A Novel Multimodal Fusion Framework Based on Point Cloud Registration for Near-Field 3D SAR Perception
Abstract
:1. Introduction
- This work presents the first attempt to enhance the perception quality of near-field 3D SAR imaging from a multi-sensor data fusion perspective, uniquely combining near-field 3D SAR with LiDAR and optical camera data to address the inherent limitations;
- This work designs a multimodal fusion framework for effectively integrating data from near-field 3D-SAR, LiDAR, and a camera, which consists of three main components—data preprocessing, point cloud registration, and data fusion;
- This work introduces a novel three-stage registration algorithm tailored to overcome the heterogeneity issue across sensors. This algorithm includes—(1) a new key point extraction method that improves the CED algorithm with structure–intensity dual constraints, (2) an enhanced coarse registration technique that integrates geometric relationship and SHOT feature constraints into SAC-IA for improved initial alignment, and (3) an adaptive-thresholding ICP fine registration algorithm for precise fine registration;
- This work validates the proposed approach using data collected from our SAR–LiDAR–Camera prototype system. The experimental results demonstrate obvious improvements in registration accuracy and efficiency over existing methods. The quantitative and qualitative results underscore the effectiveness of our multi-modal fusion approach in overcoming the inherent limitations of near-field 3D-SAR imaging.
2. Materials
3. Methodology
3.1. Data Preprocessing
3.1.1. Near-Field SAR Preprocessing
3.1.2. LiDAR Preprocessing
3.1.3. Camera Preprocessing
3.2. SAR–LiDAR Point Cloud Registration
3.2.1. Basic Principles of Point Cloud Registration
3.2.2. Key Point Extraction with Structure-Intensity Constraints
3.2.3. SAC-IA Coarse Registration with SHOT Feature and Geometric Relationship Constraints
3.2.4. ICP Fine Registration with Adaptive Threshold
3.3. Camera–LiDAR Point Cloud Registration
3.4. SAR-Camera-LiDAR Data Fusion
4. Experimental Results
4.1. SAR–LiDAR Registration Results
4.2. Camera–LiDAR Registration Results
4.3. SAR–Camera–LiDAR Data Fusion Results
4.4. Multimodal Fusion Application Experiment
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Z.; Wang, J.; Wu, J.; Liu, Q.H. A Fast Radial Scanned Near-Field 3-D SAR Imaging System and the Reconstruction Method. IEEE Trans. Geosci. Remote Sens. 2015, 53, 1355–1363. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, X.; Zhang, T. Lite-YOLOv5: A Lightweight Deep Learning Detector for On-Board Ship Detection in Large-Scene Sentinel-1 SAR Images. Remote Sens. 2022, 14, 1018. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, X.; Shao, Z.; Shi, J.; Wei, S.; Zhang, T.; Zeng, T. A Group-Wise Feature Enhancement-and-Fusion Network with Dual-Polarization Feature Enrichment for SAR Ship Detection. Remote Sens. 2022, 14, 5276. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, X.; Zhang, T.; Yang, Z.; Shi, J.; Zhan, X. Shadow-Background-Noise 3D Spatial Decomposition Using Sparse Low-Rank Gaussian Properties for Video-SAR Moving Target Shadow Enhancement. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, X.; Wei, S.; Shi, J.; Zeng, T.; Zhang, T. A Target-Oriented Bayesian Compressive Sensing Imaging Method with Region-Adaptive Extractor for mmW Automotive Radar. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–16. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, X.; Zhan, X.; Zhang, T.; Zhou, L.; Shi, J.; Wei, S. An RCS Measurement Method Using Sparse Imaging Based 3-D SAR Complex Image. IEEE Antennas Wirel. Propag. Lett. 2022, 21, 24–28. [Google Scholar] [CrossRef]
- Chen, X.; Luo, C.; Yang, Q.; Yang, L.; Wang, H. Efficient MMW Image Reconstruction Algorithm Based on ADMM Framework for Near-Field MIMO-SAR. IEEE Trans. Microw. Theory Tech. 2023, 72, 1326–1338. [Google Scholar] [CrossRef]
- Pu, L.; Zhang, X.; Shi, J.; Wei, S.; Zhang, T.; Zhan, X. Precise RCS Extrapolation via Nearfield 3-D Imaging with Adaptive Parameter Optimization Bayesian Learning. IEEE Trans. Antennas Propag. 2022, 70, 3656–3671. [Google Scholar] [CrossRef]
- Shahian Jahromi, B.; Tulabandhula, T.; Cetin, S. Real-Time Hybrid Multi-Sensor Fusion Framework for Perception in Autonomous Vehicles. Sensors 2019, 19, 4357. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, Y.; Niu, Q. Multi-Sensor Fusion in Automated Driving: A Survey. IEEE Access 2020, 8, 2847–2868. [Google Scholar] [CrossRef]
- Yeong, J.; Velasco-Hernandez, G.; Barry, J.; Walsh, J. Sensor and Sensor Fusion Technology in Autonomous Vehicles: A Review. Sensors 2021, 21, 2140. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Bruzzone, L. Self-Supervised SAR-Optical Data Fusion of Sentinel-1/-2 Images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–11. [Google Scholar] [CrossRef]
- Kulkarni, S.C.; Rege, P.P. Pixel level fusion techniques for SAR and optical images: A review. Inf. Fusion 2020, 59, 13–29. [Google Scholar] [CrossRef]
- Li, W.; Gao, Y.; Zhang, M.; Tao, R.; Du, Q. Asymmetric Feature Fusion Network for Hyperspectral and SAR Image Classification. IEEE Trans. Neural Netw. Learn. Syst. 2023, 34, 8057–8070. [Google Scholar] [CrossRef] [PubMed]
- Quan, Y.; Tong, Y.; Feng, W.; Dauphin, G.; Huang, W.; Xing, M. A Novel Image Fusion Method of Multi-Spectral and SAR Images for Land Cover Classification. Remote Sens. 2020, 12, 3801. [Google Scholar] [CrossRef]
- Jiao, Z.; Qiu, X.; Dong, S.; Yan, Q.; Zhou, L.; Ding, C. Preliminary exploration of geometrical regularized SAR tomography. ISPRS J. Photogramm. Remote Sens. 2023, 201, 174–192. [Google Scholar] [CrossRef]
- Li, Y.; Ibanez-Guzman, J. Lidar for Autonomous Driving: The Principles, Challenges, and Trends for Automotive Lidar and Perception Systems. IEEE Signal Process. Mag. 2020, 37, 50–61. [Google Scholar] [CrossRef]
- Bijelic, M.; Gruber, T.; Mannan, F.; Kraus, F.; Ritter, W.; Dietmayer, K.; Heide, F. Seeing through fog without seeing fog: Deep multimodal sensor fusion in unseen adverse weather. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 11682–11692. [Google Scholar]
- Qian, K.; Zhu, S.; Zhang, X.; Li, L.E. Robust multimodal vehicle detection in foggy weather using complementary lidar and radar signals. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 444–453. [Google Scholar]
- Wei, Z.; Zhang, F.; Chang, S.; Liu, Y.; Wu, H.; Feng, Z. MmWave Radar and Vision Fusion for Object Detection in Autonomous Driving: A Review. Sensors 2022, 22, 2542. [Google Scholar] [CrossRef]
- Zhen, W.; Hu, Y.; Liu, J.; Scherer, S. A Joint Optimization Approach of LiDAR-Camera Fusion for Accurate Dense 3-D Reconstructions. IEEE Robot. Autom. Lett. 2019, 4, 3585–3592. [Google Scholar] [CrossRef]
- Bai, Z.; Jiang, G.; Xu, A. LiDAR-Camera Calibration Using Line Correspondences. Sensors 2020, 20, 6319. [Google Scholar] [CrossRef]
- Peng, F.; Wu, Q.; Fan, L.; Zhang, J.; You, Y.; Lu, J.; Yang, J.-Y. Street view cross-sourced point cloud matching and registration. In Proceedings of the 2014 IEEE International Conference on Image Processing (ICIP), Paris, France, 27–30 October 2014; pp. 2026–2030. [Google Scholar]
- Li, P.; Wang, R.; Wang, Y.; Tao, W. Evaluation of the ICP Algorithm in 3D Point Cloud Registration. IEEE Access 2020, 8, 68030–68048. [Google Scholar] [CrossRef]
- Jiang, S.; Jiang, C.; Jiang, W. Efficient structure from motion for large-scale UAV images: A review and a comparison of SfM tools. ISPRS J. Photogramm. Remote Sens. 2020, 167, 230–251. [Google Scholar] [CrossRef]
- Mellado, N.; Dellepiane, M.; Scopigno, R. Relative Scale Estimation and 3D Registration of Multi-Modal Geometry Using Growing Least Squares. IEEE Trans. Vis. Comput. Graph. 2016, 22, 2160–2173. [Google Scholar] [CrossRef]
- Shen, X.; Darmon, F.; Efros, A.A.; Aubry, M. RANSAC-Flow: Generic Two-Stage Image Alignment. In Computer Vision—ECCV 2020, Proceedings of the 16th European Conference, Glasgow, UK, 23–28 August 2020; Lecture Notes in Computer Science; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; pp. 618–637. [Google Scholar]
- Huang, X.; Zhang, J.; Wu, Q.; Fan, L.; Yuan, C. A coarse-to-fine algorithm for registration in 3D street-view cross-source point clouds. In Proceedings of the 2016 International Conference on Digital Image Computing: Techniques and Applications (DICTA), Gold Coast, Australia, 30 November–2 December 2016; pp. 1–6. [Google Scholar]
- Huang, X.; Zhang, J.; Fan, L.; Wu, Q.; Yuan, C. A Systematic Approach for Cross-Source Point Cloud Registration by Preserving Macro and Micro Structures. IEEE Trans. Image Process. 2017, 26, 3261–3276. [Google Scholar] [CrossRef]
- Li, J.; Zhuang, Y.; Peng, Q.; Zhao, L. Pose Estimation of Non-Cooperative Space Targets Based on Cross-Source Point Cloud Fusion. Remote Sens. 2021, 13, 4239. [Google Scholar] [CrossRef]
- Cheng, L.; Chen, S.; Liu, X.; Xu, H.; Wu, Y.; Li, M.; Chen, Y. Registration of Laser Scanning Point Clouds: A Review. Sensors 2018, 18, 1641. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Zhang, J.; Wu, Y.; Jiao, L.; Zhu, H.; Zhao, W. A Novel Two-Step Registration Method for Remote Sensing Images Based on Deep and Local Features. IEEE Trans. Geosci. Remote Sens. 2019, 57, 4834–4843. [Google Scholar] [CrossRef]
- Lahat, D.; Adali, T.; Jutten, C. Multimodal Data Fusion: An Overview of Methods, Challenges, and Prospects. Proc. IEEE 2015, 103, 1449–1477. [Google Scholar] [CrossRef]
- Zhou, Z.; Wei, S.; Wang, M.; Liu, X.; Wei, J.; Shi, J.; Zhang, X. Comparison of MF and CS Algorithm in 3-D Near-Field SAR Imaging. In Proceedings of the 2021 7th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), Bali, Indonesia, 1–3 November 2021; pp. 1–5. [Google Scholar]
- Sun, Z.; Li, Z.; Liu, Y. An Improved Lidar Data Segmentation Algorithm Based on Euclidean Clustering. In Proceedings of the 11th International Conference on Modelling, Identification and Control (ICMIC2019), Tianjing, China, 13–15 July 2019; Lecture Notes in Electrical Engineering. Springer: Singapore, 2020; pp. 1119–1130. [Google Scholar]
- Pleansamai, K. M-Estimator Sample Consensus Planar Extraction from Image-Based 3d Point Cloud for Building Information Modelling. Int. J. Geomate 2019, 17, 69–76. [Google Scholar] [CrossRef]
- Zeng, J.; Wang, D.; Chen, P. Improved color region growing point cloud segmentation algorithm based on octree. In Proceedings of the 2022 3rd International Conference on Information Science, Parallel and Distributed Systems (ISPDS), Guangzhou, China, 22–24 July 2022; pp. 424–429. [Google Scholar]
- Arun, K.S.; Huang, T.S.; Blostein, S.D. Least-squares fitting of two 3-D point sets. IEEE Trans. Pattern Anal. Mach. Intell. 1987, PAMI-9, 698–700. [Google Scholar] [CrossRef]
- Teng, H.; Chatziparaschis, D.; Kan, X.; Roy-Chowdhury, A.K.; Karydis, K. Centroid Distance Keypoint Detector for Colored Point Clouds. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 3–7 January 2023; pp. 1196–1205. [Google Scholar]
- Chu, J.; Zhang, Y.; Li, S.; Leng, L.; Miao, J. Syncretic-NMS: A Merging Non-Maximum Suppression Algorithm for Instance Segmentation. IEEE Access 2020, 8, 114705–114714. [Google Scholar] [CrossRef]
- Salti, S.; Tombari, F.; Di Stefano, L. SHOT: Unique signatures of histograms for surface and texture description. Comput. Vis. Image Underst. 2014, 125, 251–264. [Google Scholar] [CrossRef]
- Li, W.; Cheng, H.; Zhang, X. Efficient 3D Object Recognition from Cluttered Point Cloud. Sensors 2021, 21, 5850. [Google Scholar] [CrossRef] [PubMed]
- Rusu, R.B.; Blodow, N.; Beetz, M. Fast point feature histograms (FPFH) for 3D registration. In Proceedings of the 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009; pp. 3212–3217. [Google Scholar]
- Song, M.; Tao, D.; Chen, C.; Li, X.; Chen, C.W. Color to gray: Visual cue preservation. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32, 1537–1552. [Google Scholar] [CrossRef] [PubMed]
- Xue, S.; Zhang, Z.; Lv, Q.; Meng, X.; Tu, X. Point Cloud Registration Method for Pipeline Workpieces Based on PCA and Improved ICP Algorithms. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2019; p. 032188. [Google Scholar]
- Yang, R.; Meng, X.; Yao, Y.; Chen, B.Y.; You, Y.; Xiang, Z. An analytical approach to evaluate point cloud registration error utilizing targets. ISPRS J. Photogramm. Remote Sens. 2018, 143, 48–56. [Google Scholar] [CrossRef]
- Liu, W.; Sun, W.; Wang, S.; Liu, Y. Coarse registration of point clouds with low overlap rate on feature regions. Signal Process. Image Commun. 2021, 98, 116428. [Google Scholar] [CrossRef]
- Yang, J.; Wang, C.; Luo, W.; Zhang, Y.; Chang, B.; Wu, M. Research on Point Cloud Registering Method of Tunneling Roadway Based on 3D NDT-ICP Algorithm. Sensors 2021, 21, 4448. [Google Scholar] [CrossRef]
- Liu, W.; Wu, H.; Chirikjian, G.S. LSG-CPD: Coherent point drift with local surface geometry for point cloud registration. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 15293–15302. [Google Scholar]
- Pham, T.H.; Kim, K.H.; Hong, I.P. A Study on Millimeter Wave SAR Imaging for Non-Destructive Testing of Rebar in Reinforced Concrete. Sensors 2022, 22, 8030. [Google Scholar] [CrossRef]
- Bai, X.; Luo, Z.; Zhou, L.; Fu, H.; Quan, L.; Tai, C.L. D3Feat: Joint Learning of Dense Detection and Description of 3D Local Features. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; 2020. [Google Scholar]
Method | Aircraft Model 1 | Aircraft Model 2 | Pincer | Satellite | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Original | 121.4943 | 0.0076 | 5.724 | 172.1562 | 1.5333 | 1.351 | 10.1162 | 0.1991 | 3.433 | 3.4851 | 0.0262 | 11.462 |
Ours | 0.9885 | 0.01 | 2.825 | 6.2602 | 0.0739 | 0.595 | 4.8143 | 0.0916 | 0.567 | 1.521 | 0.0143 | 5.801 |
Method | Aircraft Model 1 | Aircraft Model 2 | Pincer | Satellite | ||||
---|---|---|---|---|---|---|---|---|
Super4PCS | 147.628 | 0.1876 | 17.5115 | 0.2197 | \ | \ | 10.5766 | 0.0852 |
ICP | 75.8897 | 1.4288 | 169.8124 | 1.5373 | 173.4451 | 2.2754 | 5.0486 | 0.039 |
NDT | 16.6345 | 0.3575 | 7.2386 | 0.0533 | 9.9256 | 0.1844 | 10.7355 | 0.1056 |
CPD | 3.3796 | 0.0956 | 12.6813 | 0.1794 | 5.1054 | 0.0918 | 4.2393 | 0.0409 |
Ours | 0.9885 | 0.01 | 6.2602 | 0.0739 | 4.8143 | 0.0916 | 1.521 | 0.0143 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, T.; Zhang, W.; Zhan, X.; Xu, X.; Liu, Z.; Wang, B.; Zhang, X. A Novel Multimodal Fusion Framework Based on Point Cloud Registration for Near-Field 3D SAR Perception. Remote Sens. 2024, 16, 952. https://doi.org/10.3390/rs16060952
Zeng T, Zhang W, Zhan X, Xu X, Liu Z, Wang B, Zhang X. A Novel Multimodal Fusion Framework Based on Point Cloud Registration for Near-Field 3D SAR Perception. Remote Sensing. 2024; 16(6):952. https://doi.org/10.3390/rs16060952
Chicago/Turabian StyleZeng, Tianjiao, Wensi Zhang, Xu Zhan, Xiaowo Xu, Ziyang Liu, Baoyou Wang, and Xiaoling Zhang. 2024. "A Novel Multimodal Fusion Framework Based on Point Cloud Registration for Near-Field 3D SAR Perception" Remote Sensing 16, no. 6: 952. https://doi.org/10.3390/rs16060952
APA StyleZeng, T., Zhang, W., Zhan, X., Xu, X., Liu, Z., Wang, B., & Zhang, X. (2024). A Novel Multimodal Fusion Framework Based on Point Cloud Registration for Near-Field 3D SAR Perception. Remote Sensing, 16(6), 952. https://doi.org/10.3390/rs16060952