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Abstract: Drought is a frequent global phenomenon. Solar-induced chlorophyll fluorescence (SIF),
an electromagnetic signal, has been proven to be an efficient tool for monitoring and assessing
gross primary productivity (GPP) and drought. To address the issue of the sparse resolution of
satellite-based SIF, researchers have developed different downscaling algorithms. Recently, the
most frequently used SIF products had a spatial resolution of 0.05 degrees. However, these spatial
resolution SIF data are not conducive to regional agricultural drought monitoring. In this study, we
utilized the global ‘OCO-2’ solar-induced fluorescence (GOSIF) products along with normalized
difference vegetation index (NDVI) and land surface temperature (LST) products. With the powerful
advantages offered by Google Earth Engine (GEE), we could conveniently acquire the necessary
data. Additionally, employing the random forest (RF) method, we successfully acquired downscaled
SIF data at an enhanced spatial resolution of 1 km. Using those downscaled SIF results with 1 km
resolution, an SIF anomaly index was established and calculated to monitor drought. Results showed
that the RF-based downscaled SIF result followed the same trend as the GOSIF value. Subsequently,
correlation coefficients between SIF and GPP were calculated. The downscaled SIF demonstrated a
higher correlation with GPP from MODIS compared to 0.05-degree GOSIF, with coefficients of 0.74
and 0.68 in May 2018, respectively. Moreover, the SIF anomaly index showed positive correlations
with crop yield; the correlation coefficients were 0.93 for wheat and 0.89 for maize. The drought
index had a negative correlation with areas affected by drought, with a correlation coefficient of
−0.58. Finally, the SIF anomaly index was used to monitor drought from 2001 to 2020 in Henan
Province. The 1 km SIF results obtained through the RF-based downscaled method were deemed
reliable, thereby establishing the suitability of the SIF anomaly index for drought monitoring at a
regional scale.

Keywords: solar-induced chlorophyll fluorescence; drought; random forest; downscaling

1. Introduction

Drought is a frequent and potentially devastating natural phenomenon that directly
impacts social and economic development, industrial and agricultural production, urban
and rural water supply, people’s lives, and the ecological environment [1–4]. Its prolonged
and destructive nature has long been a subject of scholarly concern [5]. Drought has recently
emerged as a worldwide concern [6].

Drought refers to a condition where the supply of water fails to meet the demand [7].
Currently, drought is commonly categorized as meteorological, hydrological, agricultural,
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and socioeconomic droughts [8]. Meteorological drought pertains to abnormal water
scarcity resulting from an imbalance between precipitation and evaporation; agricultural
drought relates to abnormal water scarcity caused by an imbalance between soil moisture
and crop water requirements; hydrological drought signifies abnormal water shortage
due to an imbalance between precipitation and groundwater availability; socioeconomic
drought denotes an uneven supply and demand of water resources within natural and
human socioeconomic systems [2,9,10]. Among these aforementioned types of droughts,
agricultural drought presently stands as the most prevalent form of this phenomenon
today [11]. Agricultural drought poses a direct threat to crop production [12].

The research on drought monitoring commenced in the late 1960s, and conventional
methods for monitoring drought utilized data from stations, such as precipitation, relative
soil moisture, temperature, and air pressure, to assess parameters like the onset, extent,
and severity of agricultural drought [13,14]. The site-based observation method primar-
ily characterizes drought based on observed precipitation and other factors at specific
locations [15]. The most representative methods and indices among them are the Standard-
ized Precipitation Index (SPI) [16], Standardized Precipitation Evapotranspiration Index
(SPEI) [17], and Palmer Drought Severity Index (PDSI) [18]. The monitoring method based
on station data can provide long-term observational data, which are more conducive to
the sustained and continuous observation of drought [19]. However, limitations arise in
station-based monitoring due to the sparse distribution of stations in certain regions [20].

With the continuous progress and advancement of remote sensing technology, an
increasing number of vegetation indices are being employed for drought monitoring [21],
such as the Normalized Differential Vegetation Index (NDVI) [22,23], Vegetation Condition
Index (VCI) [24], Temperature Condition Index (TCI) [25], Standardized Soil Moisture
Index (SSI) [26], Soil Moisture Condition Index (SMCI) [27], Normalized Difference Water
Index (NDWI) [28] and Normalized Multi-band Drought Index (NMDI) [29]. These indices
directly reflect terrestrial plant greenness and crop growth status [30]. However, these
vegetation indices may introduce a lag effect [2]. In recent years, an increasing number of
scholars have been directing their attention towards utilizing multi-source remote sens-
ing data for the establishment of drought indices, such as The Vegetation Health Index
(VHI) [25], the Scaled Drought Condition Index (SDCI) [31], the Microwave Integrated
Drought Index (MIDI), the Synthesized Drought Index (SDI), the Optimized Meteorological
Drought Index (OMDI) [32], the Optimized Vegetation Drought Index (OVDI) [32], etc. The
accuracy of monitoring has been somewhat enhanced by these drought-monitoring indices.

Solar-induced chlorophyll fluorescence (SIF) can reflect changes in photosynthesis [33].
It can characterize the response of plants to leaf and canopy water content [34,35], and
is closely related to the photosynthesis of vegetation [33,36]. Furthermore, SIF has been
shown to correlate strongly with gross primary productivity (GPP) and drought [37,38].
SIF can serve as a valuable tool for characterizing plant responses to leaf and canopy water
content, given its close association with vegetation photosynthesis [39]. As such, it holds
great potential for monitoring the physiological status and water stress of vegetation [40].

SIF (W m−2 µm−1 sr−1) is a kind of long-wave signal emitted by vegetation with
600–800 nm range after absorbing energy under sunlight [41,42]. An increasing number
of SIF datasets are now available from ground-based, airborne, and satellites sources [37].
These datasets are derived from satellite platforms and instruments such as Greenhouse
Gases Observing Satellite (GOSAT) [43,44], Global Ozone Monitoring Experiment-2
(GOME-2) [45,46], Scanning Imaging Absorption Spectrometer for Atmospheric CHar-
tographY (SCIAMACHY) [46–48], the Orbiting Carbon Observatory-2 (OCO-2) [49], etc.
Utilizing these datasets, various inversion algorithms have been proposed [50,51]. Two
kinds of inversion algorithms are recently used, namely, the inversion algorithm based
on the physical model [43,48] and data-driven algorithms [45,46]. However, global SIF
products typically have coarser spatial resolution, such as GOME-2 (40 × 80 km2), GOSAT
(10 × 10 km2), and SCIAMACHY (30 × 240 km2). To achieve global 0.05-degree products,
downscaling methods have been employed [52]. To acquire spatially continuous and
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high-resolution SIF products, these studies employed techniques that either interpolate
missing data or integrate machine learning or deep learning approaches with auxiliary
data [50,53–56]. However, for regional-scale studies of the carbon cycle and crop growth,
SIF products with higher resolution are needed.

The random forest (RF) downscaled method was employed in this study to meet
the regional drought requirements and enhance the spatial resolution of data, resulting
in an improved spatial resolution of 1 km for SIF data. The feasibility of utilizing SIF in
drought monitoring was investigated by establishing and applying the SIF index to monitor
drought conditions in Henan Province. The objectives of this study are as follows: (1) to
introduce a downscaled method based on RF and obtain spatially resolved SIF data at
a resolution of 1 km; (2) verify the SIF result after downscaling using different methods;
and (3) monitor and assess long-term drought in Henan Province using the 1 km spatial
resolution-downscaling SIF.

2. Study Area and Data
2.1. Study Area

The research area is situated in Henan Province, China, spanning from 31◦23′N to
36◦22′N and from 110◦21′E to 116◦39′E [2]. Figure 1 shows the land-use types within
this study area. Henan Province experiences a transitional climate, lying between the
subtropical humid and warm temperate semi-humid monsoon climates, with an average
annual precipitation ranging from 500 to 900 mm. Henan is a significant agricultural
province, predominantly cultivating wheat and maize as its main crops, especially during
the winter season.
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Figure 1. Land-use-type map in Henan Province, China.

2.2. Data
2.2.1. Global ‘OCO-2’ SIF (GOSIF) Data

A new GOSIF (W m−2 µm−1 sr−1) product with a high spatiotemporal resolution
(0.05 degrees, monthly) was developed by Li and Xiao (2019) utilizing the data-driven
method. This approach incorporated discrete OCO-2 SIF, MODIS, and meteorological
reanalysis data within the predictive SIF model [54]. The GOSIF data can be accessed online
at http://globalecology.unh.edu, accessed on 1 January 2023.

http://globalecology.unh.edu
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2.2.2. Vegetation Index Data

The normalized difference vegetation index (NDVI) is one of the most widely used
vegetation indices, which can be calculated from near-infrared and red light bands. Mod-
erate Resolution Imaging Spectroradiometer (MODIS) provides monthly NDVI products
with a spatial resolution of 1 km. The monthly NDVI (MOD13A3) data spanning from 2001
to 2020 were downloaded from Google Earth Engine (GEE).

2.2.3. Land Surface Temperature Data

MODIS offers 8-day land surface temperature (LST) products, available for both day
and night, with a spatial resolution of 1 km. The MODIS LST-day product (MOD11A2)
was downloaded for Henan Province, and the monthly LST results were calculated by the
maximum value synthesis method from 2001 to 2020. Similarly, LST data can be obtained
from GEE.

2.2.4. Gross Primary Productivity Data

To facilitate a comparison between the downscaled SIF result and GOSIF data, 8-day
gross primary productivity (GPP) data (MOD17A2H) with 500 m resolution were obtained.
These data will be used for the correlation analysis involving both the downscaled SIF
result and GOSIF.

2.2.5. Land-Use Data

The land-use data with a spatial resolution of 1 km used in this study were obtained
from the Resource and Environment Science and Data Center (http://www.resdc.cn/,
accessed on 1 May 2023). The land-use types identified include farmland, forest, grassland,
water, impervious, and others, as depicted in Figure 1.

2.2.6. Statistical Data

The annual areas affected by drought and annual regional level yield (wheat and
maize) data were obtained from the National Bureau of Statistics of the People’s Republic
of China (http://www.stats.gov.cn/, accessed on 1 May 2023). These drought-affected
area figures are instrumental in characterizing the extent of drought impact. Furthermore,
the yield data serve as a more appropriate metric for assessing the effects of drought on
agriculture. Table 1 summarizes the data used in this study.

Table 1. Dataset used in this study.

Data Time Period Date Type Spatial Resolution Temporal Resolution

2001~2020 GOSIF 0.05 degrees Monthly
2001~2020 MOD13A3 (NDVI) 1 km Monthly

2001~2020 MOD11A2
(LST-day) 1 km 8 days

2001~2020 MOD17A2H
(GPP) 500 m 8 days

2020 Land-use data 1 km Annually
2001~2020 Statistical data Annually

3. Method

SIF, when derived from satellites, has emerged as a potent proxy for photosynthesis on
a global scale [57]. SIF with a high spatial resolution is more suitable for regional estimation
of the carbon cycle and GPP. Consequently, the RF-based downscaling method was initially
used to obtain SIF data with 1 km resolution. Subsequently, the SIF anomaly index was
calculated using these downscaled SIF results. Finally, the drought condition was assessed
using an SIF anomaly index from 2001 to 2020. Figure 2 describes the specific process
including data preparation and processing, the RF method, verification of downscaled

http://www.resdc.cn/
http://www.stats.gov.cn/
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SIF result, calculation of the SIF anomaly index, verification of drought index, and the
monitoring of drought from 2001 to 2020.
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3.1. Data Preparation and Processing

The MODIS LST-day data were 8-day composite products. To derive monthly data
for the period from 2001 to 2020, the maximum value composite method was employed.
Ultimately, both the NDVI and LST-day data were resampled to a resolution of 0.05 degrees
using the nearest neighbour method to align with the resolution of the GOSIF.

3.2. RF-Based Downscaled Approach

The RF method is a machine learning model proposed by Breiman in 2001 [58]. This
method enhances the decision tree algorithm and is applicable in regression analyses.

In this study, the RF regression model was trained using the sample data of SIF,
NDVI, and LST, all at a spatial resolution of 0.05 degrees. The input variables of the
model were NDVI and LST, and the predictor variable was SIF. The RF divided input
data into many regression trees, making up the forest, where each tree was built from a
bootstrap sample. Moreover, a regression model was established for each subset. The
average of the prediction results of each regression tree was used as the final prediction
result of the model. In the RF method, two parameters—‘ntree’ and ‘mtry’—must be
carefully selected based on the sample data. For this study, ‘ntree’ and ‘mtry’ were set at
5 and 2000, respectively.

3.3. Verify Downscaled Result

To evaluate the correlation between the downscaled SIF result and GOSIF, the down-
scaled results were resampled back to a 0.05-degree spatial resolution. To assess the
accuracy of downscaled SIF data, this study calculated the correlation between GOSIF,
downscaled SIF and MODIS GPP. Furthermore, to reveal the advantages of the RF method,
the direct resampling (nearest neighbour and bilinear) results were used as comparisons
with the downscaled SIF result based on the RF method.
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3.4. Calculate SIF Anomaly Index

SIF data from 2001 to 2020 were selected; long-time series data are beneficial for
monitoring drought. Firstly, the mean SIF for each year is calculated.

SIFmean,i = (SIF1 + SIF2 + . . . . . . ,+SIFn)/n (1)

where SIFmean,i represents the average value of SIF. n equals 12, representing the whole year.
Then, the overall mean SIF from 2001 to 2020 is calculated.

SIF =
n

∑
i=1

SIFmean,i

n
(2)

where SIF is the 20-year average of SIF, n is 20.
Finally, SIFanomaly,i is calculated using the following equation:

SIFanomaly,i =
SIFmean,i − SIF

SIF
(3)

where SIFanomaly,i is the SIF anomaly index for the i year.
After calculating the SIF anomaly index, the SIF anomaly index image was masked

and cropped based on the administrative map of Henan Province in the study area. Simul-
taneously, the regional average of the SIF anomaly index for the current year was computed
as the mean value across all pixels in the image. The spatiotemporal variation in drought
in Henan Province from 2001 to 2020 was analysed based on the SIF anomaly index.

3.5. Verify Drought Index

To verify the SIF anomaly index, the Pearson correlation coefficient (R) was com-
puted between the SIF anomaly index and statistical data. The correlation coefficient was
calculated using the following formula:

R =
∑n

i=1 (xi − x)(yi − y)√
∑n

i=1 (xi − x)2∑n
i=1 (yi − y)2

(4)

where R is the correlation coefficient, n is the length of the time series, x is the monthly average
SIF anomaly index value, y is the value of statistical data in Henan Province, respectively.

3.6. Monitor and Analysis Drought

This study used the SIF anomaly index to monitor the drought in Henan Province.
Based on the SIF anomaly index, the long-term drought was analysed in Henan Province
from 2001 to 2020.

4. Results
4.1. Spatiotemporal Distribution of Downscaled SIF

The RF-based method was employed to obtain the downscaled SIF data with a reso-
lution of 1 km in Henan Province. Figure 3 provides a detailed illustration of the specific
results for May 2018, serving as an example.

In Figure 3, the SIF data at different resolutions were compared (GOSIF at 0.05 degrees
and downscaled SIF at 1 km). High and low SIF values (W m−2 µm−1 sr−1) were repre-
sented by red and green colors, respectively. Relatively high SIF values were predominantly
observed in forest areas, followed by grassland and farmland. The comparison figures
revealed that the values of the downscaled SIF result had a similar trend to the original
GOSIF data. However, the 1 km spatial resolution SIF result could provide more detailed
ground information than the 0.05-degree resolution data.
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4.2. Verify the Downscaled SIF Result
4.2.1. Correlation Analyses between Downscaled SIF and GOSIF

The downscaled SIF results were resampled to the same spatial resolution (0.05 degrees)
as the GOSIF data using the pixel aggregate resampling method. The scatter diagram of the
GOSIF and resampled downscaled SIF were obtained (Figure 4). Additionally, the correlation
coefficients (R) between downscaled SIF and GOSIF were calculated. The downscaled SIF
data exhibited a strong correlation with GOSIF, with a correlation coefficient of 0.74. The
distribution of the downscaled SIF and GOSIF data points was observed to be close to the
1:1 line. The high correlation implies that the downscaled SIF effectively preserves the essential
information from the original GOSIF products.
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4.2.2. Correlation Analyses between SIF and MODIS GPP

Numerous studies have established a linear relationship between SIF (W m−2 µm−1 sr−1)
and GPP (g C m−2 a−1) [43,59–62]. To verify the accuracy of the result, the MOD17A2H
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GPP product was selected. The MODIS GPP data were obtained by the maximum value
synthesis method in May 2018 using 8-day products. The MODIS GPP was resampled to
both 1 km and 0.05-degree spatial resolution using the pixel aggregate resampling method.
The correlations between MODIS GPP, downscaled SIF, and GOSIF were subsequently
calculated (Figure 5).
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Figure 5 compares the correlations among the value of GOSIF, downscaled SIF and
MODIS GPP. The correlation coefficients (R) at different spatial resolutions were 0.68
and 0.74, respectively. The MODIS GPP and downscaled SIF result (R = 0.74) showed a
stronger correlation than GOSIF (R = 0.68). This finding substantiates the credibility of the
downscaled results.

4.3. Compare the Downscaled SIF with Direct Resampling Results

To demonstrate the superiority of the RF-based downscaled method, this study con-
ducted a comparison between the downscaled SIF and direct resampling results (Figure 6).
GOSIF was resampled to 1 km resolution using nearest neighbour and bilinear methods.
The RF-based downscaled, nearest neighbour and bilinear methods SIF results had a similar
change trend to the original GOSIF data. The nearest neighbour resampling method signifi-
cantly altered the texture information of the original image. The bilinear method resulted
in smoother images but introduced modifications to the pixel values. The RF algorithm
exhibited remarkable robustness against adverse factors, such as noise and outliers. More-
over, it possessed the capability to handle both discrete and continuous data effortlessly,
eliminating the necessity for dataset standardization. In contrast, the downscaled SIF result
obtained through the RF method exhibited more spatial details compared to the direct
resampling methods.

4.4. Verify the SIF Anomaly Index
4.4.1. Correlation Analyses between Drought Index and Yield

The response of different crops to drought has significant differences. In Henan
Province, winter wheat and summer maize are the primary crops. Figure 7 shows the yield
changes in wheat and maize in Henan Province. This study aimed to verify the 1 km spatial
resolution SIF anomaly index by analysing the response of winter wheat and summer
maize yields to drought.
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The occurrence of drought in Henan Province exerts an impact on crop growth,
consequently influencing crop yield. The SIF anomaly index values in Henan Province
were averaged to represent the regional drought index value. Figure 8 illustrates the
correlation between the average SIF anomaly value and crop yield from 2001 to 2021. In
Henan Province, the SIF anomaly index has positive correlations with crop yield and the
scattered points show a statistically significant correlation (p-value < 0.01). The correlation
coefficients are 0.93 for wheat and 0.89 for maize, respectively. These high correlations
between SIF and crop yields confirm that the SIF anomaly index is a feasible and effective
tool for monitoring drought.
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4.4.2. Correlation Analyses between Drought Index and Areas Covered by Drought

The areas affected by drought serve as a direct manifestation in the field of drought.
The areas affected by drought are displayed by statistical data which can characterize the
extent of the impact of drought. The drought-affected crop area is more appropriate to
assess the drought effect in Henan Province. This study utilized data on drought-affected
areas in Henan Province, obtained from the National Bureau of Statistics. Due to the
unavailability of data for certain years, the study selected data from two periods: 2001 to
2014 and 2014 to 2019. The average SIF anomaly index values with 1 km spatial resolution
were obtained by averaging the pixel values of the whole image. Figure 9 illustrates the
correlation between the average SIF anomaly index value and areas affected by drought.
The results indicated that the index had negative correlations with areas affected by drought,
with a correlation coefficient of −0.58. This negative correlation between the drought index
and the affected areas demonstrates that the SIF anomaly index is an excellent tool for
monitoring drought.
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4.5. Monitor and Analysis Drought from 2001 to 2020

The determination of drought thresholds has consistently posed challenging re-
search; this study employed the quartile method for drought classification. Upon calcu-
lation, an SIF anomaly > 0.087 indicated no drought, normal precipitation, moist soil,
and regular growth of vegetation crops without significant drought conditions. When
0.007 < SIF anomaly < 0.087, this suggested mild drought with slightly reduced precip-
itation and soil moisture levels, exerting a minor impact on vegetation and crops. In
the range of −0.081 < SIF anomaly < 0.007, moderate drought is indicated by decreased
precipitation and dry soil with insufficient moisture content, leading to notable drought
conditions significantly affecting vegetation and crop growth. An SIF anomaly < −0.087
signified severe drought characterized by a substantial reduction in precipitation and
severe deficiency in soil moisture, resulting in wilting and a diminished yield of vegeta-
tion crops. Figure 10 shows the spatial distribution of drought in Henan Province from
2001 to 2020.

To monitor and analysis drought, the pixel values of Henan Province were averaged
over the period from 2001 to 2020. In this study, a lower SIF anomaly index value indicates
more severe drought conditions, and vice versa. As illustrated in Figure 11, the drought
situation in Henan Province had been fluctuating up and down over the past 20 years, with
a general trend of weakening over time.
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5. Discussion

To increase the capacity of managing drought and reducing the adverse effects, timely
and effective drought monitoring is indispensable in agricultural management. This study
improved the spatial resolution of SIF to 1 km and explored the potential of downscaled
SIF in drought detection. Some important and interesting discoveries are discussed in
this section.

5.1. Reliability of Downscaled SIF

Since the RF algorithm introduction, it has garnered significant acclaim and found
extensive applications across diverse domains [63,64]. Noted for its remarkable predictive
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accuracy, efficient training speed, and robustness, RF stands out as a preferred option for
analysing and optimising models. Therefore, this study utilized the RF approach to build
the downscaled SIF model.

The relationship between SIF and GPP has been consistently demonstrated in previous
studies [2]. In this study, the downscaled SIF exhibited a stronger positive correlation with
MODIS GPP compared to GOSIF, with correlation coefficients of 0.74 and 0.68, respec-
tively (Figure 5). This finding further validates the reliability of the downscaled results.
Meanwhile, to demonstrate the superiority of the RF-based downscaled method, this study
conducted a comparative analysis between the downscaled SIF and direct resampling
results (Figure 6). The downscaled SIF result obtained through the RF method exhibited
enhanced spatial resolution compared to that achieved by direct resampling methods.
The downscaled SIF not only preserves the information of the original GOSIF, but more
significantly enhances spatial resolution through the research conducted.

5.2. The Ability of SIF Anomaly to Monitor Drought

SIF is closely associated with vegetation photosynthesis and can serve as a valuable
tool for monitoring the physiological status of vegetation and water stress conditions [65].
During drought events, water stress induces alterations in the physiological state of veg-
etation, consequently leading to changes in SIF [66]. In this study, we validated the
applicability of SIF for drought monitoring using various approaches such as MODIS GPP,
crop yield, and drought-affected areas. By establishing an SIF-based drought index, we
successfully monitored drought occurrences in Henan Province.

The occurrence of drought will exert an impact on crop growth, ultimately leading to
a decrease in crop yield [13]. The SIF anomaly value had positive correlations with wheat
and maize yield (Figure 8). The correlation coefficients were 0.93 and 0.89. Meanwhile,
the SIF anomaly value had negative correlations with areas affected by drought, with a
correlation coefficient of −0.58 (Figure 9). The SIF anomaly index had a high correlation
with the factors that characterized drought. It indicated that the SIF anomaly index was a
useful factor for characterizing drought. Therefore, our study presents an alternative data
source and selectable index for future regional drought monitoring and analysis.

5.3. Advantages of Downscaled SIF in Drought Monitoring

The current limitations of satellite technology pose a challenge in achieving high
temporal and spatial resolutions simultaneously in existing satellite SIF products [67].
These coarse-resolution downscaled SIF data (0.05 degrees) present challenges for vari-
ous research fields, including regional carbon cycle, crop growth studies, and drought
assessments [2,66,68]. High spatial resolution satellite data are more suitable for regional
agricultural drought monitoring. For instance, the spatial resolution of MODIS products has
reached 1 km and 500 m, providing an advantage in regional drought monitoring [69,70].
Moreover, the fragmentation of farmland in China is highly pronounced and low-resolution
SIF products are insufficient for accurate regional agricultural drought monitoring. There-
fore, the demand for higher resolution SIF products is urgent in order to achieve accurate
regional drought monitoring and assessments. In this study, a lower SIF anomaly index
value indicates more severe drought conditions while vice versa holds true. The down-
scaled SIF results (1 km spatial resolution) have been successfully applied to monitor
drought in Henan Province (Figures 10 and 11). Henceforth, the downscaled 1 km spatial
resolution SIF results presented in this study offer significant advantages for regional
drought monitoring.

5.4. The Limitations of This Study

However, there are also inherent limitations in this research. Firstly, the input pa-
rameters of the downscaling model only included MODIS NDVI and LST data, without
incorporating meteorological and soil condition data. In future research, it is imperative
to assess the influence of different input parameters on the model’s output results. Sec-
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ondly, drought is a complex phenomenon influenced by various interconnected factors
encompassing the atmosphere, vegetation, and soil. Consequently, it becomes imperative
to integrate multi-source remote sensing data while modelling drought and establishing
indices. Lastly, for effective drought monitoring in China where farmland often exhibits a
fragmented state, higher resolution remote sensing products are indispensable.

6. Conclusions

This study, conducted in Henan Province, China, utilized the RF-based downscaling
method to enhance the spatial resolution of GOSIF data from 0.05 degrees to 1 km. GOSIF,
NDVI, and LST with 0.05-degree spatial resolution were used as sample data to train the RF
regression model. NDVI and LST were the input variables, with SIF as the predictor. Using
the downscaled SIF result, the SIF anomaly index was calculated. Crop yield and areas
affected by drought were selected to verify the drought index. Finally, the SIF anomaly
index was used to monitor drought in Henan Province.

The downscaled SIF result exhibited a higher correlation with MODIS GPP data
than the 0.05-degree GOSIF, with correlation coefficients of 0.74 and 0.68, respectively.
After resampling the downscaled SIF to a 0.05-degree resolution to match the GOSIF, a
strong correlation was still observed. To show the superiority of the RF method, this
study compared the downscaled SIF with direct resampling methods (nearest neighbour
and bilinear). The results indicated that the downscaled SIF result showed enhanced
spatial details, which was significant to study and monitor the regional GPP in Henan
Province. Using the 1 km spatial resolution, the SIF anomaly index was established and
calculated. Utilizing the 1 km resolution, the SIF anomaly index established strong positive
correlations with crop yields (0.93 for wheat and 0.89 for maize), and a significant negative
correlation with drought-affected areas (−0.58). The SIF anomaly index, based on the 1 km
resolution downscaled SIF data using the RF method, proved to be a valuable tool for
studying regional drought. Furthermore, the SIF anomaly index also presented researchers
with a novel alternative for future drought monitoring. The findings presented in this
research offer robust and scientifically sound data support for drought monitoring in
Henan Province.
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