
Citation: Chen, B.; Cheng, X.; Su, D.;

Xu, X.; Ma, S.; Hu, Z. Wind Profile

Retrieval Based on LSTM Algorithm

and Mobile Observation of Brightness

Temperature over the Tibetan Plateau.

Remote Sens. 2024, 16, 1068. https://

doi.org/10.3390/rs16061068

Academic Editor: Mark Bourassa

Received: 1 February 2024

Revised: 12 March 2024

Accepted: 13 March 2024

Published: 18 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Wind Profile Retrieval Based on LSTM Algorithm and Mobile
Observation of Brightness Temperature over the Tibetan Plateau
Bing Chen 1 , Xinghong Cheng 2,*, Debin Su 1, Xiangde Xu 2, Siying Ma 1 and Zhiqun Hu 2

1 College of Electronic Engineering, Chengdu University of Information Technology, Chengdu 610225, China;
chenbing910228@163.com (B.C.); masiying950831@163.com (S.M.)

2 State Key Lab of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China;
huzq@cma.gov.cn (Z.H.)

* Correspondence: cxingh@cma.gov.cn

Abstract: Stationary or mobile microwave radiometers (MRs) can measure atmospheric temperature,
relative humidity, and water vapor density profiles with high spatio-temporal resolution, but cannot
obtain the vertical variations of wind field. Based on a dataset of brightness temperatures (TBs)
measured with a mobile MR over the Three-River-Source Region of the Tibetan Plateau from 18 to
30 July 2021, we develop a direct retrieval method for the wind profile (WP) based on the Long Short-
Term Memory (LSTM) network technique, and obtain the reliable dynamic variation characteristics
of the WP in the region. Furthermore, the ground-based radiative transfer model for TOVS (RTTOV-
gb) was employed to validate the reliability of the TB observation, and we analyzed the impact of
weather conditions, altitude, observational mode, and TB diurnal variation on the accuracy of the
TB measurement and the retrieval of the WP. Results show that the TB from the mobile observation
(MOTB) on clear and cloudy days are close to those of the simulated TB with the RTTOV-gb model,
while TB measurements on rainy days are far larger than the modeled TBs. When compared with
radiosonde observations, the WPs retrieved with the LSTM algorithm are better than the ERA5
reanalysis data, especially below 350 hPa, where the root mean square errors for both wind speed and
wind direction are smaller than those of ERA5. The major factors influencing WP retrieval include
the weather conditions, altitude, observational mode, and TB diurnal variation. Under clear-sky
and cloudy conditions, the LSTM retrieval method can reproduce the spatio-temporal evolution of
wind field and vertical wind shear characteristics. The findings of this study help to improve our
understanding of meso-scale atmospheric dynamic structures, characteristics of vertical wind shear,
atmospheric boundary layer turbulence, and enhance the assessment and forecasting accuracy of
wind energy resources.

Keywords: wind profile retrieval; LSTM algorithm; microwave radiometer; mobile observation;
brightness temperatures

1. Introduction

The Tibetan Plateau (TP) is the world’s largest plateau, with the highest altitude and the
most complex topography. The TP is referred to as the ‘Asian Water Tower’, which means
the sources of major rivers such as the Yellow River, Yangtze River, and Lancang River (the
Three-River-Source Region, TRSR) [1]. The dynamic and thermal effects generated by large
topography have an important impact on weather and climate, atmospheric circulation,
water, and energy cycles in China and around the globe [2–15]. However, due to the
complicated topography, inconvenient transportation, and challenges associated with the
maintenance of measurement equipment, surface meteorological and radiosonde stations
over the TP are sparse, which leads to an insufficient understanding of the atmospheric
dynamic and thermal structure [5,7,15]. There are only 15 radiosonde stations over the
TP and, at present, two observations are made every day, at 00:00 and 12:00 UTC. In
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order to make up for the shortage of low-density conventional radiosonde observations
(Raobs) and their low time-frequency, microwave radiometers (MRs) are widely used
in aerological sounding. Ground-based MR (GMR), as a typical form of passive remote
sensing equipment, can measure the brightness temperature (TB) data for downward
radiation at 22–30 GHz and 51–59 GHz bands. The atmospheric temperature (AT), relative
humidity (RH), and water vapor density (WVD) profiles can be retrieved by using the
measured TB data. MRs have been widely applied to the continuous observational research
of AT, RH, and WVD profiles under any weather conditions [16,17]. MRs can capture
the fine thermodynamic structure of meso-scale convective systems and have become a
valuable supplement to routine Raobs [18,19].

Most research uses GMR for field experiments and operational applications with a
fixed observation mode, which can obtain the AT, RH, and WVD profiles at one site, but
it cannot quickly and effectively capture the spatio-temporal variational characteristics of
the atmospheric vertical structure in a wide range. The feasibility and reliability of mobile
observation (MO) using airborne, vehicle-mounted, shipborne, and satellite-based MRs are
discussed in a few research studies [20]. Serafin et al. [21] proposed that aircraft equipped
with an MR could effectively investigate meso-scale convective systems; Huggins et al. [22]
successfully applied a vehicle-mounted MR observation system to study the monsoon
storm in the central Wasatch Plateau of Utah, USA, and studied the spatial distribution
characteristics of supercooled liquid water in a mountainous winter storm. Karan et al. [23]
applied a vehicle-mounted mobile integrated observation system including MRs, wind
profile (WP) radars, altimeters, and ground observation equipment to conduct field ex-
periments in the Midwest of the United States and obtain characteristics of vertical wind
shear. Some studies adopted shipborne [24] and space-based MR [25] data to examine the
spatio-temporal variation of atmospheric precipitable water and cloud liquid water (CLW)
content. Recently, Cheng et al. [26] carried out the first Mobile Field Observation Campaign
of Atmospheric Profiles (MFOCAP) from 18 to 30 July 2021 in southeast Tibet and the TRSR
by adopting two vehicle-mounted integrated MO systems, which are equipped with an MR
and other instruments. They acquired reliable MO datasets including atmospheric AT, RH,
and WVD profiles, with high temporal-spatial resolution. Furthermore, the MO tempera-
ture profile data were assimilated into the Global Forecast System of China Meteorological
Administration (CMA_GFS) model, and the improvement of rainfall prediction over the
TP was evaluated.

In general, from MR-measured TB data, the retrieval of AT, RH, and WVD profiles is
performed with reliable quality. The retrieval of WP may not be possible through conven-
tional methods. With the rapid development of artificial intelligence technologies, the direct
retrieval of wind field information from MR observational data is feasible. Bu et al. [27] em-
ployed an enhanced deep learning network to inverse global sea surface wind speed (WS)
from GNSS-R data, although the continuity and spatial correlation of the wind field were
not taken into account. Shi et al. [28] and Ouyed et al. [29] considering the characteristics
of the wind field, established a field-to-field sea surface wind field inversion model based
on deep learning. Ma et al. [30] utilized a neural network approach and TB data observed
by geosynchronous infrared hyperspectral sounders to retrieve WP information during
the Maria typhoon process. Whereas this method can’t retrieve the wind field information
below clouds. GMR with the bottom-up detection approach, compensates for the satellite’s
inability to capture wind field information under cloud [31]. Considering the continuity
and consistency of wind field and combining the long short-term memory capabilities of
Long Short-Term Memory (LSTM) algorithm [32], this paper developed a WP inversion
method based on LSTM algorithm and TB from mobile observation (MOTB) data from the
MFOCAP over the TRSR. This method can inverse reliable WP information and provides
an effective pathway to enhance our understanding of the vertical dynamic structure.

Following this introduction, Section 2 introduces the LSTM algorithm and dataset.
Evaluations of the reliability of MOTB data using the ground-based radiative transfer
model for the TOVS (RTTOV-gb) model are reported in Section 3. Section 4 assesses the
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inversion accuracy of WP, and analyzes the impact factors and variation characteristics of
vertical wind shear. Conclusions and discussions are given in Section 5.

2. Data and Methods

We referred to the physical basis of WP inversion presented by Ma et al. [30]. They
mentioned that, under cloudy skies, the visible and longwave infrared (IR) band radiances
can be used to track cloud motion-based vectors, while in clear skies, water vapor-sensitive
band radiances are used to track moisture features for motion vectors of water vapor
molecules. The microwave radiation in the band of 22.35–30 GHz is sensitive to water vapor
changes at different altitude layers, and is the preliminary source of information for tracking
moisture-based WPs. The vehicle-mounted microwave radiometer measured the AT and
moisture profile information from 18 to 30 July 2021 in the TRSR, and obtained a reliable
TB dataset with high temporal and spatial resolution. The motion vector information of
water vapor and oxygen molecules in the TRSR is presented by the TB data, and the LSTM
algorithm can use the motion vector information to retrieve the WP. Because the TB at
22 channels can represent the wind field information at different layers, we only use the TB
at 22 channels as the input for the WP inversion model.

2.1. Study Area

The TRSR is located in the south of Qinghai Province and is the source of the Yangtze,
Yellow, and Lancang rivers. It is also known as “China’s Water Tower”, and is highly
sensitive to climate change. The average elevation of TRSR is larger than 4000 m, the
average annual temperature falls between −5.6 and −3.8 °C, and the annual precipitation
is 262.2 to 772.8 mm from west to southeast [33]. The climate of TRSR has changed,
with precipitation and temperature increasing at rates of 6.653 to 10.31 (mm/10a) and
0.33 (°C/10a) over the past few decades, respectively [34,35]. The RH and WS in the TRSR
decreased from 1960 to 2009 [36].

2.2. Dataset

When training the WP inversion model, we used observed TB data, measured with the
GMR at Mangai (MA) Station (38°25′N, 90°E; 2947 m a.s.l., Figure 1) in Qinghai Province
from January to December 2021, and the matching ERA5 reanalysis WP data as the indepen-
dent and dependent variables of the training model. In order to obtain the WP information
in the study area, the MOTB data from 18 to 30 July 2021 were used as the input to the WP
inversion model. Due to the short duration of MO, the MOTB has only 301 sets of data after
spatio-temporal matching with the ERA5 reanalysis data, which is not enough to construct
the WP inversion model. Therefore, the observed TB data from January to December 2021
at MA station, which is nearest to the MO route, were selected to construct training sets,
while the MOTB data were used as testing sets.

The MA GMR station is the closest to the MO route in the TRSR among all GMR
stations over the TP [37,38]. The two MRs (model.MWP967KV) used at the MA station and
the MO field experiment are the same, both produced by the Xi’an Electronic Engineering
Research Institute in China. This instrument is capable of continuously measuring the vari-
ation characteristics of TB for downward radiation at water vapor and oxygen absorption
channels, which comprise 8 channels in the K band (22–30 GHz) and 14 channels in the
V band (51–59 GHz). Each channel’s center frequency is listed in Table 1. The sampling
frequency was set to 2 min, and we obtained 237,990 sets of TB data in total.

TB data observed during the MFOCAP over the TRSR from 18 to 30 July 2021 (as
shown in Figure 1) were used as the input features of the testing set. The data from the
MFOCAP were divided into four stages, with each stage spanning three days of a circling
journey in the TRSR: Xining (XN) → Dari (DR) → Yushu (YS) → XN cites. The average
elevation of the MO route was above 3500 m. The MO system passed by the Yangtze and
Yellow River, and approached the Lancang River. A total of 11,086 sets of valid TB data
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were collected. Detailed information about the MFOCAP was described in the reference by
Cheng et al. [26].

Table 1. Center frequencies of 22 channels of MR.

K-Band V-Band

Number Center Frequency Channel Number Center Frequency Channel Number Center Frequency

1 22.235 GHZ 9 51.250 GHZ 16 54.940 GHZ
2 22.500 GHZ 10 51.760 GHZ 17 55.500 GHZ
3 23.035 GHZ 11 52.280 GHZ 18 56.020 GHZ
4 23.835 GHZ 12 52.800 GHZ 19 56.660 GHZ
5 25.000 GHZ 13 53.340 GHZ 20 57.290 GHZ
6 26.235 GHZ 14 53.850 GHZ 21 57.960 GHZ
7 28.000 GHZ 15 54.400 GHZ 22 58.800 GHZ
8 30.000 GHZ
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Figure 1. Mobile observation route (a) and altitude variation (b) in the Three-River-Source Region
from 18 to 30 July 2021.

The WP data from radiosonde stations along the MO route were used to validate the
inversion accuracy of the wind field and analyze influencing factors. Three radiosonde
stations are XN (36.729°N, 101.752°E; 2262 m a.s.l.), DR (33.759°N, 99.647°E; 3968 m
a.s.l.), and YS (33.001°N, 96.964°E; 3682 m a.s.l.). There are only two Raobs, at 00:00
and 12:00 UTC, every day. To better evaluate the inversion effect, WP data from the
ERA5 reanalysis and inversion model were spatio-temporally matched with the Raobs
by taking the average of the data at 23:00 UTC on the previous day and at 00:00 and
01:00 UTC on the same day, as well as the data at 11:00, 12:00, and 13:00 UTC, respectively.
These averages were then used to represent the 00:00 and 12:00 UTC WP data. Ultimately,
25 sets of WP data from the ERA5 reanalysis and inversion model were matched with
the Raobs.

2.3. LSTM Algorithm

The LSTM network is a variant of the recurrent neural network (RNN) that consists of
an input layer, an output layer, and multiple hidden layers.The inclusion of forget gate ft ,
input gate it, and output gate ot in the hidden layers regulates the flow of information. By
leveraging the gate mechanism, the LSTM network addresses issues such as dependencies,
vanishing gradients, and exploding gradients commonly encountered in RNNs [39]. The
values of the three “gates” in the LSTM network range between (0, 1), serving the purpose
of determining the extent of the preservation of the cell state Ct−1 from the previous time
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step, the level of information retention in the candidate state C̃t at the current time step,
and the extent to which the cell state Ct is output to the hidden state ht .

The recurrent unit structure of LSTM (Figure 2) includes the following calculation
process: (1) the input at the current time step xt and the hidden state of previous time
step ht−1 are used to compute three “gates” and a candidate state C̃t; (2) the forget gate
ot and input gate it update the cell state Ct by incorporating the Ct−1; (3) the cell state Ct
is combined with the output gate ot to transmit information to the hidden state ht. The
calculation formulas are as follows:

ft
it

C̃t
ot

 =


σ
σ

tanh
σ

(W
[

xt
ht−1

]
+ b

)
(1)

Ct = ft ∗ Ct−1 + it ∗ C̃t (2)

ht = ot ∗ tanh(Ct) (3)

where W and b are the weight and bias matrices, respectively, σ is the sigmoid function, and
sigmoid and tanh are defined as:

sigmoid =
1

1 + e−x (4)

tanh =
ex − e−x

ex + e−x (5)

The LSTM WP inversion model is constructed using the Tensorflow and Keras frame-
works on the Python platform. In order to save training time and computational expense,
and speed up the convergence of the training model, we set the hidden layer to two layers.
The input layer consists of TB data at 22 channels, while the hidden layer is composed of
two layers of LSTM networks, one dense layer, and one dropout layer. The output layer
represents the WP at 11 vertical heights. The WP inversion process (Figure 3) encompasses
essential steps such as data quality control, dataset division, model construction and pa-
rameter configuration, WP inversion, and result evaluation. The detailed information of
each step is described as follows:

(1) Quality control: if the MOTB at channel i and time j satisfies the expression∣∣TBij − TBi
∣∣ > 3STBi , it is considered an outlier and needs to be removed. Here,

TBi and STBi represent the mean and standard deviation of the MOTB for channel i.
(2) Dataset division: the training sets consist of observation TBs at MA station and

matching ERA5 reanalysis WP data, while the testing sets consist of MOTB and ERA5
reanalysis WP data.

(3) Model construction and parameter settings: the sequential module is used to build the
neural network and initialize the parameters. The time step, output step, dropout, and
density are set to 50, 1, 0.5, and 1. The training method is configured through compile.
The loss function and optimization algorithm are chosen as MSE and Adam. The
number of neurons in the LSTM network, Adam learning rate, batch size, and model
iteration count are generated using a random search algorithm and we constructed
the best parameter model.

(4) WP inversion: input the testing set features into the best parameter model to obtain
the standardized WP and calculate the original value with the mean and standard
deviation of WP.

(5) Evaluation of inversion results: assess inversion results using the Raob.
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Figure 2. Schematic diagram of the recurrent unit structure of LSTM algorithm.
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Figure 3. Flowchart of WP retrieval based on LSTM and TB data.

3. TB Verification

The quality of the TB data at each channel directly affects the inversion accuracy of
WP, thus we adopted the RTTOV-gb model to indirectly reflect the reliability of MOTB data
before the inversion of WP. The RTTOV rapid radiative transfer model (RTM) is developed,
maintained, updated, and validated by the European Centre for Medium-Range Weather
Forecasts (ECMWF) and has progressed to version 12 [40]. This model is extensively
used for simulating the MOTB of spaceborne MR and data assimilation. Evolved from
RTTOV v11.2, RTTOV-gb is designed to simulate surface atmospheric radiance ranging
from 22 GHz to 150 GHz and is widely used for simulating the TB from GMR [41]. As a
parameterized atmospheric RTM, RTTOV-gb can calculate the downward radiation and TB
at various channels of the equipment [42].

Before simulating the MOTB over the TRSR from 18 to 30 July 2021, the weather
during the MO experiment was categorized into clear-sky, cloudy, and rainy condi-
tions based on measurement data including 26 nearby meteorological stations, ERA5
reanalysis data, and observation records according to the method for the classification
of weather conditions [43]. The classification method states that the total cloud cover
on a clear (cloudy) day is less (more) than 20%, and the hourly rainfall on rainy days is
greater than zero. We used the total cloud cover data from the meteorological station or
ERA5 grid point nearest to the MO route and classified the weather conditions. Finally,
we obtained 79, 180, and 42 sets of data, respectively. We used the AT, RH, and CLW
profiles from the ERA5 reanalysis data as the input for simulated TB (STB) calculations
and compared the STB with MOTB values. Figure 4 presents a time series chart of the
difference between MOTB and STB at 22 channels under all-weather conditions. Notably,
the discrepancy between observations and simulations during rainy conditions is large,
with the maximum difference in the water vapor channel and the TB exceeding 200 K.
Furthermore, the difference in the water vapor channel is obviously larger than in the
oxygen channel. This is primarily due to the attachment of water droplets to the antenna
radome during rainy conditions, which predominantly detects atmospheric water vapor
near the Earth’s surface, resulting in a significant decrease in the performance of the MR
under rainy conditions [44,45].
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Figure 5 presents a comparison between MOTB and STB under different weather
conditions. Under the non-precipitation condition, the discrepancy between MOTB and
STB decreased remarkably when compared to the rainy condition. The results from
Figure 5a indicated that the mean difference (MD) at 22 channels fell between −2 K and
5 K, with the maximum value at the 22.5 GHz and 51.25 GHz channels. Under clear-sky
conditions, there are negative deviations at most of the oxygen channels, except for the
54.94 GHz and 56.02 GHz channels, whereas those at the water vapor channels under
clear-sky and cloudy conditions are positive. With the exception of individual oxygen
channels, most discrepancies under clear-sky conditions are smaller than on cloudy days,
mainly because cloud water content, cloud thickness, and cloud height lead to great uncer-
tainty [46–51]. Figure 5b,c show that there is a strong correlation between MOTB and STB
under two weather conditions, with correlation coefficients nearing unity. The MD on clear
and cloudy days is 0.30 K and 0.78 K, respectively. In general, the MOTBs over the TRSR
are reliable under clear-sky and cloudy conditions.

22.235
22.500

23.035
23.835

25.000
26.235

28.000
30.000

51.250
51.760

52.280
52.800

53.340
53.850

54.400
54.940

55.500
56.020

56.660
57.290

57.960
58.800

Center Frequency ( GHZ )

2

0

2

4

6

B
IA

S 
( K

 )

( a ) Clear-Sky Cloudy

0 50 100 150 200 250 300
STB ( K )

0

50

100

150

200

250

300

M
O

TB
 ( 

K
 )

( c )  Cloudy
Y = 0.99X+1.94
MD = 0.78
R = 0.9992
N = 3960
T = 180

0 50 100 150 200 250 300
STB ( K )

0

50

100

150

200

250

300

M
O

TB
 ( 

K
 )

Y = 0.99X+1.23

R = 0.9997
MB = 0.30

N = 1738
T = 79

( b ) Clear-Sky

Figure 5. Differences between MOTB and STB at 22 channels and their scatter plots under non-
precipitation conditions from July 18 to July 30, 2021 (BJT): (a) differences on clear and cloudy days;
(b) scatter plots on clear days; (c) scatter plots on cloudy days. The colourful scatter points represent
different channels.
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4. Results
4.1. Inversion and Verification

Figure 6 presents scatter plots of WS from the ERA5 reanalysis (hereinafter referred
to as Re-WS) and the LSTM inversion model (referred to as In-WS) against Raobs. There
is a significant correlation between Re-WS, In-WS, and Raob, with correlation coefficients
(R) exceeding 0.96 and passing the 99% confidence level test. The root mean square error
(RMSE) and mean absolute error (MAE) were 1.62 m/s and 1.24 m/s for In-WS with Raob,
and 1.67 m/s and 1.27 m/s for Re-WS with Raob. In other words, the inversion precision of
WS at different heights is slightly better than the ERA5 reanalysis datasets over the TRSR.
This may be due to the limited observation data over the TP assimilated into the ERA5
reanalysis datasets, and more MO information used to invert the WP.

Figure 7 presents wind rose plots of wind direction (WD) inverted by the LSTM method
(hereinafter referred to as In-WD), WD from the ERA5 reanalysis datasets (hereinafter
referred to as Re-WD), and the observation under different WS. Overall, the dominant
In-WD and Re-WD are in agreement with the measured WD, and correlation coefficients
between In-WD, Re-WD, and measurements both exceed 0.85. The RMSEs of In-WD
and Re-WD are quite similar, at 65.15° and 65.72°, respectively. Additionally, differences
between In-WD, Re-WD, and observed WD are small under the strong wind conditions,
whereas those are large under weak wind scenarios [52].
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Figure 6. Scatter plots of Re-WS (a), In-WS (b), and observed WS at XN, DR, and YS radiosonde
stations from 18 to 30 July 2021 (BJT). The red and black dashed lines represent the fitting line and the
1:1 reference line, respectively.
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Figure 8 presents the vertical distribution of In-WS, In-WD, Re-WS, Re-WD, Raob, and
their RMSEs. The inverted and reanalyzed WS at all heights was consistent with Raob,
while the In-WD and Re-WD at 100 hPa, 300 hPa, 350 hPa, and below 450 hPa showed a
large deviation. With the exception of the In-WS at 250 hPa, RMSEs of In-WS and Re-WS
at all layers are both less than 2 m/s. However, there is a notable discrepancy in the
RMSE of In-WD and Re-WD, reaching up to 90° at the heights of 600 hPa and 350 hPa. In
general, the RMSE of In-WS and In-WD below 350 hPa is lower than that of Re-WS and
Re-WD, whereas the inverse is true above 350 hPa, with increased inversion errors at high
atmosphere. It may be related to the weak signal when the vehicle-mounted MR measures
the TB using the bottom-up detection approach. In summary, the inverted WS by the MR
is reliable, particularly below 350 hPa, although the measurement accuracy of the WD
requires further enhancement.
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Figure 8. Vertical distribution of In-WS, Re-WS, observed WS (a), and that of In-WD, Re-WD,
measured WD (c), and their RMSEs (b,d) at XN, DR, and YS radiosonde stations during 18–30 July
2021 (BJT).

4.2. Impact Factors
4.2.1. Weather Conditions

Table 2 presents the RMSE, MAE, R of In-WS, In-WD, and corresponding TB mea-
surement errors under clear-sky, cloudy, and rainy days. The In-WS exhibits a notable
correlation with Raob under all-weather conditions, with R surpassing 0.96. The inversion
error of WS and WD is the smallest in clear-sky conditions, followed by cloudy conditions,
and the largest on rainy days, and is mainly caused by the observation error of TB. The
RMSE of In-WS under the three weather conditions is less than 2 m/s, while the In-WD
error is relatively large on cloudy and rainy days. Under clear-sky conditions, the inversion
errors of WS and WD are smaller, with RMSEs of 1.20 m/s and 26.64°, respectively. The
accuracy of WP inversion is significantly affected by cloud coverage, with errors increasing
sharply under non-clear conditions. The RMSE of WS reaches 1.75 m/s during rainy
conditions, while there is a large discrepancy in In-WD. The differences of WS and WD
inversion errors under three weather conditions mainly depend on the measurement errors
of TB, and the inversion of WD under non-clear sky conditions needs further improvement
in terms of the inversion accuracy by adding information about cloud height and cloud
thickness [47]. The main reason for the inversion error differences between WS and WD
under the three weather conditions is that the atmospheric composition is relatively stable
under clear-sky conditions in the radiative transfer process, and the existence of clouds
and raindrops on cloudy and rainy days affects the scattering and absorption of radiation,
which increases the uncertainty of the radiative transfer process.
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Table 2. Error statistics of In-WS, In-WD, and OTB at XN, DR, and YS radiosonde stations under
different weather conditions during 18–30 July 2021 (BJT).

Weather Conditions Wind Speed (Unit: m/s) Wind Direction (Unit: °) TB (Unit: K)

RMSE MAE R RMSE MAE R MD R

Clear-Sky 1.20 0.96 0.98 26.64 15.30 0.97 −0.26 0.9999
Cloudy 1.66 1.26 0.97 66.80 33.31 0.86 0.93 0.9997
Rainy 1.75 1.35 0.97 70.47 42.48 0.81 36.91 0.8466

4.2.2. Altitude Elevation

The atmospheric absorption coefficient curve for microwave bands is related to eleva-
tion. Consequently, the altitude is another critical factor for the measurement of TB and the
inversion of WP. In consideration of significant uncertainties in MR performance on rainy
days, we conducted quality control on 19 sets of observation data under non-precipitation
conditions and obtained 17 sets of effective WP data. They are divided into three categories
according to the heights of 0∼2.2 km, 2.3∼3.6 km, and 3.7∼4.0 km, with 4, 8, and 5 sets
for each group of WPs, respectively. Table 3 presents the RMSE, MAE, R of In-WS, In-WD,
and corresponding TB measurement errors at varying altitudes. The MD of OTB and the
RMSE of In-WS below an elevation of 4.0 km are less than 1.0 K and 2.0 m/s, respectively.
Although the RMSE of WD is larger, the MAE and R are close to 30° and 0.9, respectively.
The MD of OTB and the RMSE of In-WS and In-WD increase with altitude, because the
density of water vapor and oxygen decreases as the altitude increases, leading to a gradual
rise in both TB observation errors and WP inversion errors.

Table 3. Error statistics of In-WS, In-WD, and OTB at XN, DR, and YS radiosonde stations under
different altitude conditions during 18–30 July 2021 (BJT).

Altitude Wind Speed (Unit: m/s) Wind Direction (Unit: °) T (Unit: K)

RMSE MAE R RMSE MAE R MD R

0∼2.2 km 1.25 1.05 0.99 40.06 21.35 0.95 0.08 0.9996
2.3∼3.6 km 1.38 1.09 0.98 57.66 25.94 0.88 0.39 0.9997
3.7∼4.0 km 1.93 1.40 0.95 64.60 32.64 0.87 0.86 0.9998

4.2.3. Observation Modes

There are 20 instances of non-precipitation Raobs at XN, DR, and YS radiosonde
stations during the MFOCAP. In order to analyze the impact of the observation mode on
the inversion accuracy of WP, we classified 20 sets of MOTB, In-WS, and In-WD data into
5 sets of MO and 14 sets of motionless conditions. A comparison of two TBs (Figure 9a,d)
revealed a significant correlation between the STB and the MOTB. MDs of MOTB under
the MO and stationary conditions were 1.28 K and 0.38 K, respectively. This discrepancy
between MOTB and STB is primarily attributed to the impact of vehicular vibrations,
inclination, and surrounding obstructions to the measurement performance of the MR
when the vehicle was moving. The results in Figure 9 indicated that the inversion accuracy
of WS and WD, when the vehicle was motionless, was better than that for the MO scenario.
This is consistent with the measured errors in TB. Although the RMSE of the In-WS for the
MO condition exceeded 2 m/s, the In-WS below 250 hPa, with WS being less than 15 m/s,
were close to the Raob, and the correlation coefficient was larger. Moreover, the RMSE of
In-WD under the two observation modes is larger because MO data were measured on
cloudy days most of the time. In other words, except for in-situ observation, we can also
acquire reliable atmospheric dynamic structural information at the lower atmosphere layer
with high spatio-temporal resolution on a large scale using the MR MO mode.
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4.2.4. TB Diurnal Variation

In order to investigate the impact of diurnal variation in TB on WP retrieval, TB and
WP data during the non-precipitation periods were divided into two categories as follows:
data at 08:00 and 20:00 Beijing time (UTC+8), with 10 and 9 observation moments for each
category, respectively. Figure 10 presents comparisons of STB and MOTB, and those of
In-WS, In-WD, and Raob at two instances. Results showed that the R between STB and
MOTB, and those between In-WS and Raobs, are all large, with R exceeding 0.95, while
the Rs of In-WD are more different. The difference between STB and MOTB at 08:00 was
slightly less than that at 20:00, and the MDs of TB at the two times were both small. The
RMSE of In-WS is lower than 2 m/s at both moments, while the difference of In-WD is
large. In addition, the RMSEs of In-WS and In-WD at 08:00 were smaller than those at 20:00
and were related to the MD of MOTB.
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Figure 9. Scatter plots of STB and MOTB, In-WS and measured WS, In-WD and measured WD at
11 atmospheric layers with the mobile (a–c), and fixed (d–f) observation mode. Red and black dashed
lines represent fitted lines and the 1:1 line.

4.3. Vertical Variation Characteristics of Retrieved WP

The reliability of the retrieved WP and its impact factors were analyzed in the previous
sections, but the question remains of how to apply the retrieved WP data with high spatio-
temporal resolution to the research and operation of atmospheric dynamic structure? We
evaluated the performance of the LSTM approach for reproducing the spatio-temporal
evolution features of wind fields and vertical wind shear characteristics. Figure 11 displays
the retrieved WP and Raobs at the XN, DR, and YS stations. The results showed that the
retrieved WPs at different heights under all-sky conditions are basically consistent with
Raobs except for those at rainy times (at 08:00 BJT on 25 July) at XN station. In other words,
the LSTM inversion model can reproduce the vertical variation characteristics of wind fields
under different weather conditions. On clear days, the LSTM retrieval model can accurately
capture the vertical variations of wind fields, while its performance is relatively inferior
under cloudy conditions. The weakest reproduction ability is observed on rainy days,
particularly at 08:00 BJT on the 25th at the XN station. Under non-precipitation conditions,
the LSTM inversion model successfully reproduces the spatio-temporal evolution features
of wind fields at all three stations as time progresses.
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Figure 10. Scatter plots of STB and MOTB, In-WS and measured WS, In-WD and measured WD at
11 atmospheric layers at 08:00 (a–c) and 20:00 (d–f) at XN, DR, and YS radiosonde stations from 18 to
30 July 2021 (BJT). The red and black dashed lines represent the fitted line and the 1:1 line.
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Two typical low-level vertical wind shears occurred under clear-sky conditions at DR
station, as shown in Figure 11b. The Raob at 08:00 BJT on 22 July at DR station revealed a
weak vertical wind shear. The southeast wind at the height of 600 hPa gradually changed to
a southwest wind between 550 hPa and 500 hPa, followed by a rapid change in WD to the
northeast at 450 hPa, and then gradually turned into an easterly or northeasterly wind above
400 hPa. However, there is no significant variation in WS during this process. Similarly,
there is a pronounced wind shear feature below 350 hPa at the same station at 08:00 BJT on
29 July, and the WD changes are not notable above 350 hPa. However, the WS gradually
increased with altitude. The LSTM inversion model successfully reproduced the variation
characteristics of low-level vertical wind shear during the two processes. In general, the
LSTM inversion model can capture the temporal-spatial evolution characteristics of WP and
vertical wind shear, particularly under clear-sky conditions. Thus, the inversion of WP with
the LSTM algorithm has scientific significance for investigating meso-scale atmospheric
dynamic structures, vertical wind shear features, atmospheric boundary layer turbulence,
the meteorology causes of atmospheric pollution, and improving the assessment and
forecasting of wind energy resources.

5. Conclusions

This study utilized a mobile vehicle-mounted MR to collect TB data in the TRSR over
the TP from 18 to 30 July 2021. The study proposed a direct inversion method for WP
based on the LSTM algorithm, TB data observed at MA stations, and MOTB data collected
during the MFOCAP over the TRSR. The reliability of the MOTB was verified, and the
influences of weather conditions, altitude, observation mode, and TB diurnal variation on
the measurement accuracy of TB and the inversion precision of wind field were analyzed.
Furthermore, the ability of the LSTM retrieval method to reproduce the spatio-temporal
variations characteristics of WP and vertical wind shear was evaluated.

The reliability of MOTB under different weather conditions was analyzed using
the RTTOV-gb model. Rainfall has a significant impact on TB observations, while the
optimal performance of the mobile MR under clear-sky conditions is observed. The MD
between STB and MOTB for all 22 channels is 0.30 K, whereas it increases to 0.78 K under
cloudy conditions.

Based on the TB dataset measured with the GMR at the MA fixed observation station
from January to December 2021, as well as the corresponding ERA5 reanalysis datasets, we
established an LSTM inversion model of WP to retrieve the vertical wind field data over
the TRSR. The inversion accuracy of WP was examined by comparing it with the Raobs at
the XN, DR, and YS radiosonde stations. In general, the In-WS below 350 hPa are better
than the ERA5 reanalysis datasets, and the dominant retrieved WD and reanalysis WD are
agreement with the measured WD.

The observation mode of the MR, weather conditions, altitude, and TB diurnal varia-
tion have an impact on TB measurement and WP retrieval. The WS retrieval error under
different weather conditions is within 2 m/s, while rainfall has the greatest impact on
TB measurement and WS retrieval. The RMSE of In-WS and In-WD on clear days is the
smallest, that of the cloudy days takes second place, and that of the rainy days is the largest.
The TB measurement and WP inversion with fixed observation mode are better than those
under MO. As the altitude increases, errors in TB observation and WP retrieval gradually
increase. At the same time, the WP retrieval error at 08:00 is smaller than that at 20:00 BJT.

The LSTM method for the retrieval of WP is capable of reproducing the spatio-temporal
evolution characteristics of wind field under clear-sky and cloudy conditions, but there
are significant differences in rainy conditions. The LSTM inversion model can capture the
temporal-spatial evolution characteristics of WP and vertical wind shear, particularly under
clear-sky conditions.

Overall, the LSTM inversion model of WP can provide reliable vertical structure
information about the wind field with high spatio-temporal resolution, and capture the
temporal-spatial evolution characteristics of WP and vertical wind shear. However, this
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study also has some limitations. Firstly, the MA observation station is far away from the
MO route, and the poor representativeness and limited training sample of TB data have
certain impacts on the inversion of WP. Secondly, because radiosonde stations over the TP
are sparse and the temporal resolution is lower, we only used the EAR5 reanalysis data
to construct the inversion model. Lastly, the MO experiment over the TRSR has a short
observation duration and limited coverage. In order to improve the inversion accuracy of
WP, further investigation would be valuable, using the long-term TB and wind field data
observed at the same radiosonde station, or more measurements such as cloud cover, cloud
height, cloud thickness and so on, and combining the surface and satellite TB observations
to reduce the retrieval error of the wind field at the upper atmosphere.
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Abbreviations
The abbreviation of symbols and their explanation:

Abbreviation Unit Remark
TP - Tibetan plateau
TRSR - Three-River-Source region
Raob - Radiosonde observation
MR - Microwave radiometer
GMR - Ground-based microwave radiometer
TB K Brightness temperature
AT °C Atmospheric temperature
RH % Relative humidity
WVD g/m3 Water vapor density
MO - Mobile observation
WP - Wind profile
CLW g/m3 Cloud liquid water
MFOCAP - Mobile Field Observation Campaign of Atmospheric Profiles
CMA_GFS - Global Forecast System of China Meteorological Administration
LSTM - Long short-term memory
RNN - Recurrent neural network
MA - Mangai (Meteorological station)
XN - Xining (Radiosonde station)
DR - Dari (Radiosonde station)
YS - Yushu (Radiosonde station)
MOTB K Mobile observation brightness temperature
STB K Simulated brightness temperature

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels?tab=form
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels?tab=form
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RTM - Radiative transfer model
RTTOV-gb - Ground-based radiative transfer model for TOVS
ECMWF - European Centre for Medium-Range Weather Forecasts
WS m/s Wind speed
In-WS m/s Inversion of wind speed
Re-WS m/s Wind speed from the ERA5 reanalysis
WD degree (°) Wind direction
In-WD degree (°) Inversion of wind direction
Re-WD degree (°) Wind direction from the ERA5 reanalysis
RMSE - Root mean square error
MAE - Mean absolute error
MD - Mean difference
R - Correlation coefficient
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