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Abstract: Frequent spontaneous combustion activities restrict ecological restoration of coal waste
dumps after reclamation. Effective monitoring of vegetation restoration is important for ensuring
land reclamation success and preserving the ecological environment in mining areas. Development
of unmanned aerial vehicle (UAV) technology has enabled fine-scale vegetation monitoring. In this
study, we focused on Medicago sativa L. (alfalfa), a representative herbaceous vegetation type, in a
coal waste dump after reclamation in Shanxi province, China. The alfalfa aboveground biomass
(AGB) was used as an indicator for assessing vegetation restoration. The objective of this study was
to evaluate the capacity of UAV-based fusion of RGB, multispectral, and thermal infrared information
for estimating alfalfa AGB using various regression models, including random forest regression
(RFR), gradient boosting decision tree (GBDT), K-nearest neighbor (KNN), support vector regression
(SVR), and stacking models. The main results are as follows: (i) UAV multi-source data fusion
improved alfalfa AGB estimation accuracy, although the enhancement diminished with the increasing
number of sensor types. (ii) The stacking model consistently outperformed RFR, GBDT, KNN, and
SVR regression models across all feature fusion combinations. It achieved high accuracy with R2 of
0.86–0.88, RMSE of 80.06–86.87 g/m2, and MAE of 60.24–62.69 g/m2. Notably, the stacking model
based on only RGB imagery features mitigated the accuracy loss from limited types of features,
potentially reducing equipment costs. This study demonstrated the potential of UAV in improving
vegetation restoration management of coal waste dumps after reclamation.

Keywords: coal waste dump; vegetation restoration; management strategy; unmanned aerial vehicle;
alfalfa aboveground biomass

1. Introduction

Coal mining brings huge economic benefits, while it is also accompanied by many en-
vironmental problems [1]. As a primary waste material produced during coal washing and
mining, coal gangue typically accounts for 10–15% of coal mining [2]. Due to inadequate
planning and implementation, coal gangue is usually artificially piled near the mining
areas, forming mountain structures known as coal waste dumps or coal gangue hills [3].

Coal waste dumps occupy vast land resources, causing numerous ecological and
environmental problems [4,5]. Effective treatment of coal waste dumps has become a critical
environmental protection issue in mining areas. For example, the government of China
currently prohibits new coal mines from developing permanent coal waste dumps. Further,
ecological protection work such as land reclamation and vegetation restoration were usually
carried out for historical coal waste dumps [6]. Depending on the desired restoration
outcome (agriculture, forestry, landscape reclamation, etc.), mining enterprises implement
land reclamation activities to mitigate the environmental impact of coal waste dumps.
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Driven by improved regulations and supportive policies, the ecological restoration
of coal waste dumps in China has achieved significant success, with most mining areas
exceeding 80% reclamation rates. Coal gangue contains different calorific carbon, residual
coal, pyrite, and other flammable substances. It is easy to react in low-temperature oxidation
processes and releases a lot of heat when exposed to air and water, leading to spontaneous
combustion of coal waste dumps [7,8]. The risk of spontaneous combustion remains even
after land reclamation [6,9,10]. Severe and extensive combustion events can destroy the
soil environment, leading to vegetation degradation and death [11]. Additionally, local
temperature variations may impact vegetation diversity and spatial patterns, hindering
ecological restoration of coal waste dumps [12,13]. Therefore, it is crucial to carry out
regular monitoring to prevent spontaneous combustion damage to vegetation growth and
ensure the ecological restoration in coal waste dumps.

Aboveground biomass (AGB) serves as a critical indicator of vegetation growth and
health, and is related to nutritional status, yield, and carbon storage capacity [14]. Coal
waste dumps after reclamation are primally composed of herbaceous and shrub vegetation,
with some tree plantings in areas with deeper topsoil. Compared to trees and shrubs,
herbaceous vegetation exhibits a shorter growth cycle, making it more sensitive to changes
in soil environment. Additionally, its extensive coverage renders herbaceous vegetation
an effective indicator for evaluating the overall vegetation restoration status of coal waste
dumps after reclamation. Traditional field surveys for vegetation AGB are destructive, time-
consuming, and labor-intensive. With the rapid advancement of remote sensing technology,
AGB monitoring of different vegetation types (e.g., grass, forest, mangrove) based on
various satellite remote sensing data has been realized at global, national, or regional
scales [15–17]. Due to the advantages of high temporal resolution and large coverage,
satellite remote sensing is widely used for continuous monitoring of vegetation change.
However, it is still limited by coarse resolution in fine monitoring at the field scale. In recent
years, unmanned aerial vehicles (UAVs) have developed rapidly in various application
fields [18]. Equipped with different types of sensors, UAVs can quickly capture centimeter-
level remote sensing images of research objects in real time, which has become a common
method for crop AGB monitoring, such as barley [19], potato [20], wheat [14,21,22], etc.

Spectral, structural, thermal, and texture information extracted from UAV data has
been widely used for crop growth monitoring. Through traditional regression models
(e.g., linear regression, partial least squares regression), or machine learning regression
models (e.g., random forest, artificial neutral networks, support vector regression), crop
traits can be linked to UAV imagery features. For example, canopy structure information
derived from UAV-based RGB imagery was employed for alfalfa plant height estima-
tion [10], as well as maize chlorophyll [23] and winter wheat yield [24] estimation from
UAV spectral information. Recent studies demonstrated that the combination of different
UAV imagery features can significantly improve estimation accuracy. Yue et al. [14] found
that incorporating height information can improve the estimation accuracy of winter wheat
AGB. The R2 of their estimation model increased by more than 0.2, and RMSE decreased
more than 0.6 t/ha. Liu et al. [20] indicated that crop height may contribute to potato AGB
estimation. Moreover, the combination of canopy thermal information with spectral and
structural information has been shown to improve the stability of crop yield estimation,
such as wheat [21] and soybean [25]. While the fusion of multi-source UAV remote sensing
data provides great potential for crop growth monitoring, it undoubtedly increases the
cost. At present, the application of UAV-based vegetation restoration monitoring is still
limited by cost and operational constraints [18]. In addition to the estimation accuracy, cost
is also a major concern for mining enterprises. Therefore, it is essential to propose a feasible
UAV-based vegetation restoration monitoring strategy of coal waste dumps.

To address this issue, an investigation was conducted at a typical reclaimed coal waste
dump in Shanxi Province, China. Taking the artificially planted vegetation type in the study
area, Medicago sativa L. (alfalfa), as the research object, this study achieved the monitoring of
vegetation restoration in a coal waste dump, with the support of UAV multi-source remote
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sensing imagery (RGB, multispectral, and thermal infrared) and field surveys. The primary
objectives of this study were as follows: (i) to determine whether UAV multi-source data
fusion can significantly improve the estimation accuracy of alfalfa AGB, and (ii) to evaluate
the performance of various regression models. Our study aimed to propose an improved
UAV-based strategy for accurate estimation of alfalfa AGB in coal waste dumps.

2. Materials and Methods
2.1. Study Area

The study area was located in Wangzhuang coal mine, Changzhi city, Shanxi province
(113◦1′–113◦9′E, 35◦55′–36◦22′N). Shanxi province, a major coal producer in China, con-
tributed 1.3 billion tons in 2022, nearly 1/3 of the national output. This extensive mining
activity generated over 1.7 billion tons of coal gangue, resulting in thousands of coal waste
dumps. Notably, 619 of 1477 coal waste dumps (42%) in Shanxi province have either burned
or are currently burning, posing significant environmental threats [26].

Land reclamation and ecological restoration were carried out at the selected coal waste
dump in 2014. A spiral structure with a top platform and three-layer slopes was formed
through terrain leveling (Figure 1). The height of the dump was approximately 36 m,
with slopes ranging from 32◦ to 35◦ and covering 3.9 hectares. To facilitate greening and
minimize soil erosion, a 0.5–1 m thick loess layer was applied, followed by planting local
pioneer vegetation species. The dominant vegetation species were Platycladus orientalis,
Amorpha fruticosa L., Medicago sativa L., and Rhus typhina. The vegetation restoration proved
successful, with no observed spontaneous combustion of the coal waste dump.
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Figure 1. Location of the study area.

However, a field survey in October 2020 revealed significant degradation of vegetation
on the northeastern and southeastern slopes. There were signs of burning on surface
vegetation in some regions, and the surface soil was exposed [6]. Consequently, it was
necessary to carry out vegetation restoration monitoring in the study area. Since the
vegetation on the south side of the coal waste dump was disturbed by human activity
during the field survey, this region was excluded during the survey (Figure 1).

2.2. Data Source
2.2.1. UAV Data Collection and Preprocessing

A Matrice210 UAV (DJI Tech., Shenzhen, China) equipped with a ZenmuseX5S camera
(DJI Tech., Shenzhen, China), a Micasence Rededge MX camera (Micasence, Seattle, WA,
USA), and a ZenmuseXT2 camera (DJI Tech., Shenzhen, China) was used to capture the
red–green–blue (RGB) image, multispectral reflectance, and temperature data, respectively.
Data collection occurred under cloudless weather conditions between 11:00 and 12:30 h,
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with a flight of 80 m, ensuring complete coverage of the coal waste dump. RGB and
multispectral images were acquired simultaneously, and the photograph forward and
lateral overlaps were 80% and 70%, respectively. Thermal infrared images were subse-
quently captured with 85% and 80% forward and lateral overlap, respectively. To achieve
accurate georeferencing, the flight mission was carried out in RTK mode based on the geo-
graphic coordinate system of the mining area (Beijing 54 3◦, where the central meridian is
114◦E). The Pix4Dmapper4.4.12 software (Pix4D SA) was used to process and generate the
UAV products in this study. The average ground sample distance (GSD) of RGB imagery,
multispectral reflectance, and thermal imagery was 2.26 cm, 7.40 cm, and 8.98 cm/pixel,
respectively. The details on data acquisition and processing methods can be found in our
previous research [10].

2.2.2. Alfalfa AGB Measurement

Herbaceous vegetation covers a wide area and responds sensitively to soil environ-
mental changes due to its shorter growth cycle. Therefore, the representative herbaceous
species Medicago sativa L. (alfalfa) was selected in this study. Alfalfa AGB sampling points
were systematically distributed across the coal waste dump. However, noticeable signs
of spontaneous combustion and variations in alfalfa growth were observed on the north-
west and southeast slopes (regions I and II) during the field survey. Consequently, we
allocated more sample points to Regions I and II to ensure a representative sample of alfalfa
AGB values.

There were 29 and 44 alfalfa sampling points in regions I and II, respectively, with
an additional 87 points in other areas, for a total of 160 sampling points (Figure 2). To
minimize the influence of spatial heterogeneity, the quadrat method was employed with
20 cm × 20 cm quadrats at each point. Considering the potential impact of traditional
grassland survey methods, five random alfalfa samples were collected within each quadrat
to minimize secondary damage. These samples were stored in pre-weighed PE plastic bags
and weighed using a balance accurate to 0.01 g. Additionally, the number of individual
plants (n) and average height (h) within each quadrat were recorded, with the main stem
serving as the statistical unit. The alfalfa AGB for each sampling point was then calculated
using Equation (1):

AGB(g/m2) =
1

0.04
n × m1 (1)

where n is the number of alfalfa plants recorded in each sampling point, and m1 is the
average weight of five measured alfalfa plants.
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3. Methodology
3.1. Alfalfa Coverage Extraction

Alfalfa coverage in the coal waste dump was extracted based on the UAV RGB imagery
using the object-based image analysis (OBIA) method. Further details on the process can
be found in Supplementary Material.

3.2. UAV Imagery Feature Extraction
3.2.1. Spectral Information

A set of vegetation indices (VIs) derived from RGB and multispectral sensors, previ-
ously used for vegetation AGB estimation, were chosen to estimate the alfalfa AGB in this
study (Table 1).

Table 1. UAV imagery features extraction in this study.

Imagery
Feature Sensor Imagery Feature Calculation Reference

Spectral
information

RGB Normalized Green–Red Difference
Index (NGRDI) NGRDI = (G − R)/(G + R) [27]

RGB Color Index of Vegetation Extraction (CIVE) CIVE = 0.441r − 0.881g + 0.385b + 18.78745 [28]
RGB Excess Green Index (EXG) EXG = 2g − r − b [29]
RGB Excess Green Minus Excess Red Index (EXGR) EXGR = EXG − 1.4r − g [30]

RGB Modified Green–Red Vegetation
Index (MGRVI) MGRVI = (g2 − r2)/(g2 + r2) [19]

RGB RGB-based Vegetation Index (RGBVI) RGBVI = (g2 − rb)/(g2 + rb) [31]
RGB Visible Atmospherically Resistant Index (VARI) VARI = (g − r)/(g + r − b) [28]
RGB Green Leaf Index (GLI) GLI = (2g − r − b)/(2g + r + b) [31]
RGB Green–Red Vegetation Index (GRVI) GRVI = (g − r)/(g + r) [19]

RGB Normalized Green–Blue Difference Vegetation
Index (NGBDI) NGBDI = (g − b)/(g + b) [32]

MS Green Normalized Difference Vegetation
Index (GNDVI) (ρNIR − ρGreen)/(ρNIR + ρGreen) [33]

MS Normalized Difference Vegetation
Index (NDVI) (ρNIR − ρRed)/(ρNIR + ρRed) [34]

MS Nonlinear Vegetation Index (NLI) (ρNIR2 − ρRed)/(ρNIR2 + ρRed) [35]
MS Enhanced Vegetation Index (EVI) 2.5(ρNIR − ρRed)/(ρNIR + 6ρRed − 7.5ρBlue + 1) [36]
MS Ratio Vegetation Index (RVI) ρNIR/ρRed [37]

MS Optimized Soil Adjusted Vegetation
Index (OSAVI) (ρNIR − ρRed)/(ρNIR + ρRed + 0.16) [38]

MS Modified Simple Ratio (MSR) (ρNIR/ρRed − 1)/(ρNIR/ρRed + 1)1/2 [39]
MS Green Chlorophyll Index (CIgreen) ρNIR/ρGreen − 1 [27]
MS Normalized Difference Rededge Index (NDRE) (ρNIR-ρRededge)/(PNIR+ρRededge) [40]
MS Chlorophyll Index-rededge (CIrededge) ρNIR/ρRededge − 1 [27]

Texture
information RGB/MS/TIR MEA, HOM, COR, DIS, ENT, CON, SEC, VAR GLCM [41]

Thermal
information

TIR Canopy temperature depression (CTD) Tcanopy − Tair [42]
TIR Crop water stress index (CWSI) (Tcanopy − Twet)/(Tdry − Twet) [43]

Structure
information RGB Plant height (PH) DSM–DEM [19]

R, G, and B are the digital number (DN) values of red, green, and blue bands of the RGB sensor, respectively.
r, g, and b are the normalized red, green, and blue bands, respectively; r = R/(R + G + B), g = G/(R + G + B), and
b = B/(R + G + B). ρRed, ρGreen, ρBlue, ρNIR, and ρRededge are the reflectance of red, green, blue, near infrared,
and red edge band of the multispectral sensor, respectively. Tcanopy is the canopy temperature of alfalfa coverage,
and Tair represents the mean air temperature (29 ◦C used in this study). Twet (0.5% of the Tcanopy) and Tdry (99.5%
of the Tcanopy) represent the temperature of fully transpired leaves with open stomata and non-transpired leaves
with closed stomata, respectively.

3.2.2. Texture Information

UAV imagery texture features are commonly used for plant AGB estimation. In
total, eight texture metrics were incorporated in this study: mean (MEA), homogeneity
(HOM), correlation (COR), dissimilarity (DIS), entropy (ENT), contrast (CON), second
moment (SEC), and variance (VAR). Texture information for each band (Red, Green, Blue,
Near infrared [NIR], Red edge, and Thermal infrared [TIR]) was extracted using ENVI5.3
software (GLCM module). Based on our previous work, we applied a moving direction
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averaging four directions (θ = 0, 45, 90, and 135◦), a 3 × 3 moving window, and a 1-pixel
moving step.

3.2.3. Thermal Information

Canopy temperature is known to enhance estimations of various vegetation growth pa-
rameters. In this study, the alfalfa plants exhibited kraurotic and hydroponic characteristics
under spontaneous combustion processes. Accordingly, temperature information offered
valuable additional information for alfalfa AGB estimation. For this purpose, two TIR
imagery features, namely canopy temperature depression (CTD) and statistical crop water
stress index (CWSIs), were selected in this study (Table 1).

3.2.4. Structure Information

Plant height (PH) exhibited a strong correlation with crop AGB, making it a suitable
structural characteristic for estimation [14,19]. In this study, the crop height model (CHM)
was utilized to extract the alfalfa PH (Table 1). A digital surface model (DSM) was generated
from UAV-RGB imagery using Pix4Dmapper4.4.12 software, while a digital elevation model
(DEM) was provided by the mining enterprise. The DEM included high-precision terrain
data after terrain leveling in the reclamation project, which was measured using a total
station. Additionally, a GNSS–real time kinematic (RTK) field survey was performed to
ensure the suitability of DEM for estimating alfalfa PH.

3.2.5. Feature Selection

An initial set of 41 UAV RGB imagery features, 50 MS imagery features, and 10 TIR
imagery features were extracted. However, to avoid potential negative impacts of excessive
features on model performance and efficiency, the Boruta algorithm was employed for fea-
ture selection. The Boruta algorithm, developed based on the random forest algorithm [44],
has been widely used in crop growth monitoring [24,45]. It operates in several main steps:
(a) Shuffling the feature values of each feature matrix X, and then forming a new feature
matrix combined with real features and shadow features. (b) Using the new feature ma-
trix as input to obtain the model of feature importance after training. (c) Calculating the
Z_score of real and shadow features and recording the largest Z_score as Zmax. A Z_score
greater than Zmax is marked as “important”, and a Z_score significantly less than Zmax is
marked as “unimportant”. “Unimportant” factors are removed from the feature dataset.
(d) Steps (a)–(c) are repeated until all features are marked.

Following this process, a final set of eight RGB features, eight MS features, and
three TIR features were obtained for further analysis (Table 2).

Table 2. Feature selection results based on the Boruta algorithm.

Sensor Type Select Feature Number

RGB PH, EXGR, CIVE, VARI, NGRDI, MGRVI, GRVI, and G_VAR 8

MS RVI, NDRE, OSAVI, NDVI, MSR, CI-rededge, R_MEA,
and NIR_MEA 8

TIR CWSIs, thermal_VAR, and thermal_MEA 3

3.3. Modeling Method

Commonly used machine learning models, random forest regression (RFR), support
vector regression (SVR), gradient boosting decision tree (GBDT), and K-nearest neighbor
(KNN) were employed for alfalfa AGB estimation. Additionally, a stacking algorithm was
implemented to improve estimation accuracy by combining these individual models.

The stacking algorithm operates by training a series of independent base models
in parallel and then using a meta model to combine their predictions [46]. As shown in
Figure 3, the stacking model mainly consisted of three parts in this study: (a) The train data
was divided to k datasets using k-fold cross-validation (k = 5 in this study) firstly, and each
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base model (RFR, SVR, GBDT, KNN) was then trained on k − 1 datasets. (b) The trained
base models were used to predict another dataset and test data, respectively, to obtain the
estimation results of the k training datasets and test data. (c) The meta model was trained
and then estimated the alfalfa AGB. The estimation results of k training data were used as
the training dataset of the meta model, and the average value of the estimation results of k
test data was the test dataset. In this study, the meta model was the best-performing model
(RFR) among the base-models.
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3.4. Accuracy Assessment

The performance of the estimation model was evaluated using the coefficient of
determination (R2), root mean square error (RMSE), and mean absolute error (MAE). The
R2 ranges from −1 to 1, with higher values indicating a stronger correlation between
estimated and measured values. Lower RMSE and MAE values reflect better estimation
accuracy. The calculations of these metrics are provided in Equations (2)–(4):

R2 = 1 −

N
∑

i=1
(yi − ŷi)

2

N
∑

i=1
(yi − yi)

2
(2)

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − ŷi)
2 (3)

MAE =
1
N

N

∑
i=1

∣∣∣∣∣yi − ŷi

∣∣∣∣∣ (4)

where, N (i = 1, 2, 3, . . ., N) represents the number of alfalfa samples, yi is the measured
value of ith alfalfa sample, ŷi is the estimated value of ith alfalfa sample, and

_
yi is the

average value of measured alfalfa samples.

3.5. Workflow in This Study

Given the cost-effectiveness of RGB imagery, it is the most commonly used data type
in mining areas [18]. To this end, this study investigated four combinations, Combination
I (RGB), Combination II (RGB + MS), Combination III (RGB + TIR), and Combination IV
(RGB + MS + TIR), to explore the impact of UAV imagery feature fusion on alfalfa AGB
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estimation accuracy. The estimation performances of different machine learning models
(RFR, GBDT, SVR, KNN, and stacking) were also compared. The workflow of this study is
illustrated in Figure 4.
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4. Results and Discussion
4.1. Modeling and Validation of Alfalfa AGB

The alfalfa AGB estimation results are presented in Table 3 and Figure 5. It was
observed that a better estimation of alfalfa AGB can be achieved based on RGB imagery
features (Combination I). The R2 of each model in the test dataset was in the range 0.62–0.86,
with RMSE ranging from 86.6 g/m2 to 143.94 g/m2, and MAE ranging from 60.24 g/m2 to
92.83 g/m2.

Table 3. Alfalfa AGB estimation results under feature combinations.

Model Metric
Combination I Combination II Combination III Combination IV

Train Test Train Test Train Test Train Test

R2 0.96 0.82 0.96 0.87 0.96 0.86 0.96 0.87
RFR RMSE 48.33 96.64 48.51 84.87 48.65 85.97 48.17 84.36

MAE 34.73 68.28 35.05 65.21 33.38 59.02 33.53 61.56

R2 0.77 0.62 0.85 0.76 0.85 0.77 0.85 0.77
SVR RMSE 115.62 143.94 94.80 113.19 93.21 111.30 92.78 110.97

MAE 77.68 92.83 55.30 76.60 52.50 73.78 52.04 73.45

R2 0.85 0.78 0.89 0.81 0.85 0.82 0.96 0.83
GBDT RMSE 94.23 107.79 80.08 100.88 93.68 99.16 51.08 96.06

MAE 72.58 81.62 61.48 79.16 71.83 74.85 39.44 78.64

R2 0.77 0.65 0.76 0.79 0.77 0.79 0.79 0.79
KNN RMSE 114.84 136.53 118.68 107.29 116.75 106.79 107.46 105.58

MAE 79.68 84.04 82.47 70.51 83.13 72.41 72.70 72.22

R2 0.90 0.86 0.94 0.88 0.93 0.86 0.95 0.88
Stacking RMSE 76.61 86.87 60.31 80.82 62.64 85.34 54.89 80.06

MAE 55.09 60.24 42.72 61.45 43.79 62.69 37.78 60.31
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Figure 5. Estimation results of alfalfa AGB based on the random forest regression (RFR), support
vector regression (SVR), gradient boosting decision tree (GBDT), K-nearest neighbor (KNN), and
stacking model. The green line is the fitted line between the estimated and measured AGB, and the
black line indicates a 1:1 relationship. For each model, (a) Combination I (RGB); (b) Combination II
(RGB + MS); (c) Combination III (RGB + TIR); (d) Combination IV (RGB + MS + TIR).
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It was demonstrated that the potential of fusing RGB spectral information, texture in-
formation, and structure information for alfalfa AGB estimation, which was consistent with
previous studies that have shown the combination of RGB spectral and texture information,
can improve the estimation accuracy of crop AGB [6,33]. Furthermore, incorporating crop
height into estimation models based on RGB VIs or texture features has also been proven to
have great potential in improving the AGB estimation accuracy of potato [20], maize [19],
wheat [47], and other crops. The structure information includes the differences in alfalfa
canopy and structural features caused by spontaneous combustion, and overcomes the
asymptotic saturation issue of spectral features to a certain extent.

4.1.1. Combination of Different Sensors/Information in Alfalfa AGB Estimation

The estimation accuracy of all models improved with the increase in sensor/feature
types (Table 3). Compared to Combination I, the estimation performance of all models
based on Combinations II and III improved. The R2 increased by 0.02 to 0.15, while RMSE
and MAE decreased by 1.53–32.64 g/m2 and −2.47–19.05 g/m2, respectively.

It was observed that the estimation accuracy of alfalfa AGB improved when fusing
RGB and MS information (Table 3). Especially for samples that exceeded 400 g/m2, the
estimation model incorporating MS information exhibited superior performance. The
reflectance of vegetation varies across different wavebands. Compared to the visible
band, the NIR and Red edge band exhibit greater sensitivity to the canopy structure and
absorption of chlorophyll, and enhance the vegetation vigor contrast [47–49], thereby
improving the estimation accuracy of alfalfa AGB. Canopy temperature is often associated
with vegetation leaf water content and canopy structure. Canopy temperature information
in this study was derived from UAV TIR data. Although it may be affected by the sensor
itself and a wide range of environmental factors, the thermal information also showed great
potential for alfalfa AGB estimation. Specifically, compared to using only a single RGB
sensor, the fusion of RGB and TIR information (Combination III) substantially improved
the estimation accuracy of alfalfa AGB (Table 3). Under the influence of spontaneous
combustion of coal waste dump, the alfalfa plants suffered from water shortage and
appeared dry. Similar to our research results, Maimaitijiang et al. [25] and Wu et al. [50]
pointed out that the introduction of thermal information improved the estimation accuracy
of soybean yield and wheat LAI, respectively. Also, Wang et al. [51] reported that TIR
features indirectly reflect the difference between the water content of sugar beet root and
the surrounding environment, further improving the estimation accuracy of sugar content.

However, the improvement of estimation accuracy was not obvious when three im-
agery features were further fused (Combination IV). The R2 of all regression models was
basically unchanged (~0–0.02), and RMSE and MAE decreased by 0.5–5.28 g/m2 and
0.48–3.15 g/m2. Maimaitijiang et al. [25] suggested that the accuracy improvement in
soybean yield was not substantial when combining spectral, structure, thermal, and texture
information in comparison with only using multi-sensor-based texture information. Also,
Wu et al. [50] found no significant improvement in estimation accuracy of wheat LAI when
adding thermal features to spectral and structural features. We believe that this may be due
to the information homogeneity and redundancy among features derived from different
sensors [52].

4.1.2. Regression Model in Alfalfa AGB Estimation

Machine learning algorithms have great potential in crop growth-parameter estimation.
Compared with traditional algorithms, machine learning regression models can obtain
higher estimation accuracy when dealing with high-dimensional complex data [50]. The
RFR and GBDT models performed better than the SVR and KNN algorithms, which was
consistent with previous studies [47,50]. The RFR model based on the fusion of RGB and
TIR (Combination III) showed a higher R2 and lower MAE among all regression models.
RFR and GBDT used decision tree-based ensemble learning methods, which can reduce
the impact of noise by aggregating multiple decision trees [47]. The SVR model performed
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poorly in this study, which may be related to the number (n = 160) and quality of the
alfalfa samples.

The stacking model achieved superior performance compared to other regression
models under all feature combinations, showing higher R2 and lower RMSE and MAE
values. When using the stacking model based on the fusion of three feature types, the
optimal AGB estimation results were observed (Table 3). The R2 of the model was 0.86,
and the RMSE and MAE were 80.06 g/m2 and 60.31 g/m2, respectively. Especially for
the alfalfa samples with high values (>600 g/m2), the stacking model showed higher
stability (Figure 5). Feng et al. [53] found that the estimation accuracy of alfalfa yield of
the stacking model was better than that of RFR, SVR, and KNN models at high numerical
values (>2000 kg/ha). Shu et al. [45] reported that the estimation accuracy of ensemble
learning models was higher than those of the basic models in maize growth parameters.

In addition, as shown in Figure 6, the estimation ability of all models was improved
to varying degrees with the increase in feature types. The estimation accuracy of basic
regression models was relatively inferior based on the single RGB sensor (Combination I),
and the accuracy was significantly improved when fusing MS or TIR features. However,
compared with other regression models, the stacking model maintained a good estimation
accuracy when only using the single RGB sensor, even better than the GBDT, KNN, and SVR
models under multi-source feature fusion. The stacking model can combine the advantages
of multiple base models, showing greater potential in accuracy and stability. Furthermore,
our results showed that the stacking model performed better when the available feature
information was limited.
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4.2. Spatial Analysis of Alfalfa AGB in Coal Waste Dump
4.2.1. Map of Alfalfa AGB

The distribution map of Alfalfa AGB in the study area was generated using the optimal
model (stacking model and Combination IV) combined with the alfalfa coverage mask,
as shown in Figure 7. It was observed that spontaneous combustion caused a substantial
impact on vegetation restoration in the study area. Surface alfalfa cover in local regions
was damaged due to the spontaneous combustion process, resulting in bare soil areas.
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Figure 7. Distribution map of alfalfa aboveground biomass (AGB) in the study area.

The alfalfa AGB was classified into four grades using a natural break method (Figure 7).
The proportion of AGB values below 375.89 g/m2 exceeded 50%, while those above
571.14 g/m2 constituted only 15.71%. Thus, although the vegetation coverage in the coal
waste dump was relatively high, alfalfa growth in local areas exhibited significant spatial
variance under the influence of spontaneous combustion.

4.2.2. Alfalfa AGB Response to Spontaneous Combustion of Coal Waste Dump

The alfalfa AGB in some areas exhibited obvious spatial variances under sponta-
neous combustion. Previous studies indicated that the growth and distribution of surface
vegetation can reflect the intensity of underground spontaneous combustion to some ex-
tent [6,10,13]. To this end, this study utilized the measured soil temperature (25 cm depth)
as a real reference of the intensity of underground spontaneous combustion to explore the
response of alfalfa AGB to spontaneous combustion of the coal waste dump. A detailed
description of the soil temperature points can be found in Supplementary Material. Con-
sidering the measurement scale of soil temperature (1.5 m), the average value of all alfalfa
AGB pixels within a 1.5 m buffer zone was calculated. Since some points were located in
bare soil areas, the calculated AGB value was set to 0.

Pearson’s correlation coefficient revealed a significant negative correlation between
alfalfa AGB and soil temperature (r = −0.639, p < 0.01). Furthermore, a logarithmic rela-
tionship was observed between alfalfa AGB and soil temperature (y = −464.2lnx + 1857.8,
R2 = 0.502), as shown in Figure 8. Thus, alfalfa AGB can reflect the soil temperature
changes caused by underground spontaneous combustion to a certain extent. The intensity
of spontaneous combustion was higher in the bare soil areas, resulting in damage to the
surface alfalfa coverage under a high-temperature environment. With the weakening of
spontaneous combustion, alfalfa was affected by various degrees of temperature, drought,
and nutrient deficiency [11], leading to a decrease in AGB values observed in this study
(Figure 8). Herbaceous vegetation usually covers a large area, which can reflect the ecolog-
ical restoration of entire coal waste dumps. Therefore, regular monitoring of vegetation
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growth can reveal the underground spontaneous combustion activities to a certain extent,
and further reveal the intensity or extent of the spontaneous combustion process through
spatial analysis, which is of great significance for the ecological restoration of coal waste
dumps after reclamation.
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4.3. Monitoring Strategy in Vegetation Restoration of Coal Waste Dumps

The above analysis indicates that the stacking model outperformed the other regression
models across all feature combinations (Table 3). For three assessment metrics (R2, RMSE,
and MAE), a comparison was performed between the stacking model and other regression
models, as shown in Figure 9. The results showed that the R2 of the stacking model based
on the RGB single-sensor remained higher than that of the KNN, SVR, and GBDT models,
while being only slightly lower than the RFR model that utilizes multi-sensor data (with
an R2 decrease of 1%). Moreover, the RMSE and MAE of the stacking model were higher
than those of the other regression models, except for the RFR model. Despite the relatively
complex calculations involved in the stacking model, it effectively compensated for the
accuracy loss caused by using only the RGB single-sensor. Additionally, the fusion of three
types of sensors contributed to an improvement in the estimation accuracy of the stacking
model, but to a lesser extent than the fusion of RGB and MS or TIR data. The R2 of the
fusion of RGB and MS was close to that of the three sensors (0.88). Furthermore, in terms
of RMSE and MAE, the Stacking model based on the combination of RGB, MS, and TIR
exhibited a decrease of 0.76 g/m2 and 1.14 g/m2, respectively, when compared with the
fusion of RGB and TIR data.
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Although the fusion of multi-source UAV imagery features has improved the estima-
tion accuracy of alfalfa AGB, it still faced the limitations related to cost and operational
feasibility in practical work. RGB sensors are preferred for crop growth monitoring due
to their low cost and high spatial resolution [20,47]. Marcial-Pablo et al. [54] indicated
that multispectral VIs showed better effects in the extraction of maize coverage during the
aging stage. However, it was recommended to prioritize the use of RGB sensor as much as
possible in practical farmland to consider the cost. Despite the rapid development in UAV
remote sensing, the cost of experiment equipment remains a significant factor affecting the
feasibility of monitoring in mining areas [18]. Therefore, this study proposes the following
reference strategies for vegetation restoration monitoring in mining areas: (i) The stacking
model integrated with multiple machine learning models offers a balance between esti-
mation accuracy and cost considerations. The use of the stacking model combined with
UAV RGB imagery features can yield better estimation of alfalfa AGB in coal waste dump.
(ii) The fusion of UAV MS or TIR information with RGB features enhances the estimation
accuracy of alfalfa AGB. However, we believe that employing all three sensor types is
unnecessary in practical monitoring work.
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5. Conclusions

Frequent spontaneous combustion activities pose a major challenge to vegetation
restoration of coal waste dumps after reclamation. In response to this issue, this study
explored the potential of UAV-based multi-source remote sensing data fusion (RGB, MS,
and TIR) and various machine learning models for monitoring vegetation growth (alfalfa
AGB) in a coal waste dump after reclamation. The key findings of this study are as follows:

(i) Fusion of UAV multi-source remote sensing data significantly improved the estima-
tion accuracy of alfalfa AGB, although the effectiveness varied. Compared to the single
RGB sensor, the estimation accuracy significantly increased when incorporating MS or TIR
imagery features (R2 increased by 0.02–0.14, RMSE and MAE decreased by 6.05–31.14 g/m2

and 2.46–16.23 g/m2, respectively). However, with the introduction of all three types of
UAV information, the R2 of the regression models showed no significant change, and the
decrease in RMSE and MAE was less than 3 g/m2.

(ii) The stacking model consistently outperformed RFR, GBDT, SVR, and KNN across
all feature combinations, achieving accurate estimates even with limited sensor types.

(iii) The stacking model based on the RGB sensor can maintain accuracy while reducing
monitoring costs. While integrating MS or TIR information further improved accuracy, it
was not necessary to use all sensors for practical monitoring by mining enterprises.

(iv) A significant negative correlation between alfalfa AGB and soil temperature was
observed in this study, suggesting the potential to use alfalfa AGB to guide and assess the
intensity and extent of underground spontaneous combustion activities.

This study demonstrated the potential of UAVs for monitoring vegetation restora-
tion in coal waste dumps after reclamation. Our findings provided a valuable basis for
mining enterprises to develop management strategies for vegetation restoration of coal
waste dumps.
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8. Abramowicz, A.; Rahmonov, O.; Fabiańska, M.J.; Nádudvari, Á.; Chybiorz, R.; Michalak, M. Changes in soil chemical composition
caused by self-heating of a coal-waste dump. Land. Degrad. Dev. 2021, 32, 4340–4349. [CrossRef]
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