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Abstract: The escalating evolution of aquaculture has wielded a profound and far-reaching impact
on regional sustainable development, ecological equilibrium, and food security. Currently, most
aquaculture mapping efforts mainly focus on coastal aquaculture ponds rather than diverse inland
aquaculture areas. Recognizing all types of aquaculture areas and accurately classifying different
types of aquaculture areas remains a challenge. Here, on the basis of the Google Earth Engine
(GEE) and the time-series Sentinel-1 and -2 data, we developed a novel hierarchical framework
extraction method for mapping fine inland aquaculture areas (aquaculture ponds + rice-crawfish
fields) by employing distinct phenological disparities within two temporal windows (T1 and T2) in
Qianjiang, so-called “Home of Chinese Crawfish”. Simultaneously, we evaluated the classification
performance of four distinct machine learning classifiers, namely Random Forest (RF), Support Vector
Machine (SVM), Classification and Regression Trees (CART), and Gradient Boosting (GTB), as well
as 11 feature combinations. Following an exhaustive comparative analysis, we selected the optimal
machine learning classifier (i.e., the RF classifier) and the optimal feature combination (i.e., feature
combination after an automated feature selection method) to classify the aquaculture areas with
high accuracy. The results underscore the robustness of the proposed methodology, achieving an
outstanding overall accuracy of 93.8%, with an F1 score of 0.94 for aquaculture. The result indicates
that an area of 214.6 ± 10.5 km2 of rice-crawfish fields, constituting approximately 83% of the entire
aquaculture area in Qianjiang, followed by aquaculture ponds (44.3 ± 10.7 km2, 17%). The proposed
hierarchical framework, based on significant phenological characteristics of varied aquaculture types,
provides a new approach to monitoring inland freshwater aquaculture in China and other regions of
the world.

Keywords: inland freshwater aquaculture; aquaculture ponds; rice-crawfish fields; machine learning
classifiers; Google Earth Engine

1. Introduction

The aquaculture industry, encompassing both inland freshwater and coastal marine,
is experiencing rapid expansion to meet the growing global demand for high-quality
protein-rich food driven by increasing population and affluence [1]. According to data from
the Food and Agriculture Organization (FAO) of the United Nations, global aquaculture
production exhibited an average annual growth rate of 6.7% from 1990 to 2020, resulting
in a cumulative increase of 609% [2]. In 2020, the total global aquaculture production
had reached 87.5 million tons. Notably, inland freshwater aquaculture accounted for 77%
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of global edible aquaculture production (excluding aquatic plants) [3]. As such, inland
freshwater aquaculture stands out as a pivotal force in both the current and future landscape
of the aquaculture industry [3]. Consequently, obtaining the latest and most accurate data
on inland freshwater aquaculture is crucial for a comprehensive understanding of its
spatio-temporal distribution changes.

Within inland freshwater aquaculture regions, intricately woven into diverse landscape
patterns, a notable shift has emerged from singular aquaculture models (e.g., aquaculture
ponds) towards a collaborative development paradigm that integrates both crops and aqua-
culture (e.g., rice-crawfish fields) [4]. This strategic transition aims to optimize yields within
the constraints of limited arable land resources while ensuring food security. Previous stud-
ies primarily focused on single extracting either aquaculture ponds or rice-crawfish fields
using remote sensing satellite imagery [4–9]. Within inland aquaculture areas, a myriad of
aquaculture models may have targeted impacts on water resource security, biodiversity
conservation, disease risks, and resource sustainability [10]. For instance, large-scale inland
aquaculture ponds may require significant water for exchange and aquaculture processes,
potentially posing adverse effects on local terrestrial water storage [11]. Furthermore, com-
pared with other large water bodies, the global estimates of CO2 and CH4 emissions from
small aquatic systems (i.e., aquaculture ponds) require further quantitative analysis [12,13].
Correspondingly, the development of rice-crawfish fields may negatively affect food se-
curity and human health by reducing pure grain cultivation land, increasing pesticide
residues, inducing soil erosion and water quality issues, and triggering land allocation
conflicts [14–16]. Therefore, the simultaneous mapping of multiple aquaculture areas can
provide reliable data support for more focused research and addressing specific issues.
We acknowledge that several studies have focused on identifying rice-crawfish fields in
Qianjiang [17–19], the so-called “Home of Chinese Crawfish”. However, aquaculture areas
encompass not only rice-crawfish fields but also pure aquaculture ponds (for cultivating
fish and crawfish). Identifying all aquaculture areas and accurately classifying different
types of aquaculture areas remains a challenge.

In recent years, numerous studies have made outstanding contributions to the extrac-
tion of aquaculture ponds and rice-crawfish fields using supervised classification methods.
For example, Xia et al. [20] proposed an approach combining Multi-threshold Connected
Component Segmentation with the Random Forest algorithm for the automatic extraction
of coastal aquaculture ponds. Zeng et al. [21], utilizing an SVM classification method based
on geometric features, proposed a contour-based water segment regularity measurement
method, which evaluates the zero-curvature portions of the boundaries, effectively distin-
guishing aquaculture ponds from natural water bodies. Wei et al. [4] utilized the CART
decision tree algorithm along with the Simple Non-Iterative Clustering algorithm (SNIC) to
identify rice-crawfish pixels during fallow and transplanting periods in rice-crawfish fields.
Xia et al. [18] utilized the RF and 255 spectral-temporal features derived from 15 GF-6
tiles to assess the potential of GF-6 data in identifying crop types. However, there re-
mains a deficiency in conducting comprehensive comparisons of classification performance
among different machine learning classifiers under different feature inputs in aquaculture
scenarios. Relying on a pre-existing machine learning classifier without conducting com-
parative analysis would overlook the performance variations among different classifiers
in aquaculture area extraction, potentially influencing the accuracy of classification out-
comes. Moreover, differences in the dimensions and importance of input feature vectors
for different classifiers can significantly impact classifier performance, thereby affecting the
accuracy and efficiency of remote sensing image classification. Therefore, by systematically
evaluating the classification performance of different supervised classifiers and carefully
selecting optimal feature vectors, it is possible to enhance the accuracy and computational
efficiency of fine classification inland aquaculture.

Considering the limitation in current studies, here, we employed four machine learn-
ing classifiers—RF, SVM, CART, and GTB—integrated in Google Earth Engine (GEE).
Utilizing a hierarchical framework classification method based on significant phenological
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differences proposed for inland freshwater aquaculture, we conducted the identification
and automated classification of rice-crawfish fields and aquaculture ponds in Qianjiang,
Hubei Province, China. The objectives of this study were twofold: (1) Developing a novel hi-
erarchical framework to distinguish two types of inland freshwater aquaculture areas (pure
aquaculture ponds + rice-crawfish fields) based on the differences in phenological charac-
teristics of the cultured objects within two different temporal windows. (2) Evaluating the
performance of four machine learning classifiers in inland freshwater aquaculture mapping
under eleven feature vector inputs. Our research also applies to the precise identification of
different types of aquaculture areas in similar regions worldwide, thereby contributing to
the scientific assessment of greenhouse gas emissions caused by aquaculture.

2. Materials and Methods
2.1. Study Area

Qianjiang (30◦04′N–30◦38′N, 112◦29′E–113◦01′E), situated in Hubei Province, China,
encompasses an administrative area of approximately 2000 km2 and lies in the heart of
the Jianghan Plain (Figure 1). With a favorable climate and abundant water resources,
Qianjiang has emerged as a focal point for inland freshwater aquaculture in China. Data
from the China Fisheries Association and the official website of the Qianjiang Municipal
People’s Government reveal that the crawfish production in Qianjiang reached 157,500 tons
in 2021, constituting 6% of the national total and earning it the title of the “Hometown
of Chinese Crawfish” [22,23]. The aquaculture industry in this region not only holds a
substantial share in local and national economic development but also plays a pivotal role
in supporting sustainable development and fostering environmental conservation efforts.
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2.2. Sentinel-1/2 Data

In this study, we utilized all available Sentinel-1 Synthetic Aperture Radar Ground
Range Detected (GRD) data from 1 February to 31 August 2023, provided by the Google
Earth Engine (GEE) platform, totaling 39 scenes. Additionally, we utilized Sentinel-2A/B
(S2) Multispectral Instrument (MSI) Level-2A surface reflectance (SR) data, comprising
87 scenes, during the same period. The Sentinel-2 satellite, launched by the European Space
Agency (ESA), features advanced multispectral sensors [24]. With a revisit cycle of 12 days
for Sentinel-1 and 5 to 6 days for Sentinel-2A/B, they provide a high spatial resolution
of up to 10 m, allowing for the capture of fine details on the earth’s surface, crucial for
precise delineation of aquaculture areas [24,25]. To enhance data quality, we applied an
adjusted cloud score algorithm [26] to filter the potential cloud-containing pixels from all
Sentinel-2 SR images, removing cloud and cloud shadow-affected pixels that could impact
observation quality. The missing data were then interpolated using a linear interpolation
method based on a continuous 10-day composite dataset. Finally, the time-series data
after interpolation were smoothed using a Savitzky–Golay (SG) filter to obtain a 10-day
cloud-free Sentinel-2 time-series dataset for subsequent analysis [27].

2.3. The Spectral Distinctiveness between Aquaculture Ponds and Rice-Crawfish Fields

The aquaculture areas defined in this study encompass aquaculture ponds and rice-
crawfish fields during the inundation period. Aquaculture ponds exhibit a perennial
inundation signal, while rice-crawfish fields, due to their distinctive cultivation practices,
display a regular phenological pattern throughout the year. Specifically, the period from
June to October represents the pure rice planting season (rotation) or the co-cultivation
period of rice and crawfish (co-cultivation), while from November to the following May is
the crawfish cultivation period in rice-crawfish fields (fields show a prolonged inundation
signal). Therefore, we captured the variation in water and vegetation signals between aqua-
culture ponds and rice-crawfish fields by calculating the Modified Normalized Difference
Water Index (MNDWI) [28] and the Enhanced Vegetation Index (EVI) [29] from the images.
The specific formulas are as follows:

MNDWI =
ρGreen − ρSWIR
ρGreen + ρSWIR

(1)

EVI = 2.5 × ρNIR − ρRed
1.0 + ρNIR + 6.0ρRed + 7.5ρBlue

(2)

where ρBlue, ρGreen, ρRed, ρNIR, and ρSWIR denote the reflectance values corresponding to
the blue (B2), green (B3), red (B4), near-infrared (B8), and shortwave infrared (B11) bands
in the Sentinel-2 MSI, respectively.

Based on the field survey, we found that due to the substantial amount of residual straw
left after rice harvesting in the period following rice maturation each October, certain pixels
in rice-crawfish fields may exhibit errors in spectral index values. To mitigate the impact of
these errors and obtain high-quality target pixels, we defined two temporal windows in the
time series: temporal window 1 (T1) spans from February to May, representing the period
of aquaculture pond and rice-crawfish fields both being in the inundation cultivation phase;
the temporal window 2 (T2) extends from June to August, during which aquaculture ponds
are flooded while rice-crawfish fields are in the rice growth phase (non-inundation period).
While both rice-crawfish fields and rice fields exhibit water signals in T1, rice-crawfish fields
predominantly engage in crawfish cultivation during this period, leading to prolonged
water coverage. In contrast, rice fields only show brief water signals during the irrigation
period in T1. We compared these windows with other easily confused land cover types
(Figure 2).
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Figure 2. The seasonal dynamics of MNDWI and EVI of (a) lakes, (b) aquaculture ponds, (c) rice-
crawfish fields, and (d) rice in 2023. The vertical red line represents the boundary between the
two defined temporal windows. The blue background indicates the portion where the water index
is greater than the vegetation index, while the green background represents where EVI is greater
than MNDWI.

2.4. A Hierarchical Framework for Fine Classification Inland Freshwater Aquaculture

In this study, we utilized the differences in phenological characteristics of aquaculture
types in two temporal windows (T1 and T2) and combined them with a hierarchical frame-
work extraction algorithm to finely classify the aquaculture areas in Qianjiang (Figure 3).
Specifically, it mainly includes the following steps: (1) data preprocessing, (2) potential
aquaculture water surface extraction, (3) feature extraction, and (4) optimal classification
selection and classification.
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2.4.1. Extraction of Potential Inland Aquaculture Areas

In two temporal windows, aquaculture undergoes various developmental stages,
with the common characteristic of being associated with water. Aquaculture ponds are
covered with water throughout the year, while rice-crawfish fields are entirely submerged
only during the crawfish farming period. We consider the area of rice-crawfish fields
covered by water during this period as the aquaculture area for that field. Therefore, in T1,
the water-covered areas include rice-crawfish fields during the crawfish farming period,
aquaculture ponds, and other water bodies (e.g., lakes and rivers). In T2, the water-covered
areas include regions other than the rice-crawfish fields from T1. These water-covered areas
are referred to as potential aquaculture areas in this study. To achieve the fine classification
of aquaculture areas, we first extracted potential aquaculture areas in different temporal
windows based on the differences in vegetation and water signals. The extraction rules are
as follows:

MNDWImean > EVImean > ThresholdOtsu (3)

where MNDWImean represents the average value of MNDWI for high-quality observed
pixels in different temporal windows and EVImean denotes the average value of EVI for high-
quality observed pixels in different temporal windows. The ThresholdOtsu corresponds
to the water threshold automatically extracted using the Otsu method under different
temporal windows.

The potential aquaculture water body pixels from two temporal windows were em-
ployed to mask all images within each respective temporal window. These images encom-
passed two bands (MNDWI and EVI). The maximum MNDWI value and its corresponding
EVI value within each temporal window were selected to generate maps representing the
maximum potential aquaculture areas for each temporal window.

2.4.2. Machine Learning Classifiers and Hyperparameter Tuning

The remote sensing cloud computing platforms represented by Google Earth Engine
(GEE), which consist of various remote sensing (e.g., Sentinel and Landsat) and geospatial
data sets, advanced classifiers, and robust computing power [30,31], make it possible to
quickly realize retrospective and continuous land cover monitoring. This study conducted
a comparative analysis of algorithms used in land cover classification from previous stud-
ies and selected four widely accepted machine learning classifiers for the assessment of
aquaculture area classification performance in GEE: RF, SVM, CART, and GTB [32–34]. RF,
an ensemble learning method based on decision trees proposed by Breiman [35] in 2001,
trains each decision tree using different subsets of both data and features randomly ex-
tracted from the original dataset. The final classification result is determined by a vote from
multiple tree classifiers. Currently, it is one of the most popular machine learning classifiers
capable of handling both continuous and categorical multidimensional features, effectively
reducing the impact of overfitting [19,25,33]. In the 1990s, Vapnik [36] introduced the SVM
algorithm, a classification algorithm based on the theory of structural risk minimization for
binary classification problems. The fundamental SVM model defines a maximum-margin
linear classifier in the feature space, aiming to find a hyperplane that separates the dataset
into discrete predefined categories consistently with the training instances [37,38]. It is
widely utilized due to its inherent capability to generalize complex features and circumvent
the overfitting problem [25,39]. The CART algorithm generates a binary tree structure by
recursively splitting each node into two nodes based on input features, ultimately finding
the optimal terminal nodes to achieve the classification goal [40]. Although the CART algo-
rithm is based on decision trees and is simpler than other machine learning models, it is
easy to interpret and has higher computational efficiency, even for problems with complex
interactions [41,42]. The GTB classifier aims to enhance prediction accuracy and robustness
by constructing a series of decision trees. Each tree attempts to correct errors from the
previous tree through stepwise minimization of the loss function based on gradient descent
optimization to achieve classification accuracy [33,43].
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Different configurations of hyperparameters significantly impact the effectiveness
of machine learning classification. In this study, to ensure optimal performance of the
machine learning classifiers employed, rigorous hyperparameter tuning was conducted to
optimize algorithmic efficiency. Following Zhou’s work [44], we employed the exhaustive
grid search method in Python 3.9 using the Scikit-learn (sklearn) package to systematically
explore all possible combinations of hyperparameters for each machine learning classifier
corresponding to GEE across different feature combinations within predefined parameter
ranges (Table 1). By utilizing the best hyperparameters to train the models on the training
dataset, we ensured the optimal generalization performance of the models across diverse
scenarios. Subsequently, independent predictions and validations were performed on a
separate 20% test dataset that had never been used in the hyperparameter tuning process.
The optimal parameter adjustments for four classifiers across different feature combinations
were ultimately determined and applied to GEE. This refined evaluation comprehensively
assessed the model’s performance. This approach ensures a rigorous and reliable evaluation
of the performance of machine learning algorithms in our study.

Table 1. List of machine learning algorithms examined and their corresponding hyperparameter.

Algorithms Name in GEE Name in Sklearn

Random Forest (RF) numberOfTrees
minLeafPopulation

n_estimators
min_samples_leaf

Support Vector Machine
(SVM)

cost
shrinking

c
shrinking

Classification and Regression
Trees (CART)

maxNodes
minLeafPopulation

max_depth
min_samples_leaf

Gradient Boosting (GTB)
numberOfTrees

shrinkage
maxNodes

n_estimators
learning_rate
max_depth

2.4.3. Selection of Optimal Classifier and Feature Combination

Usually, aquaculture areas and other water bodies (e.g., lakes, rivers, and ditches)
show different shapes or texture characteristics. For example, the aquaculture ponds
and rice-crawfish fields tend to be regular, while other water bodies could be irregular
(Figure 4) [7,21]. Moreover, their spectral and radar features varied in different periods.
Therefore, defining certain temporal windows is critical for mapping aquaculture areas.
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Figure 4. Images of aquaculture areas in T1 in Qianjiang. (a) Sentinel-2 true color images. (b) MNDWI
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(e.g., lakes and rivers), the blue boxes represent aquaculture ponds, and the pink boxes represent
rice-crawfish fields where crawfish are cultivated during the inundation period.
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Specifically, we differentiated between aquaculture ponds, rice-crawfish fields, and
other water bodies based on spectral features, radar features, and texture features within
potential aquaculture areas during T1. Although these features typically offer assistance
in distinguishing the above three categories of land covers, their specific performance
and limitations deserve further exploration for future continuous improvements. The
spectral features include MNDWI and EVI, forming a 2-dimensional feature vector. The
radar reflection features consist of Vertical-Vertical (VV) and Vertical-Horizontal (VH),
forming a 2-dimensional feature vector. Gray level co-occurrence matrix (GLCM) is a
commonly used method for analyzing texture features, and the GLCM method in Google
Earth Engine (GEE) has 18 texture features [45,46]. Redundant texture features may reduce
computational efficiency and impact classification results in various classification tasks.
Here, following previous work [45,46], we selected seven GLCM parameters (Angular
Second Moment, Contrast, Correlation, Variance, Sum Average, Inverse Difference Moment,
and Entropy) that effectively characterize texture features of target objects in remote sensing
images. These parameters were quantified for each of the four original spectral bands
in four different directions, resulting in a total of 56-dimensional feature vectors. This
60-dimensional feature vector helps reduce confusion between aquaculture areas and other
land cover types, enhancing the identification of systematically textured aquaculture areas.

However, in machine learning, as the dimensionality of features increases, the compu-
tational and storage complexities of large-scale feature vectors exponentially rise, making
overfitting more likely. To seek the optimal feature combinations and delve into the
contributions of spectral features, radar features, texture features derived from spectral
characteristics, and texture features derived from radar characteristics, we systematically
explored the classification performance of 10 distinct feature combinations in aquaculture
areas. Additionally, we employed different machine learning classifiers (RF, SVM, CART,
GTB) and utilized the recursive feature elimination with cross-validation (RFECV) auto-
mated feature selection method to identify the best feature combinations for each classifier.
To mitigate potential overfitting and selection bias associated with RFECV, we opted to
include only the aforementioned 60-dimensional feature vector, which we deemed most rel-
evant to the classification of aquaculture areas, as the input for RFECV. This comprehensive
approach aims to discuss the optimal machine learning classifier and feature combination
for aquaculture area extraction in Qianjiang during T1.

2.4.4. Fine Classification of Inland Aquaculture Areas

To facilitate machine learning classification, we conducted field sampling in Qianjiang
in August 2023 and utilized Google Earth Pro’s high spatial resolution imagery, as well
as false-color composite images from Sentinel-2 (B11, B8, B4). We selected a total of
1362 samples based on the phenological variations of rice-crawfish fields and aquaculture
ponds during T1 (Figure 5, Table 2).

The classification process involved applying four machine learning classifiers along
with their optimal feature combinations. The optimal machine learning classifier was
selected based on overall accuracy. The classification results of T1 include two parts. The
first is the aquaculture areas (including aquaculture ponds and rice-crawfish fields in the
inundation period), and the second is the other water bodies (e.g., lakes, rivers, and ditches).

In order to distinguish aquaculture ponds and rice-crawfish fields within the aqua-
culture area throughout the year to obtain refined aquaculture areas, the classification
result of T1 served as the base. The pixels that disappear from the potential aquaculture
area in T2 are considered to be rice-crawfish fields that have transitioned from inundation
to rice cultivation within a year. Using ArcMap 10.8’s raster calculator, a changing area
detection analysis was conducted in the classification results of aquaculture areas in T1.
This process identified pixels transitioning from aquaculture areas to non-aquaculture areas,
considering them as rice-crawfish field pixels. These identified pixels were annotated on
the classification result of T1, while the remaining aquaculture area pixels were designated
as aquaculture pond pixels, resulting in a finer classification of aquaculture areas. We
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utilized a stratified estimation algorithm to assess accuracy, quantify uncertainty [47], and
calculate the estimated areas of aquaculture ponds and rice-crawfish fields.
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Table 2. The classification samples used in this study.

Temporal Widow Class Amount

Temporal widow 1
Aquaculture ponds 325
Rice-crawfish fields 581
Other water bodies 456

2.5. Accuracy Assessment

Our accuracy assessment was divided into two parts based on the evaluation objec-
tives. Firstly, to assess the classification performance of the four machine learning classifiers
under different feature combinations for aquaculture areas in T1, we split the samples into
two parts, with 80% as training samples and 20% as validation samples (at this point, aqua-
culture ponds and rice-crawfish fields in temporal window 1 are collectively considered
as aquaculture areas). By constructing a confusion matrix for aquaculture areas and other
water bodies, we calculated the overall accuracy (OA) for each classifier’s different feature
combinations. Secondly, to evaluate the fine classification results of aquaculture areas
obtained in this study, we divided the validation samples into three sample categories and
constructed a confusion matrix for rice-crawfish fields, aquaculture ponds, and other water
bodies. By calculating the confusion matrix, we obtained multidimensional evaluation
metrics, including the producer’s accuracy, the user’s accuracy, the overall accuracy, and
the F1 score. These metrics provide a quantitative assessment of the classification accuracy
of the extracted aquaculture areas. This systematic accuracy assessment method not only
effectively reflects the accuracy of the map classification results but also aids in gaining
insights into the classification performance of different feature combinations.

By comparing the evaluation results, we can identify the optimal feature combination,
providing scientific support for enhancing model performance, optimizing feature selection,
and further improving the accuracy of the fine classification results.
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3. Results
3.1. The Accuracy Assessment of Four Machine Learning Classifiers under Different
Feature Combinations

Various classifiers demonstrated distinct classification performance across diverse fea-
ture combinations in T1 (Figure 6). The RF classifier outperformed the other three machine
learning classifiers, achieving an average OA of 83.5% across eleven feature combinations.
Following were GTB, CART, and SVM, with average OA of 83.0%, 77.7%, and 66.6%, respec-
tively. Particularly noteworthy is the decision boundary of SVM cannot be directly mapped
to specific features; therefore, it cannot provide direct feature importance information. In
this study, RFECV feature optimization was not used for SVM. Among different feature
combinations, those selected through RFECV exhibited the best classification accuracy,
achieving an average OA of 87.7%, surpassing the second-highest feature combination by
2.4%. This may be because RFECV reduced the dimensionality of the data and reduced
the impact of noise by removing features that contribute less to classification performance,
thereby improving the generalization ability of the classifier. The ranking of average OA
for different machine learning classifiers across various feature combinations was K, I, J,
H, D, E, F, G, C, B, and A. From the single OA of spectral features and radar features, the
average OA of radar features in the four classifiers (62.7%) is slightly higher than that of
spectral features (62.5%), indicating that the distinguishability between aquaculture areas
and other water bodies may be higher in radar features. In addition, the addition of texture
features has significantly improved the OA and Kappa of the other three classifiers, except
for the SVM classifier.
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When examining individual classification results, the RF classifier demonstrated
optimal performance in the K combination, with an OA and Kappa of 92.9% and 0.85,
respectively. In contrast, the SVM classifier exhibited the poorest performance in the G
combination, with an OA of only 43.5%. This difference may be attributed to the decision
tree structures and ensemble mechanisms utilized by the other three machine learning
classifiers, enabling them to more flexibly adapt to and capture non-linear relationships
compared with the SVM classifier using kernel functions. In Kappa, the optimal classifier
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and feature combination mirrored the results from the OA, with the RF classifier being the
best classifier and the K combination, obtained through RFECV feature selection, being the
optimal feature combination.

3.2. Separability Analysis

The separability analysis of T1’s classification results (aquaculture areas, other water
bodies) was conducted using the Jefferies–Matusita (JM) distance method [48]. The JM
distance is a measure of the average distance between two class density functions, with
results ranging from 0 to 2. A higher numerical value indicates better separability between
categories, and although there is no ideal threshold for perfect separability, JM distance
values of 1.3 or above are generally considered good separability [49,50]. Figure 7 illustrates
the JM distances calculated for the eleven feature combinations under the RF classifier and
total samples in T1. The results indicate the separability is poor when using only original
spectra features and radar reflection features (A, B) as input vectors, with JM distances
consistently below 0.5. When used in combination C, the separability of features has
slightly improved. However, upon the inclusion of texture features into the feature vector
(F-K), the separability between features demonstrates a rapid increase. This is consistent
with the overall accuracy and Kappa coefficient trend shown in Figure 6. Among the
four feature combinations (H-K) with classification accuracy above 80%, the K feature
combination, selected through RFECV feature optimization, achieves the highest OA with
the fewest features—only 35 feature vectors compared with 58, 58, and 60 dimensions for
the H, I, and J combinations, respectively. This effectively mitigates the risk of overfitting,
reduces computational costs by recursively eliminating unimportant features, and enhances
algorithm efficiency. Thus, we observe that the optimal feature combination selected
through the RFECV method yields more remarkable classification results under the RF
classifier compared to other classifiers and feature input vectors.
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3.3. Aquaculture Area Maps under the Optimal Feature Combinations for Different Classifiers

The classification results of the four machine learning classifiers are illustrated in
Figure 8. Pilot Area 1 is located southwest of Fanwan Lake in Qianjiang. The extraction
results in T1 indicate that the SVM classifier incorrectly classified most aquaculture areas as
other water bodies, while the CART classifier misclassified a significant portion of lake areas
as aquaculture areas. Overall, GTB and RF classifiers showed similar performance, but
the classification results in GTB in the eastern part of the lake were relatively coarse. Only
the RF classifier exhibited better classification performance on the lake surface. While the
majority of the lake can be distinguished from aquaculture ponds through the RF classifier,
there are still some noticeable misclassifications in the results (Figure 8). Pilot Area 2 is a
small rice-crawfish field in the western part of Qianjiang. The extraction results indicate
that the SVM classifier performed poorly. Although the CART, GTB, and RF classifiers
showed similar classification performance in this pilot area, the RF classifier seemed to
have a slight advantage in handling salt and pepper noise.
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3.4. Fine Classification Results of Inland Aquaculture Areas in Qianjiang, 2023

In this study, we employed the optimal machine learning classifier (Random Forest)
based on the optimal feature combination (K-feature combination) discussed to identify
potential aquaculture areas in T1. Furthermore, leveraging the disparate phenological
characteristics of aquaculture ponds and rice-crawfish fields, we derived areas within
the T2 that still represent water bodies based on the classification results from T1. The
results for different temporal windows are illustrated in Figure 9. It was observed that
the aquaculture areas (including aquaculture ponds and rice-crawfish fields) were pre-
dominantly concentrated in the western region of Qianjiang from February to May. Due
to the phenological characteristics of rice-crawfish fields, the inundation signal in these
areas diminished from June to August, leading to a rapid reduction in aquaculture areas,
leaving only the perennial aquaculture ponds. To obtain the classification results for the
year 2023 in Qianjiang, we utilized the changes in inundation features of rice-crawfish
fields within two temporal windows. This approach successfully distinguished aquaculture
ponds from rice-crawfish fields identified in temporal window 1, ultimately achieving a
fine classification of the aquaculture areas in Qianjiang for the year 2023.
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Figure 9. The classification results of aquaculture areas in T1, as well as the areas within T2 that
remain water bodies based on the classification results from T1. Panels (a) presents spatial dis-
tributions of aquaculture areas in T1. Panels (f) presents spatial distributions of areas in T2 that
remain water bodies. Panels (b,g) showcase false-color images of the selected demonstration area
marked with a red box on the left side of (a). Similarly, panels (c,h) display false-color images of the
demonstration area identified by the red box on the right side of (a). Panels (d,e,i,j) show the results
in (b,c,g,h), respectively.

The fine classification results of aquaculture areas are illustrated in Figure 10. The
area estimation results show that the rice-crawfish fields in Qianjiang for the year 2023
are estimated to cover an area of 214.6 ± 10.5 km2, constituting approximately 83% of
the total aquaculture area and about 10.7% of the administrative area of Qianjiang. Rice-
crawfish fields are identified as the predominant aquaculture type in Qianjiang. The area
of aquaculture ponds is estimated to be 44.3 ± 10.7 km2, representing around 17% of the
total aquaculture area.

It is evident that hotspots of rice-crawfish fields are concentrated in the central-
western and southern regions of Qianjiang when analyzing the area distribution within
1 km × 1 km grid cells. Among these, 36 grid cells exhibit rice-crawfish field coverage
exceeding 50%, and 179 grid cells show coverage ranging from 30% to 50%. Hotspots of
aquaculture ponds are mainly concentrated in the central and surrounding areas of Qian-
jiang, including the southern regions around Fanwan Lake. Using the detailed samples
from T1, an accuracy assessment was conducted on the final fine classification results. The
overall accuracy was found to be 93.8%, with an F1 score of 0.94 (Table 3).
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Figure 10. The fine classification results of aquaculture areas in Qianjiang city of Hubei Province
in 2023. (a) The spatial distribution of the fine division results for aquaculture areas. (b,c) illus-
trate the spatial distributions of the proportion of rice-crawfish fields and aquaculture ponds on a
1 km × 1 km grid, respectively. (d) The number of grids with different proportions of rice-crawfish
fields and aquaculture ponds.

Table 3. Confusion matrix of validation results based on validation samples.

Date Class RCF AP OW Total PA (%) OA (%) F1 Score

2023

RCF 100 6 0 106 94.3 93.8 0.94
AP 2 63 2 67 94.0
OW 2 3 64 69 92.8
Total 104 72 66 242

UA (%) 96.2 87.5 97.0

RCF presents rice-crawfish fields, AP presents aquaculture ponds, and OW presents other water bodies.

4. Discussion
4.1. Assessment of Classifiers and Feature Combinations

Different machine-learning classifiers exhibit variations in classification performance
across various land cover types, terrain features, and study areas [51]. For instance, in the
Qilian Mountains, Yang et al. [51] utilized three machine learning algorithms, namely SVM,
CART, and RF, for land cover mapping, revealing that RF achieved the highest overall
accuracy, followed by SVM and CART. Abdi [25], in a vegetation classification study in the
southern part of Uppsala County, Sweden, employed SVM, RF, extreme gradient boosting
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(Xgboost), and deep learning (DL), finding SVM with the highest classification accuracy,
followed by Xgboost, RF, and DL. Pizarro et al. [34] utilized six machine learning algorithms
to map land cover types in the Nor Yauyos Cochas Landscape Reserve in the central Andes
of Peru, discovering that RF exhibited the best performance among all feature combina-
tions, followed by GTB, CART, SVM, naïve Bayes (NB), and Minimum Distance (MD).
Hence, the classification performance of different machine learning classifiers varies under
different classification criteria and in different study areas. Currently, further exploration
is required to understand the classification performance of machine learning classifiers in
fine classification research.

In our study, we employed four machine learning classifiers to map the aquaculture
areas in Qianjiang and analyzed classifier performance. When assessing the impact of
feature combinations on classifier performance, we observed that the optimal feature
combination, K combination, encompassed spectral, radar reflection, and texture features
of the aquaculture areas despite using a small number of feature vectors. The combination
of different feature types might contribute to improved classifier accuracy, as relying solely
on a single feature type could lead to the loss of crucial discriminative conditions. For
instance, spectral features mainly reflect the reflectance or radiance characteristics of objects
in different bands without capturing information about the spatial distribution between
pixels. Thus, using only spectral features might result in an insufficient understanding of
surface texture, boundaries, and shapes, making it challenging to differentiate objects with
similar spectra. Texture features are more suitable for describing spatial distribution and
structure [46], but they may exhibit lower sensitivity to spectral changes. Consequently,
relying solely on texture features could lead to poor differentiation of land cover categories
with significant spectral variations, resulting in blurred classification results.

When evaluating the performance of different classifiers, we found that tree-based
classifiers (RF, GTB, CART) demonstrated more robust performance in aquaculture area
extraction compared with the hyperplane-based classifier (SVM). This discrepancy might
arise from the complexity and irregularity of noise in high-dimensional non-linear data,
which often leads to the hypersensitivity of hyperplane-based classifiers to noise, potentially
causing overfitting and reduced generalization performance. In contrast, SVM may experi-
ence a sharp performance decline due to a relatively small number of mislabeled examples,
rendering it more sensitive to noisy data and resulting in relatively poorer performance [38].
Moreover, from a tree perspective, RF overcomes the risk of overfitting individual trees by
constructing multiple decision trees based on random feature selection. Simultaneously,
RF leverages the ensemble characteristics of trees to enhance model robustness, exhibiting
high tolerance to noise [33]. Compared with GTB and CART, RF’s parallelized training
process further improves computational efficiency, aligning with the demands of current
large-scale data processing [52]. In the face of complex classification tasks, RF, through a
voting mechanism that integrates decisions from multiple trees, possesses strong fitting
capabilities, enabling better capture of spatial feature variation patterns. This makes it more
suitable for regions with complex land cover types and scattered spatial distribution.

4.2. Improvements in Fine Classification of Inland Freshwater Aquaculture Areas

The fine classification of inland aquaculture areas has significant and far-reaching im-
plications for understanding the spatial distribution and production allocation of different
types of inland aquaculture, as well as for achieving efficient management and sustainable
development. Previous studies have primarily focused on satellite image extraction for
individual aquaculture types, leaving a gap in research that simultaneously extracts mul-
tiple types of inland aquaculture areas [4–6,8,19,53]. For instance, Cai et al. [8] proposed
the RAUNet deep learning method and utilized high-quality GF-2 images covering the
entire Qianjiang City for rice-crawfish field extraction. Through comparative testing, the
proposed algorithm demonstrated the capability to map fine crop-type patterns in hetero-
geneous landscapes and complex planting modes. However, rice-crawfish fields undergo
dynamic changes throughout the year, and stitching together only instantaneous images
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may overlook crucial seasonal or cyclical variations in the extraction process. Han et al. [53]
employed an improved UNet model to extract aquaculture areas from Sentinel images
near December 1st each year, ultimately obtaining aquaculture area maps for the Jianghan
Plain from 2016 to 2021. However, a considerable portion of rice-crawfish fields may
not exhibit distinct inundation signals around December 1st each year. Utilizing only
instantaneous images from specific temporal windows is insufficient for simultaneously
extracting various aquaculture types with dynamic changes. Wei et al. [17] successfully
extracted rice-crawfish fields in Qianjiang using two images each year captured during two
different phenological periods from 2013 to 2018, employing the Object-Based Water Index
(OWDM) method. It provided a new approach for mapping rice-crawfish fields. However,
the precise extraction of water surfaces is fundamental to mapping rice-crawfish fields. A
well-considered method for water surface extraction contributes to the increased accuracy
of rice-crawfish field mapping.

The improvements of the method we developed over previous methods are primarily
based on three points that are compared with previous studies (Table 4). (1) The study
object is different from that of the previous studies. Specifically, the aquaculture areas in the
study area not only refer to rice-crawfish fields which have been investigated in previous
studies, but also pure aquaculture ponds that have been neglected. (2) A novel hierarchical
framework was proposed to distinguish two types of aquaculture areas (pure aquaculture
ponds + rice-crawfish fields) based on the differences in phenological characteristics of
the cultured objects within two different temporal windows. (3) To achieve optimal clas-
sification results, we conducted hyperparameter optimization for four classifiers under
eleven feature combinations. Specifically, we evaluated the best machine learning classifier,
feature combination, and corresponding hyperparameters based on overall accuracy, Kappa
coefficient, and JM distance. This provides a scientific selection for accurately extracting
aquaculture ponds and rice-crawfish fields.

Table 4. Comparison of this study and related studies.

Study Study Area Study Object Data Source Methodology Accuracy
Assessment

[5] China’s coastal zone Coastal aquaculture
ponds

Sentinel-2 Level-1C
(10m)

Object-based:
Simple Non-Iterative Clustering
(SNIC) + Hierarchical decision
trees (HDT)

OA: 90.22–92.3%

[6] Global landside Landside clustering
aquaculture ponds

Sentinel-2 Level-2A
(10m)

Pixel-based:
Edge detection and
morphological

F1: 0.88

[54] China’s coastal zone Coastal aquaculture
ponds

Landsat 5 TM
Landsat 7 ETM+
Landsat 8 OLI

(30m)

Object-based:
Image segmentation + Change
detection

OA: 87–94%

[8] Qianjiang, Hubei,
China Rice-crawfish fields GF-2 Level-1A

(1m)

Pixel-based:
Deep convolutional network
(RAUNet)

F1: 0.90

[17] Qianjiang, Hubei,
China Rice-crawfish fields

Landsat 7 ETM+
Landsat 8 OLI

(30m)

Pixel-based + Object-based:
Multiresolution segmentation
(MRS) + Automated water
extraction index (AWEIsh) +
Phenological characteristics

OA: 92.80–96.5%

[18] Qianjiang, Hubei,
China

Rice + Rice-crawfish
+ Winter wheat +

Winter rape + Other
crops

GF-6 WFV (16m)
Landsat-8 OLI (30m)

Sentinel-2 (10m)

Pixel-based:
Random Forest classifier + 255
spectral-temporal features

OA: 91.55% (GF-6)

This
study

Qianjiang, Hubei,
China

Inland freshwater
aquaculture ponds +
Rice-crawfish fields +
Other water bodies

Sentinel-1 GRD
Sentinel-2 Level-2A

(10m)

Pixel-based:
Random Forest classifier +
Spectral features + Texture
features + Phenological features +
Hierarchical framework

OA: 93.80%
F1: 0.94
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4.3. Future Prospects and Limitations

A profound understanding of the developmental status of inland aquaculture hinges
on accurately identifying and distinguishing diverse aquaculture types within complex
land landscapes. An appropriate classifier and feature combination to extract aquaculture
regions within the study area are crucial for obtaining reliable classification results. This
study successfully utilized a hierarchical framework extraction method to finely classify
the aquaculture areas of Qianjiang, comparing four machine learning classifiers and eleven
feature combination methods. The classification results encompass two primary aqua-
culture types: aquaculture ponds and rice-crawfish fields during the inundation period.
This introduces a novel perspective for fine classification for inland aquaculture. However,
it is essential to acknowledge certain limitations: (1) The applicability and transferabil-
ity of the fine aquaculture classification method, feature combinations and parameters,
which require validation across various climates, topographies, and aquaculture modes;
(2) the sudden and uncontrollable changes in aquaculture areas throughout the year, which
pose challenges in dynamically adjusting temporal windows for real-time adaptation to
unforeseen changes; and (3) the partial misclassification is due to the similar temporal
trends of MNDWI and EVI for certain aquatic plants (such as lotus root) compared to
rice-crawfish fields throughout the year. Field investigations revealed that the ponds with
such aquatic plants are infrequently present across the entire study area, thus having a
minimizing impact on classification accuracy. (4) MNDWI, EVI, VV, and VH are typically
effective in distinguishing aquaculture areas from other water bodies. However, some
notable misclassification instances observed in our results indicate that these features still
exhibit certain limitations in fully digging the texture differences of the aquaculture ponds,
rice-crawfish fields, and other water bodies.

In future work, we aim to enhance the performance and accuracy of our current
method in automatically separating inland aquaculture areas by (1) exploring publicly
available various land cover products (e.g., GlobeLand-30) [55], together with the data
of Points of Interest (POIs) and OpenStreetMap [56–59], which could potentially help
identify aquaculture areas and exclude natural water bodies; (2) incorporating shape
features into the improved algorithm to constrain the filtering of aquaculture ponds and
rice-crawfish fields may be another useful option; (3) delving deeper into which specific
texture feature parameters contribute most significantly to distinguishing aquaculture
areas from other water bodies; (4) introducing a real-time dynamic adjustment strategy for
temporal window partitioning to better address the suddenness and unpredictability of
changes in aquaculture areas.

5. Conclusions

The aquaculture areas in the study area not only refer to rice-crawfish fields which
have been investigated in previous studies, but also pure aquaculture ponds that have been
neglected. We utilized the GEE platform and time-series Sentinel-1 and -2 images to develop
an effective hierarchical framework to accurately distinguish the two aquaculture models
(aquaculture ponds + rice-crawfish fields) based on two temporal windows in Qianjiang,
Hubei, China, in 2023. Additionally, we assessed the performance of four machine learning
classifiers (RF, SVM, CART, GTB) and eleven feature vector combinations, including spectral
features, radar features, and texture features, in the classification process. The RF classifier
and the K feature combination method demonstrated the best classification performance.
The accuracy assessment revealed an outstanding overall accuracy of 93.8% and an F1
score of 0.94. The results indicated that rice-crawfish fields dominated aquaculture in
Qianjiang, covering an area of 214.6 ± 10.5 km2, accounting for approximately 83% of the
total aquaculture area. These fields were mainly concentrated in the central-western and
southern parts of Qianjiang City. Aquaculture ponds, with a total area of 44.3 ± 10.7 km2,
constituted about 17% of the aquaculture area and were primarily concentrated in the
central and southern areas of Qianjiang, around Fanwan Lake. This study has introduced
novel insights into the fine extraction of inland aquaculture areas, contributing a fresh



Remote Sens. 2024, 16, 893 18 of 20

perspective to the field. Moreover, it has played a crucial role in providing essential data
support for resource management and sustainability monitoring.
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