstruction. While the LAM results of our method are more focused
on the part that matches the target semantics, most of the pixels with large contributions
are focused on the airplane engine part, and SR reconstruction based on the semantic
information is an important reason why our EHNet can obtain higher performance. Similar
results also appear in the overpass scene, we selected a car on the road as the target region,
and our method also obtains results that are more focused on the car part, which leads to
better reconstruction results.

Figure 5. Cont.
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Figure 5. LAM results of two methods in two different scenes, where the red shaded area shows the
degree of semantic focusing. The red box represents the target area that we have selected.

4. Experiments
4.1. Experiment Settings

To verify the effectiveness of our model, we trained on two widely used public remote
sensing datasets, UCMerced [53] and AID [54], respectively.

UCMerced dataset: This dataset contains 21 types of remote sensing scenarios, includ-
ing airports, highways, ports, etc. Each scene category has 100 images, each measuring
256 × 256 pixels, and the spatial resolution of these images is 0.3 m/pixel. This dataset is
divided into two equal parts, one of which is used as a training set with a total of 1050 im-
ages, and the other part is used as a test set, with 20% of the training set being used as a
validation set;

AID dataset: Compared with the UCMerced dataset, the AID dataset is a dataset with a
larger number and size of images, containing 10,000 images and a total of 30 remote sensing
scenes. The image size of the AID dataset is 600 × 600 pixels, and the spatial resolution of
the image is 0.5 m/pixel. In this dataset, 8000 images were randomly selected as the training
set images, and the remaining 2000 images were used as the test set images. In addition, we
selected five images in each category for a total of 150 images as the validation set.

The images in both the UCMerced dataset and the AID dataset were used as HR images
in the experiment, and their corresponding LR images were obtained by Bicubic interpolation.
We trained and evaluated the model by constructing such paired HR-LR images.

We used peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM)
to evaluate the experimental results, and all evaluations of the super-resolution results
were performed on the RBG channel. In general, SSIM is more reflective of image quality
as perceived by the human eye but is computationally complex, whereas PSNR is com-
putationally simple but does not necessarily fully reflect the human eye’s perception of
image quality. In our experiments we used a combination of these two metrics to more
comprehensively assess image super-resolution quality. In our experiments, the original
images in each dataset were treated as HR images, and the corresponding LR images were
obtained by performing bicubic interpolation on the HR images. The PSNR and SSIM of a
super-resolution image can be calculated by the following equation:

PSNR(ISR, IHR) = 10log10

(
255

MSE(ISR, IHR)

)
(6)
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MSE(ISR, IHR) =
1
N

N

∑
i=1

(ISR(i)− IHR(i))
2 (7)

SSIM(x, y) =

(
2µxµy + c1

)(
2σxy + c2

)(
µ2

x + µ2
y + c1

)(
σ2

x + σ2
y + c2

) (8)

where µx
(
µy

)
and σx

(
σy
)

are the mean and variance, respectively. σxy is the covariance
between x and y. c1 and c2 are constants. ISR is the super-resolution image and IHR is the
high-resolution image.

Floating Point Operations (FLOPs) and model parameters are used to measure the
computation cost of the model, where the input image size is 64× 64 when calculating FLOPs.

Our loss function employs the L1 loss, which is most common in super-resolution
tasks. Given a training set

{
Ii
LR, Ii

HR
}N

i=1, the loss function can be expressed as follows:

1
N

N

∑
i=1

∥∥∥EHNet
(

Ii
LR

)
− Ii

HR

∥∥∥
1

(9)

We conducted experiments on remote sensing images with scale factors of ×2 and
×4. During training, we randomly cropped the image, and the size of the cropped image
was 192 × 192. We also performed random flips and rotations on the training samples
to increase sample diversity. We used the Adam optimizer, where β1 = 0.9, β2 = 0.99.
We adopted the cosine annealing learning rate decay strategy with an initial learning rate
of 5 × 10−5 and a minimum learning rate of 1 × 10−7. During the training process, we used
a batch size of 16 and trained 2000 epochs on the model. The entire training was performed
on two NVIDIA 3080 Ti GPUs.

4.2. Ablation Studies

In this section, we performed a series of ablation experiments on the UCMerced dataset
to explore the importance of each module in our model, where all models were trained on
the same settings. For simplicity, all experiments had a super-resolution factor of 4.

4.2.1. Effects of LFEB

The LFEB is the most important component of the encoders, and we explored the
effect of using this module with different settings. The number of LFEBs in each LFEG in
our experiments is set to 9. Compared to RCAB, a benchmark module commonly used
in super-resolution modeling, our LFEB is 0.11 dB higher in PSNR metrics. We compared
the most commonly used combination of dwconv + pwconv with our dwconv + SELayer
combination scheme and found that our approach has better performance. Also, the
use of pwconv has a larger computation cost and memory usage, whereas SELayer is a
lightweight feature calibration module using only fully connected layers. We also validated
the effectiveness of the CSP dual-branch structure in LFEB and found that the PSNR
improved by 0.06 after the introduction of the CSP; all results are shown in Table 2.

Table 2. PSNR and SSIM results with different components in LFEB. Bold data indicates that it is the
best method.

PSNR SSIM

RCAB 27.90 0.7679
Dwconv + pwconv 27.93 0.7685
Dwconv + SELayer 27.96 0.7687

Dwconv + SELayer + CSP 28.02 0.7711

In recent years, there have also been some excellent Attention Modules that are often
used in various super-resolution tasks, and we also compared SELayer with these methods.
The Convolutional Block Attention Module (CBAM) [55] can perform Attention operations
in both spatial and channel dimensions combining the Channel Attention Module And
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by combining the channel attention module and spatial attention module together, the
network can achieve better feature selection and reinforcement in both channel and spatial
dimensions, improving the model’s representation ability. Efficient Channel Attention
(ECA) [56] proposes a local cross-channel interaction strategy without dimensionality
reduction, which can be efficiently implemented by one-dimensional convolution with
high efficiency. We tested several other popular convolutional attention methods with other
parts of the LFEB fixed unchanged, and SELayer obtained the best performance in both
PSNR and SSIM metrics. The experimental results are shown in Table 3.

Table 3. PSNR and SSIM results with different attention modules in LFEB.

PSNR SSIM

CBAM 27.98 0.7699
ECA 27.99 0.7697

SELayer 28.02 0.7711

4.2.2. Effects of SUB

SUB is a new sequence-based upsampling module we propose that can improve the detail
restoration ability of the decoder composed of transformer by focusing on semantic information.

We explored the experimental performance of different components forming an SUB
and found the most effective SUB settings. All experimental results are shown in Table 4.
Judging from the experimental results, if we only use the MLP layer for dimension trans-
formation, the effect is average, and after adding a layer of Swin Transformer, the PSNR
increases by 0.1 dB. There are two ways to transform features from an extended channel
dimension to a larger spatial resolution: one is to directly reshape the feature map to the
target resolution, and the other is to reshape with the channel dimension unchanged and
then use pixel shuffle to increase the spatial resolution. From the experimental results, the
latter scheme can obtain higher reconstruction results.

Table 4. PSNR and SSIM results with different components in SUB.

PSNR SSIM

Mlp + pixel shuffle 27.92 0.7681
Mlp + transformer + reshape 27.99 0.7703

Mlp + transformer + pixel shuffle 28.02 0.7711

We also compared SUB with transposition convolution and subpixel convolution,
which are commonly used as upsampling methods in other SOTA methods, and our SUB
is higher than transposition convolution and subpixel convolution in PSNR by 0.23 dB
and 0.12 dB, respectively, and SSIM is higher than them by 0.0051 and 0.0036, respec-
tively. Our experimental results verified the validity of the SUB upsampling method.
The experimental results are shown in Table 5.

Table 5. PSNR and SSIM results with different upsample methods.

PSNR SSIM

Transpose Convolution 27.79 0.7660
Subpixel Convolution 27.90 0.7675

SUB 28.02 0.7711

4.2.3. Ablation Study of Our EHNet

We performed ablation experiments on the whole EHNet, mainly including the num-
ber of layers of Swin Transformer and the number of layers of convolution, as well as the
effect of feature dimensions on model accuracy and model complexity. We can see that
when the LFEB, the number of swin layers, and the number of feature channels are set to
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9, 2, and 96, respectively, the EHNet can obtain higher PSNR and SSIM and keep a low
computational overhead. All the experimental results are shown in Table 6.

Table 6. PSNR and SSIM results with different settings in EHNet.

Number of LFEB in a LFEG Number of Layers in Swin Number of Features PSNR SSIM Params

6 2 96 27.91 0.7686 2.54 M
12 2 96 27.99 0.7705 2.74 M
9 1 96 27.96 0.7698 1.93 M
9 3 96 27.97 0.7702 3.35 M
9 2 72 27.94 0.7691 2.47 M
9 2 96 28.02 0.7711 2.64 M
9 2 120 28.01 0.7706 2.84 M

4.3. Comparison with the State-of-the-Arts

To verify the effectiveness of the proposed EHNet, we conducted comparative experi-
ments with some SOTA competitors, namely, SRCNN [10], VDSR [11], LGCNet [34], DCM [35],
CTNet [36], HSENet [37], TransENet [38], SwinIR [28] and HAT [33]. Among these methods,
SRCNN [10], VDSR [11], HAT [33], and SwinIR [28] are the methods proposed for natural
image SR. LGCNet [34], DCM [35], HSENet [37], CTNet [36] and TransENet [38] are designed
for RSISR. We retrained all of these methods based on open-source code and tested them
under the same conditions.

4.3.1. Quantitative Evaluation

Quantitative Results on UCMerced Dataset: Table 7 presents a comparison of the
latency and performance accuracy of various methods on the UCMerced dataset. The results
indicate that our EHNet achieves a superior balance between the number of parameters
and accuracy. In the case of ×2 and ×4 super-resolution factors, EHNet demonstrates
the best performance in terms of PSNR. Compared to recent high-performing models
such as SwinIR [28], TransENet [38], and HSENet [37], EHNet shows improvements in
both parameter count and performance. Specifically, under the ×4 super-resolution factor,
EHNet’s PSNR is higher than TransENet [38], SwinIR [28] and HAT [33] by 0.24 dB, 0.15 dB
and 0.16 dB, respectively, while having only 7%, 58%, and 50% of their parameter sizes.
In comparison with lightweight models like SRCNN [10], VDSR [11], and CTNet [36], our
EHNet also maintains competitive performance in terms of model accuracy and efficiency.

Table 7. Comparative results for the UCMerced dataset.

Method Scale Params FLOPs PSNR SSIM

Bicubic ×2 - - 30.76 0.8789
SRCNN [10] ×2 69 K 0.028 G 32.84 0.9152
VDSR [11] ×2 671 K 0.275 G 33.47 0.9234

LGCNet [34] ×2 193 K 0.195 G 33.48 0.9235
DCM [35] ×2 1.84 M 1.299 G 33.65 0.9274

CTNet [36] ×2 349 K 0.105 G 33.59 0.9255
HSENet [37] ×2 5.29 M 3.886 G 34.22 0.9327

TransENet [38] ×2 37.3 M 1.012 G 34.03 0.9301
SwinIR [28] ×2 3.87 M 1.693 G 34.15 0.9307

HAT [33] ×2 5.12 M 2.247 G 34.17 0.9311
EHNet (ours) ×2 2.64 M 0.785 G 34.29 0.9320

Bicubic ×3 - - 27.46 0.7631
SRCNN [10] ×3 69 K 0.028 G 28.97 0.8132
VDSR [11] ×3 671 K 0.275 G 29.75 0.8346

LGCNet [34] ×3 193 K 0.195 G 29.28 0.8238
DCM [35] ×3 1.84 M 1.299 G 29.86 0.8393

CTNet [36] ×3 349 K 0.105 G 29.44 0.8319
HSENet [37] ×3 5.29 M 3.886 G 30.04 0.8433

TransENet [38] ×3 37.3 M 1.012 G 29.90 0.8397
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Table 7. Cont.

Method Scale Params FLOPs PSNR SSIM

SwinIR [28] ×3 3.87 M 1.693 G 30.12 0.8487
HAT [33] ×3 5.12 M 2.247 G 30.15 0.8489

EHNet (ours) ×3 2.64 M 0.785 G 30.09 0.8465

Bicubic ×4 - - 25.65 0.6725
SRCNN [10] ×4 69 K 0.028 G 26.78 0.7219
VDSR [11] ×4 671 K 0.255 G 27.54 0.7522

LGCNet [34] ×4 193 K 0.195 G 27.02 0.7333
DCM [35] ×4 2.16 M 0.754 G 27.22 0.7528

CTNet [36] ×4 360 K 0.180 G 27.41 0.7512
HSENet [37] ×4 5.43 M 4.136 G 27.73 0.7623

TransENet [38] ×4 37.46 M 2.599 G 27.78 0.7635
SwinIR [28] ×4 4.54 M 2.801 G 27.87 0.7659

HAT [33] ×4 5.29 M 2.497 G 27.86 0.7683
EHNet (ours) ×4 2.64 M 1.205 G 28.02 0.7711

Quantitative Results on AID Dataset: In Table 8, our proposed EHNet demonstrates
exceptional performance across all metrics on the AID test dataset. However, due to its
limited model capacity, the performance of our model deteriorates when trained on the
larger AID training dataset. Despite this limitation, EHNet still achieves the best or second-
best performance in terms of PSNR on the AID test dataset and obtains the optimal results in
the SSIM metric, which is more aligned with human visual perception. Overall, the method
we propose maintains competitive performance. To further analyze the reasons behind
these phenomena, we conducted an in-depth discussion on the quantitative performance
of different methods across various categories.

Table 8. Comparative results for the AID dataset.

Method Scale Params FLOPs PSNR SSIM

Bicubic ×2 - - 32.39 0.8906
SRCNN [10] ×2 69 K 0.028 G 34.49 0.9286
VDSR [11] ×2 671 K 0.275 G 35.11 0.9340

LGCNet [34] ×2 193 K 0.195 G 34.80 0.9320
DCM [35] ×2 1.84 M 1.299 G 35.21 0.9366

CTNet [36] ×2 349 K 0.105 G 35.13 0.9354
HSENet [37] ×2 5.29 M 3.886 G 35.50 0.9383

TransENet [38] ×2 37.3 M 1.012 G 35.40 0.9372
SwinIR [28] ×2 3.87 M 1.693 G 35.35 0.9370

HAT [33] ×2 5.12 M 2.247 G 35.49 0.9388
EHNet (ours) ×2 2.64 M 0.785 G 35.42 0.9390

Bicubic ×3 - - 32.39 0.8906
SRCNN [10] ×3 69 K 0.028 G 30.55 0.8372
VDSR [11] ×3 671 K 0.275 G 31.17 0.8511

LGCNet [34] ×3 193 K 0.195 G 30.86 0.8498
DCM [35] ×3 1.84 M 1.299 G 31.31 0.8561

CTNet [36] ×3 349 K 0.105 G 31.16 0.8515
HSENet [37] ×3 5.29 M 3.886 G 31.49 0.8588

TransENet [38] ×3 37.3 M 1.012 G 31.50 0.8588
SwinIR [28] ×3 3.87 M 1.693 G 31.47 0.8600

HAT [33] ×3 5.12 M 2.247 G 31.53 0.8612
EHNet (ours) ×3 2.64 M 0.785 G 31.51 0.8609

Bicubic ×4 - - 27.30 0.7036
SRCNN [10] ×4 69 K 0.028 G 28.40 0.7561
VDSR [11] ×4 671 K 0.255 G 28.99 0.7753



Remote Sens. 2024, 16, 880 15 of 20

Table 8. Cont.

Method Scale Params FLOPs PSNR SSIM

LGCNet [34] ×4 193 K 0.195 G 28.61 0.7626
DCM [35] ×4 2.16 M 0.754 G 29.17 0.7824

CTNet [36] ×4 360 K 0.180 G 29.00 0.7768
HSENet [37] ×4 5.43 M 4.136 G 29.32 0.7867

TransENet [38] ×4 37.46 M 2.599 G 29.44 0.7912
SwinIR [28] ×4 4.54 M 2.801 G 29.26 0.7863

HAT ×4 5.29 M 2.497 G 29.43 0.7921
EHNet (ours) ×4 2.64 M 1.205 G 29.44 0.7922

Table 9 lists the performance across the 30 categories in the AID dataset. The experi-
ments demonstrate that our method performs well in scenes with rich textural details, such
as airports, schools, parking lots, and sparse residential areas, achieving the best PSNR
results in most cases. In contrast, the scenes where PSNR results are less satisfactory tend to
be those with more uniform and less detailed environments, such as bare land, beaches, and
deserts. These images lack sufficient feature information. Our method primarily relies on
enhancing high-frequency details to improve image resolution, and in scenes with simple
content, there may not be enough information for effective reconstruction. On the other
hand, the PSNR evaluation metric may be more suited to assessing detail enhancement in
richly textured scenes. In less textured environments, PSNR may not fully reflect the true
improvement in image quality.

Table 9. Mean PSNR (dB) of each class for the scale factor of ×4 on the AID dataset.

Class LGCNet [34] DCM [35] CTNet [36] HSENet [37] TransENet [38] SwinIR [28] HAT [33] Ours

1 28.39 28.99 28.80 29.12 29.26 29.08 17.28 29.27
2 35.78 36.17 36.12 36.34 36.38 36.19 36.23 36.24
3 30.75 31.36 31.15 31.49 31.63 31.45 31.59 31.61
4 32.08 32.45 32.40 32.60 32.66 32.52 32.58 32.59
5 30.67 31.39 31.17 31.55 31.70 31.47 31.69 31.68
6 26.92 27.72 27.48 27.91 28.09 27.83 28.11 28.11
7 23.68 24.29 24.10 24.43 24.53 24.36 24.55 24.57
8 27.24 27.78 27.63 27.90 28.00 27.83 28.03 28.03
9 24.33 24.87 24.70 25.02 25.17 24.97 25.16 25.16

10 39.06 39.27 39.25 39.47 39.55 39.29 39.31 39.31
11 33.77 34.42 34.25 34.59 34.67 34.46 34.61 34.64
12 28.20 28.47 28.47 28.54 28.59 28.56 28.58 28.58
13 26.24 26.92 26.71 27.09 27.24 27.00 27.27 27.27
14 32.06 32.88 32.84 32.97 33.00 32.91 32.95 32.95
15 26.09 28.25 28.06 28.41 28.50 28.36 28.51 28.53
16 28.04 29.18 29.15 29.22 29.30 29.24 29.29 29.28
17 26.23 27.82 27.69 27.93 28.04 27.91 28.05 28.04
18 22.33 25.74 25.27 26.16 26.49 26.03 26.46 26.52
19 27.27 29.92 29.66 30.19 30.38 30.07 30.36 30.38
20 28.94 30.39 30.25 30.48 30.58 30.43 30.54 30.54
21 24.69 26.62 26.41 26.80 26.95 26.74 26.97 26.98
22 26.31 28.38 28.19 28.52 28.64 28.44 28.67 28.66
23 25.98 27.88 27.72 28.00 28.13 27.98 28.16 28.16
24 29.61 30.91 30.83 30.97 31.04 30.96 31.02 31.02
25 24.91 26.94 26.75 27.10 27.25 27.07 27.28 27.28
26 25.41 26.53 26.46 26.60 26.63 26.60 26.67 26.68
27 26.75 29.13 28.94 29.30 29.46 29.24 29.45 29.45
28 24.81 27.10 26.86 27.28 27.48 27.20 27.47 27.47
29 24.18 26.00 25.82 26.12 26.22 26.07 26.24 26.26
30 25.86 27.93 27.67 28.09 28.24 28.03 28.27 28.26

avg 28.61 29.17 29.03 29.32 29.44 29.26 29.43 29.44

4.3.2. Quantitative Evaluation

In addition to the quantitative comparisons discussed above, we also conducted a
qualitative analysis of super-resolved image quality. Figure 6 presents the visual results for
two scenarios from the UCMerced dataset: airplane and freeway. In the case of ‘airplane78′,
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our method successfully recovers the texture of the engine part while maintaining sharp
edges. For ‘freeway97’, our EHNet uniquely restores the car windows, a detail not achieved
by other methods. Moreover, the super-resolved image exhibits clearer lane lines, demon-
strating EHNet’s significant advantage in recovering image details.
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Figure 7 shows two examples of the AID dataset. For parking210, our proposed
method successfully recovers clear marker lines, while the other methods are either very
blurred or have checkerboard artifacts. Furthermore, in the super-resolution result of
‘stadium262’, our model achieves sharper edges around letters, further evidencing its
superior performance in enhancing details.
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5. Conclusions

In our work, we introduce a novel model named EHNet, an efficient single-frame SR
model for remote sensing. EHNet ingeniously merges an encoder formed by LFEB with
an improved Swin Transformer within a UNet architecture. The LFEB utilizes depthwise
convolution to reduce computation cost, while the incorporation of SELayer enhances
inter-channel information fusion, addressing the shortcomings of insufficient channel
information integration in depthwise convolution. Additionally, we employ a CSP dual-
branch structure to boost model performance without adding extra parameters. In the
decoder part, we utilize Swin Transformer to restore image details and introduce a novel
sequence-based upsampling method, SUB, to capture more accurate long-range semantic
information. EHNet achieves state-of-the-art results on multiple metrics in the AID and
UCMerced datasets and surpasses existing methods in visual quality. Its 2.64 M parameters
effectively balance model efficiency and computation cost, highlighting its potential for
broader application in SR tasks.

The results of the experiment show that our EHNet performs better on smaller datasets,
but its performance is degraded for datasets such as AID, which has a larger image size and
dataset size. We investigate the model’s super-resolution reconstruction results for different
scenes and find that our EHNet tends to underperform in those scenes with fewer details
and smaller gradients. We speculate that the reason why the model does not perform well
enough on large datasets may be that our model has a small number of parameters and
cannot fully cope with all the scenes, especially those with smaller gradients. In addition,
our model does not perform as well as the super-resolution factors of 2 and 4 on the super-
resolution factor of 3, which may be due to the fact that our UNet architecture of EHNet
adopts 2× downsampling, so it does not work well enough for LR reconstruction with a
super-resolution factor of 3.
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In future research, we will focus on enhancing the model’s performance in scenes with
less texture, further improving its overall effectiveness.
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