ADF-Net: An Attention-Guided Dual-Branch Fusion Network for Building Change Detection near the Shanghai Metro Line Using Sequences of TerraSAR-X Images
Abstract
:1. Introduction
- This paper proposes ADF-Net, a novel attentional BCD network based on dual-branch architecture. Parallel networks on both sides excavate change features from SAR intensity images and DIs, respectively.
- Non-local means filtering (NLM) and an improved neighborhood-based ratio (INR) are introduced to generate DIs, effectively reducing the speckle noise of SAR images.
- With the transformer-based attention mechanism, the ACLA block is designed to enhance feature extraction and obtain the precise location of changed areas. The GAM-RU block is proposed to apply the CNN-based attention mechanism to feature maps and simultaneously avoid network degradation. The introduction of ASPP in the auxiliary branch facilitates the extraction of multi-scale features, preserving the detailed information while ignoring the speckle noise.
- The ADF-Net model is applied to detect small-dense building changes in the surrounding areas of metro line 8 in Shanghai.
2. Study Area and Datasets
2.1. Study Area
2.2. SAR Images
2.3. Optical Remote Sensing Images
3. Methodology
3.1. Basic Architecture of ADF-Net
3.2. Filtering-Based Difference Image Generation
3.2.1. Non-Local Mean Filtering
3.2.2. Improved Neighborhood-Based Ratio
3.3. GAM-RU Block
3.4. ACLA Block
3.5. ASPP Block
3.6. Implementation Details
3.7. Performance Assessment
4. Urban BCD Performance of ADF-Net
4.1. Results of the Proposed DI Generation
4.2. Performance Assessment of ADF-Net
- (1)
- Quantitative results
- (2)
- Visual results
- (3)
- Model Complexity
Model | Precision | Recall | F1 | Kappa | Accuracy | Params (M) | FLOPs (G) |
---|---|---|---|---|---|---|---|
U-Net | 0.8814 | 0.8489 | 0.8614 | 0.8597 | 0.9966 | 7.65 | 11.93 |
FC-EF | 0.8849 | 0.8586 | 0.8672 | 0.8656 | 0.9967 | 1.05 | 1.88 |
SUNNet | 0.8986 | 0.6426 | 0.7233 | 0.7208 | 0.9941 | 11.47 | 51.05 |
A2Net | 0.8212 | 0.3816 | 0.4883 | 0.4849 | 0.9905 | 3.60 | 2.83 |
DMINet | 0.8274 | 0.7311 | 0.7696 | 0.7669 | 0.9946 | 5.95 | 13.48 |
USFFCNet | 0.8749 | 0.8619 | 0.8630 | 0.8614 | 0.9969 | 1.44 | 4.52 |
EATDer | 0.8310 | 0.7642 | 0.7892 | 0.7866 | 0.9948 | 6.29 | 21.84 |
DRPNet | 0.8220 | 0.7904 | 0.8016 | 0.7991 | 0.9950 | 1.61 | 25.24 |
ADF-Net | 0.9278 | 0.9388 | 0.9310 | 0.9302 | 0.9984 | 7.02 | 45.37 |
4.3. Ablation Study
- (1)
- Effectiveness of ACLA
- (2)
- Effectiveness of GAM-RU
- (3)
- Effectiveness of Auxiliary Branch
- (4)
- Discussion on the Loss Function
No. | Variants | Precision | Recall | F1 | Kappa | Accuracy | F1 Mean | F1 SD |
---|---|---|---|---|---|---|---|---|
#1 | ADF-Net | 0.9278 | 0.9388 | 0.9310 | 0.9302 | 0.9984 | 0.9207 | 0.0057 |
(a) Attention-Guided Cross-Layer Addition (ACLA) | ||||||||
#2 | w/o ACLA | 0.9247 | 0.9314 | 0.9258 | 0.9249 | 0.9983 | 0.9178 | 0.0086 |
(b) Global Attention Mechanism with Residual Unit (GAM-RU) | ||||||||
#3 | w/o GAM-RU | 0.9260 | 0.9354 | 0.9278 | 0.9270 | 0.9983 | 0.9179 | 0.0098 |
#4 | w/CA | 0.9274 | 0.9301 | 0.9256 | 0.9247 | 0.9982 | 0.9148 | 0.0145 |
#5 | w/CBAM | 0.9266 | 0.9322 | 0.9267 | 0.9258 | 0.9983 | 0.9172 | 0.0101 |
(c) Auxiliary Branch (AB) | ||||||||
#6 | w/o AB | 0.8814 | 0.8730 | 0.8737 | 0.8720 | 0.9969 | 0.8653 | 0.0079 |
(d) Loss Functions | ||||||||
#7 | BCE | 0.9246 | 0.9351 | 0.9272 | 0.9264 | 0.9983 | 0.9169 | 0.014 |
#8 | Dice | 0.9257 | 0.9285 | 0.9240 | 0.9231 | 0.9982 | 0.9152 | 0.010 |
5. BCD Results of Metro Line 8 in Shanghai Using TSX Images and ADF-Net
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dong, X.; Mei, L.; Yang, S.; He, L.; Giorgio, I. Deformation Response Research of the Existing Subway Tunnel Impacted by Adjacent Foundation Pit Excavation. Adv. Mater. Sci. Eng. 2021, 2021, 5121084. [Google Scholar] [CrossRef]
- Liang, R.; Xia, T.; Huang, M.; Lin, C. Simplified analytical method for evaluating the effects of adjacent excavation on shield tunnel considering the shearing effect. Comput. Geotech. 2017, 81, 167–187. [Google Scholar] [CrossRef]
- Sun, H.; Chen, Y.; Zhang, J.; Kuang, T. Analytical investigation of tunnel deformation caused by circular foundation pit excavation. Comput. Geotech. 2019, 106, 193–198. [Google Scholar] [CrossRef]
- Ye, S.; Zhao, Z.; Wang, D. Deformation analysis and safety assessment of existing metro tunnels affected by excavation of a foundation pit. Undergr. Space 2021, 6, 421–431. [Google Scholar] [CrossRef]
- Gong, S.L.; Li, C.; Yang, S.L. The microscopic characteristics of Shanghai soft clay and its effect on soil body deformation and land subsidence. Environ. Geol. 2008, 56, 1051–1056. [Google Scholar] [CrossRef]
- Shafique, A.; Cao, G.; Khan, Z.; Asad, M.; Aslam, M. Deep Learning-Based Change Detection in Remote Sensing Images: A Review. Remote Sens. 2022, 14, 871. [Google Scholar] [CrossRef]
- Jiang, H.; Hu, X.; Li, K.; Zhang, J.; Gong, J.; Zhang, M. PGA-SiamNet: Pyramid Feature-Based Attention-Guided Siamese Network for Remote Sensing Orthoimagery Building Change Detection. Remote Sens. 2020, 12, 484. [Google Scholar] [CrossRef]
- Peng, D.; Bruzzone, L.; Zhang, Y.; Guan, H.; Ding, H.; Huang, X. SemiCDNet: A Semisupervised Convolutional Neural Network for Change Detection in High Resolution Remote-Sensing Images. IEEE Trans. Geosci. Remote Sens. 2021, 59, 5891–5906. [Google Scholar] [CrossRef]
- Li, L.; Wang, C.; Zhang, H.; Zhang, B.; Wu, F. Urban Building Change Detection in SAR Images Using Combined Differential Image and Residual U-Net Network. Remote Sens. 2019, 11, 1091. [Google Scholar] [CrossRef]
- Saha, S.; Bovolo, F.; Bruzzone, L. Building Change Detection in VHR SAR Images via Unsupervised Deep Transcoding. IEEE Trans. Geosci. Remote Sens. 2021, 59, 1917–1929. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, G.; Zhang, C.; Atkinson, P.M.; Tan, X.; Jian, X.; Zhou, X.; Li, Y. Two-Phase Object-Based Deep Learning for Multi-Temporal SAR Image Change Detection. Remote Sens. 2020, 12, 548. [Google Scholar] [CrossRef]
- Buades, A.; Coll, B.; Morel, J.-M. Non-Local Means Denoising. Image Process. Line 2011, 1, 208–212. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhang, X.; Hou, B.; Liu, G. Using Combined Difference Image and k-Means Clustering for SAR Image Change Detection. IEEE Geosci. Remote Sens. Lett. 2014, 11, 691–695. [Google Scholar] [CrossRef]
- Bovolo, F.; Marin, C.; Bruzzone, L. A Hierarchical Approach to Change Detection in Very High Resolution SAR Images for Surveillance Applications. IEEE Trans. Geosci. Remote Sens. 2013, 51, 2042–2054. [Google Scholar] [CrossRef]
- Celik, T. A Bayesian approach to unsupervised multiscale change detection in synthetic aperture radar images. Signal Process. 2010, 90, 1471–1485. [Google Scholar] [CrossRef]
- Inglada, J.; Mercier, G. A New Statistical Similarity Measure for Change Detection in Multitemporal SAR Images and Its Extension to Multiscale Change Analysis. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1432–1445. [Google Scholar] [CrossRef]
- Gong, M.; Cao, Y.; Wu, Q. A Neighborhood-Based Ratio Approach for Change Detection in SAR Images. IEEE Geosci. Remote Sens. Lett. 2012, 9, 307–311. [Google Scholar] [CrossRef]
- Gong, M.; Zhou, Z.; Ma, J. Change detection in synthetic aperture radar images based on image fusion and fuzzy clustering. IEEE Trans. Image Process. 2012, 21, 2141–2151. [Google Scholar] [CrossRef] [PubMed]
- Krinidis, S.; Chatzis, V. A robust fuzzy local information C-Means clustering algorithm. IEEE Trans. Image Process. 2010, 19, 1328–1337. [Google Scholar] [CrossRef] [PubMed]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Chakraborty, D.; Singh, S.; Dutta, D. Segmentation and classification of high spatial resolution images based on Hölder exponents and variance. Geo-Spat. Inf. Sci. 2017, 20, 39–45. [Google Scholar] [CrossRef]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [Google Scholar] [CrossRef]
- Li, S.; Zhao, X.; Zhou, G. Automatic pixel-level multiple damage detection of concrete structure using fully convolutional network. Comput.-Aided Civ. Infrastruct. Eng. 2019, 34, 616–634. [Google Scholar] [CrossRef]
- Hao, C.; Shi, Z. A spatial-temporal attention-based method and a new dataset for remote sensing image change detection. Remote Sens. 2020, 12, 1662. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar]
- Zhou, Z.; Siddiquee, M.M.R.; Tajbakhsh, N.; Liang, J. UNet++: A Nested U-Net Architecture for Medical Image Segmentation. In Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support: 4th International Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, 20 September 2018; Springer International Publishing: Cham, Switzerland, 2018; Volume 11045, pp. 3–11. [Google Scholar] [CrossRef]
- Ding, Q.; Shao, Z.; Huang, X.; Altan, O. DSA-Net: A novel deeply supervised attention-guided network for building change detection in high-resolution remote sensing images. Int. J. Appl. Earth Obs. Geoinf. 2021, 105, 102591. [Google Scholar] [CrossRef]
- Yang, L.; Chen, Y.; Song, S.; Li, F.; Huang, G. Deep Siamese Networks Based Change Detection with Remote Sensing Images. Remote Sens. 2021, 13, 3394. [Google Scholar] [CrossRef]
- Basavaraju, K.S.; Sravya, N.; Lal, S.; Nalini, J.; Reddy, C.S.; Dell’Acqua, F. UCDNet: A Deep Learning Model for Urban Change Detection From Bi-Temporal Multispectral Sentinel-2 Satellite Images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5408110. [Google Scholar] [CrossRef]
- Gao, Y.; Gao, F.; Dong, J.; Li, H.-C. SAR Image Change Detection Based on Multiscale Capsule Network. IEEE Geosci. Remote Sens. Lett. 2021, 18, 484–488. [Google Scholar] [CrossRef]
- Chen, G.; Zhao, Y.; Wang, Y.; Yap, K.-H. SSN: Stockwell Scattering Network for SAR Image Change Detection. IEEE Geosci. Remote Sens. Lett. 2023, 20, 4001405. [Google Scholar] [CrossRef]
- Wang, R.; Wang, L.; Wei, X.; Chen, J.-W.; Jiao, L. Dynamic Graph-Level Neural Network for SAR Image Change Detection. IEEE Geosci. Remote Sens. Lett. 2022, 19, 4501005. [Google Scholar] [CrossRef]
- Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 10–17 October 2021; pp. 9992–10002. [Google Scholar]
- Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 834–848. [Google Scholar] [CrossRef]
- Hou, Q.; Zhou, D.; Feng, J. Coordinate Attention for Efficient Mobile Network Design. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 13708–13717. [Google Scholar]
- Woo, S.; Park, J.; Lee, J.-Y.; Kweon, I.S. CBAM: Convolutional Block Attention Module. In Proceedings of the Computer Vision—ECCV 2018, Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is all you need. Adv. Neural Inf. Process. Syst. 2017, 30. Available online: https://arxiv.org/pdf/1706.03762.pdf (accessed on 30 June 2017).
- Fang, S.; Li, K.; Shao, J.; Li, Z. SNUNet-CD: A Densely Connected Siamese Network for Change Detection of VHR Images. IEEE Geosci. Remote Sens. Lett. 2022, 19, 8007805. [Google Scholar] [CrossRef]
- Li, Z.; Tang, C.; Liu, X.; Zhang, W.; Dou, J.; Wang, L.; Zomaya, A.Y. Lightweight Remote Sensing Change Detection With Progressive Feature Aggregation and Supervised Attention. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5602812. [Google Scholar] [CrossRef]
- Feng, Y.; Jiang, J.; Xu, H.; Zheng, J. Change Detection on Remote Sensing Images Using Dual-Branch Multilevel Intertemporal Network. IEEE Trans. Geosci. Remote Sens. 2023, 61, 4401015. [Google Scholar] [CrossRef]
- Lei, T.; Geng, X.; Ning, H.; Lv, Z.; Gong, M.; Jin, Y.; Nandi, A.K. Ultralightweight Spatial–Spectral Feature Cooperation Network for Change Detection in Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2023, 61, 4402114. [Google Scholar] [CrossRef]
- Ma, J.; Duan, J.; Tang, X.; Zhang, X.; Jiao, L. EATDer: Edge-Assisted Adaptive Transformer Detector for Remote Sensing Change Detection. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5602015. [Google Scholar] [CrossRef]
- Chen, H.; Pu, F.; Yang, R.; Tang, R.; Xu, X. RDP-Net: Region Detail Preserving Network for Change Detection. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5635010. [Google Scholar] [CrossRef]
State | TSX West Coverage | TSX East Coverage |
---|---|---|
Pre-change | 2019-06-19 | 2015-10-16 |
2019-08-24 | 2015-11-18 | |
2019-10-29 | 2015-12-10 | |
Post-change | 2021-06-25 | 2021-06-03 |
2021-08-08 | 2021-07-28 | |
2021-09-10 | 2021-09-21 |
Stage | Layer | Output Shape |
---|---|---|
Pre-change images | - | 3 × 256 × 256 |
Post-change images | - | 3 × 256 × 256 |
Encoder-Stage1 | Conv | 36 × 256 × 256 |
ACLA block | 36 × 256 × 256 | |
Encoder-Stage2 | Strided Conv | 72 × 128 × 128 |
ACLA block | 72 × 128 × 128 | |
Encoder-Stage3 | Strided Conv | 144 × 64 × 64 |
ACLA block | 144 × 64 × 64 | |
Encoder-Stage4 | Strided Conv | 288 × 32 × 32 |
ACLA block | 288 × 32 × 32 | |
Decoder-Stage1 | Transpose Conv | 144 × 64 × 64 |
Concatenation | 288 × 64 × 64 | |
Conv | 144 × 64 × 64 | |
GAM-RU block | 144 × 64 × 64 | |
Decoder-Stage2 | Transpose Conv | 72 × 128 × 128 |
Concatenation | 144 × 128 × 128 | |
Conv | 72 × 128 × 128 | |
GAM-RU block | 72 × 128 × 128 | |
Decoder-Stage3 | Transpose Conv | 36 × 256 × 256 |
Concatenation | 72 × 256 × 256 | |
Conv | 36 × 256 × 256 | |
GAM-RU block | 36 × 256 × 256 | |
FEN | Conv | 36 × 256 × 256 |
GAM-RU block | 36 × 256 × 256 | |
ASPP block | 36 × 256 × 256 | |
Classifier | Concatenation | 72 × 256 × 256 |
GAM-RU block | 72 × 256 × 256 | |
Conv | 1 × 256 × 256 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, P.; Lin, J.; Zhao, Q.; Zhou, L.; Yang, T.; Huang, X.; Wu, J. ADF-Net: An Attention-Guided Dual-Branch Fusion Network for Building Change Detection near the Shanghai Metro Line Using Sequences of TerraSAR-X Images. Remote Sens. 2024, 16, 1070. https://doi.org/10.3390/rs16061070
Chen P, Lin J, Zhao Q, Zhou L, Yang T, Huang X, Wu J. ADF-Net: An Attention-Guided Dual-Branch Fusion Network for Building Change Detection near the Shanghai Metro Line Using Sequences of TerraSAR-X Images. Remote Sensing. 2024; 16(6):1070. https://doi.org/10.3390/rs16061070
Chicago/Turabian StyleChen, Peng, Jinxin Lin, Qing Zhao, Lei Zhou, Tianliang Yang, Xinlei Huang, and Jianzhong Wu. 2024. "ADF-Net: An Attention-Guided Dual-Branch Fusion Network for Building Change Detection near the Shanghai Metro Line Using Sequences of TerraSAR-X Images" Remote Sensing 16, no. 6: 1070. https://doi.org/10.3390/rs16061070
APA StyleChen, P., Lin, J., Zhao, Q., Zhou, L., Yang, T., Huang, X., & Wu, J. (2024). ADF-Net: An Attention-Guided Dual-Branch Fusion Network for Building Change Detection near the Shanghai Metro Line Using Sequences of TerraSAR-X Images. Remote Sensing, 16(6), 1070. https://doi.org/10.3390/rs16061070