Effect of COVID-19 Lockdown on Urban Heat Island Dynamics in Prague, Czechia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Methods
2.3.1. Determination of the Study Period and Satellite Image Selection
2.3.2. Land Surface Temperature Estimation
2.3.3. Surface Urban Heat Island Magnitude Calculation
2.3.4. Analyzing the Atmospheric Urban Heat Island
2.3.5. Analyzing Air Pollution
3. Results
3.1. Atmospheric Urban Heat Island Analysis
3.2. Surface Urban Heat Island Analysis
3.3. Air Pollution Analysis
4. Discussion
4.1. Role of Anthropogenic Heat
4.2. Role of Urban-Rural Dynamics
4.3. Limitations
4.4. Future Research and Policy Implications
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Global Radiation (kJ/m²) | Air Temperature (°C) | |||||
---|---|---|---|---|---|---|
Weather Station | Karlov | Libus | Libus | Kbely | Karlov | Ruzyne |
28 March 2017 | 18137 | 19551 | 21.6 | 21.5 | 22.5 | 21.0 |
31 March 2017 | 18060 | 19350 | 20.9 | 20.6 | 22.0 | 20.1 |
1 April 2017 | 18243 | 19518 | 18.7 | 19.1 | 19.2 | 19.2 |
7 April 2018 | 20936 | 21337 | 21.0 | 20.0 | 21.7 | 20.0 |
18 April 2018 | 22439 | 22908 | 22.4 | 22.5 | 23.8 | 21.9 |
19 April 2018 | 21669 | 22204 | 19.2 | 19.1 | 19.8 | 18.7 |
23 March 2019 | 17323 | 17570 | 20.9 | 20.6 | 21.2 | 20.3 |
19 April 2019 | 23617 | 24119 | 21.4 | 20.9 | 21.8 | 19.8 |
21 April 2019 | 23905 | 24517 | 20.4 | 19.2 | 20.8 | 19.1 |
22 April 2019 | 24333 | 25125 | 16.7 | 16.1 | 16.7 | 16.7 |
7 April 2020 | 20614 | 21511 | 20.0 | 19.1 | 20.7 | 18.7 |
8 April 2020 | 22022 | 22937 | 21.4 | 20.7 | 21.7 | 20.2 |
9 April 2020 | 20523 | 21371 | 21.3 | 20.9 | 21.8 | 20.3 |
12 April 2020 | 22195 | 23034 | 22.0 | 20.6 | 21.6 | 20.6 |
17 April 2020 | 22039 | 23039 | 21.1 | 19.4 | 20.7 | 19.8 |
22 April 2020 | 24899 | 25628 | 16.9 | 17.0 | 17.3 | 16.1 |
23 April 2020 | 24648 | 25472 | 19.2 | 18.4 | 19.1 | 18.2 |
27 April 2020 | 25154 | 24679 | 21.7 | 20.7 | 21.0 | 19.9 |
References
- Muhammad, S.; Long, X.; Salman, M. COVID-19 Pandemic and Environmental Pollution: A Blessing in Disguise? Sci. Total Environ. 2020, 728, 138820. [Google Scholar] [CrossRef] [PubMed]
- Venter, Z.S.; Aunan, K.; Chowdhury, S.; Lelieveld, J. COVID-19 Lockdowns Cause Global Air Pollution Declines. Proc. Natl. Acad. Sci. USA 2020, 117, 18984–18990. [Google Scholar] [CrossRef] [PubMed]
- Kumari, P.; Toshniwal, D. Impact of Lockdown on Air Quality over Major Cities across the Globe during COVID-19 Pandemic. Urban Clim. 2020, 34, 100719. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Wang, M.; Zheng, M. Effects of COVID-19 Lockdown on Global Air Quality and Health. Sci. Total Environ. 2021, 755, 142533. [Google Scholar] [CrossRef] [PubMed]
- Potter, C.; Alexander, O. Impacts of the San Francisco Bay Area Shelter-in-Place during the COVID-19 Pandemic on Urban Heat Fluxes. Urban Clim. 2021, 37, 100828. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.; Sailor, D. Modeling the Impacts of Anthropogenic Heating on the Urban Climate of Philadelphia: A Comparison of Implementations in Two PBL Schemes. Atmos. Environ. 2005, 39, 73–84. [Google Scholar] [CrossRef]
- Oke, T.R.; Mills, G.; Christen, A.; Voogt, J.A. Urban Climates; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Lee, S.-H.; McKeen, S.A.; Sailor, D.J. A Regression Approach for Estimation of Anthropogenic Heat Flux Based on a Bottom-up Air Pollutant Emission Database. Atmos. Environ. 2014, 95, 629–633. [Google Scholar] [CrossRef]
- Chen, S.; Hu, D. Parameterizing Anthropogenic Heat Flux with an Energy-Consumption Inventory and Multi-Source Remote Sensing Data. Remote Sens. 2017, 9, 1165. [Google Scholar] [CrossRef]
- Firozjaei, M.K.; Weng, Q.; Zhao, C.; Kiavarz, M.; Lu, L.; Alavipanah, S.K. Surface Anthropogenic Heat Islands in Six Megacities: An Assessment Based on a Triple-Source Surface Energy Balance Model. Remote Sens. Environ. 2020, 242, 111751. [Google Scholar] [CrossRef]
- Chrysoulakis, N.; Grimmond, S.; Feigenwinter, C.; Lindberg, F.; Gastellu-Etchegorry, J.-P.; Marconcini, M.; Mitraka, Z.; Stagakis, S.; Crawford, B.; Olofson, F.; et al. Urban Energy Exchanges Monitoring from Space. Sci. Rep. 2018, 8, 11498. [Google Scholar] [CrossRef]
- Lee, X. Energy Balance, Evaporation, and Surface Temperature. In Fundamentals of Boundary-Layer Meteorology; Springer Atmospheric Sciences; Springer: Cham, Switzerland, 2017; pp. 191–213. [Google Scholar] [CrossRef]
- Hamilton, I.G.; Davies, M.; Steadman, P.; Stone, A.; Ridley, I.; Evans, S. The Significance of the Anthropogenic Heat Emissions of London’s Buildings: A Comparison against Captured Shortwave Solar Radiation. Build. Environ. 2009, 44, 807–817. [Google Scholar] [CrossRef]
- El Kenawy, A.M.; Lopez-Moreno, J.I.; McCabe, M.F.; Domínguez-Castro, F.; Peña-Angulo, D.; Gaber, I.M.; Alqasemi, A.S.; Al Kindi, K.M.; Al-Awadhi, T.; Hereher, M.E.; et al. The Impact of COVID-19 Lockdowns on Surface Urban Heat Island Changes and Air-Quality Improvements across 21 Major Cities in the Middle East. Environ. Pollut. 2021, 288, 117802. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Lai, J.; Zhan, W.; Bechtel, B.; Voogt, J.; Quan, J.; Hu, L.; Fu, P.; Huang, F.; Li, L.; et al. Urban Heat Islands Significantly Reduced by COVID-19 Lockdown. Geophys. Res. Lett. 2022, 49, e2021GL096842. [Google Scholar] [CrossRef]
- Feng, Z.; Wang, X.; Yuan, J.; Zhang, Y.; Yu, M. Changes in Air Pollution, Land Surface Temperature, and Urban Heat Islands during the COVID-19 Lockdown in Three Chinese Urban Agglomerations. Sci. Total Environ. 2023, 892, 164496. [Google Scholar] [CrossRef] [PubMed]
- Mijani, N.; Karimi Firozjaei, M.; Mijani, M.; Khodabakhshi, A.; Qureshi, S.; Jokar Arsanjani, J.; Alavipanah, S.K. Exploring the Effect of COVID-19 Pandemic Lockdowns on Urban Cooling: A Tale of Three Cities. Adv. Space Res. 2023, 71, 1017–1033. [Google Scholar] [CrossRef]
- Meng, Q.; Qian, J.; Schlink, U.; Zhang, L.; Hu, X.; Gao, J.; Wang, Q. Anthropogenic Heat Variation during the COVID-19 Pandemic Control Measures in Four Chinese Megacities. Remote Sens. Environ. 2023, 293, 113602. [Google Scholar] [CrossRef] [PubMed]
- Pal, S.; Das, P.; Mandal, I.; Sarda, R.; Mahato, S.; Nguyen, K.-A.; Liou, Y.-A.; Talukdar, S.; Debanshi, S.; Saha, T.K. Effects of Lockdown Due to COVID-19 Outbreak on Air Quality and Anthropogenic Heat in an Industrial Belt of India. J. Clean. Prod. 2021, 297, 126674. [Google Scholar] [CrossRef]
- Parida, B.R.; Bar, S.; Kaskaoutis, D.; Pandey, A.C.; Polade, S.D.; Goswami, S. Impact of COVID-19 Induced Lockdown on Land Surface Temperature, Aerosol, and Urban Heat in Europe and North America. Sustain. Cities Soc. 2021, 75, 103336. [Google Scholar] [CrossRef]
- Chakraborty, T.; Sarangi, C.; Lee, X. Reduction in Human Activity Can Enhance the Urban Heat Island: Insights from the COVID-19 Lockdown. Environ. Res. Lett. 2021, 16, 054060. [Google Scholar] [CrossRef]
- Wang, W.; He, B.-J. Co-Occurrence of Urban Heat and the COVID-19: Impacts, Drivers, Methods, and Implications for the Post-Pandemic Era. Sustain. Cities Soc. 2023, 90, 104387. [Google Scholar] [CrossRef]
- Sismanidis, P.; Bechtel, B.; Keramitsoglou, I.; Liu, Z.; Zhan, W. The Intensity of Surface Urban Heat Islands in the Global North during the COVID-19 Lockdowns. In Proceedings of the 2023 Joint Urban Remote Sensing Event (JURSE), Heraklion, Greece, 17–19 May 2023. [Google Scholar] [CrossRef]
- Glocke, P.; Bechtel, B.; Sismanidis, P. Consideration of Altered Anthropogenic Behavior during the First Lockdown and Its Effects on Air Pollutants and Land Surface Temperature in European Cities. Atmosphere 2023, 14, 1025. [Google Scholar] [CrossRef]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger Climate Classification Updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef] [PubMed]
- Obyvatelstvo. Available online: https://www.czso.cz/csu/xa/obyvatelstvo-xa (accessed on 20 December 2023).
- Ouředníček, M. Prague and Central Bohemia; Charles University, Karolinum Press: Prague, Czech Republic, 2022. [Google Scholar]
- Our World in Data. COVID-19 Stringency Index. Available online: https://ourworldindata.org/covid-stringency-index (accessed on 20 January 2023).
- Letiště Praha. Available online: https://www.prg.aero/letiste-praha-odbavilo-za-lonsky-rok-temer-3-7-milionu-cestujicich (accessed on 4 February 2023).
- Ročenka Dopravy Praha 2020. Available online: https://www.tsk-praha.cz/static/udi-rocenka-2020-cz.pdf (accessed on 20 March 2023).
- Wan, Z. MODIS Land Surface Temperature Products Users’ Guide. Available online: https://lpdaac.usgs.gov/documents/447/MOD11_User_Guide_V4.pdf (accessed on 11 January 2023).
- CORINE Land Cover. Available online: https://land.copernicus.eu/en/products/corine-land-cover (accessed on 10 January 2023).
- Oke, T.R. Boundary Layer Climates; Psychology Press: London, UK, 1987. [Google Scholar]
- Sentinel-5P OFFL NO2: Offline Nitrogen Dioxide. Available online: https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S5P_OFFL_L3_NO2#description (accessed on 20 January 2023).
- LP DAAC—MCD19A2. Available online: https://lpdaac.usgs.gov/products/mcd19a2v006/ (accessed on 3 January 2023).
- Patiño, W.R.; Duong, V.M. Intercomparison of Gaussian Plume Dispersion Models Applied to Sulfur Dioxide Emissions from a Stationary Source in the Suburban Area of Prague, Czech Republic. Environ. Model. Assess. 2021, 27, 119–137. [Google Scholar] [CrossRef]
- Simulated Historical Climate & Weather Data for Prague. Available online: https://www.meteoblue.com/en/weather/historyclimate/climatemodelled/prague_czechia_3067696 (accessed on 17 March 2023).
- Hamdi, R.; Tronquo, E.; Bogaerts, E.; Hoang, K.-M.; Loudeche, C.; Claeys, E.; Caluwaerts, S.; Duchêne, F.; Van Schaeybroeck, B.; Termonia, P. The Impact of COVID-19 Confinement Measures on the Canopy Urban Heat Island Intensity of Ghent (Belgium). In Proceedings of the EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022. [Google Scholar] [CrossRef]
- Roshan, G.; Sarli, R.; Grab, S.W. The Case of Tehran’s Urban Heat Island, Iran: Impacts of Urban ‘Lockdown’ Associated with the COVID-19 Pandemic. Sustain. Cities Soc. 2021, 75, 103263. [Google Scholar] [CrossRef] [PubMed]
- Earl, N.; Simmonds, I.; Tapper, N. Weekly Cycles in Peak Time Temperatures and Urban Heat Island Intensity. Environ. Res. Lett. 2016, 11, 074003. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, L.; Yuan, F.; Dou, J.; Miao, S. Mass Human Migration and Beijing’s Urban Heat Island during the Chinese New Year Holiday. Sci. Bull. 2015, 60, 1038–1041. [Google Scholar] [CrossRef]
- Raj, S.; Paul, S.K.; Chakraborty, A.; Kuttippurath, J. Anthropogenic Forcing Exacerbating the Urban Heat Islands in India. J. Environ. Manag. 2020, 257, 110006. [Google Scholar] [CrossRef]
- Alves, E.; Anjos, M.; Galvani, E. Surface Urban Heat Island in Middle City: Spatial and Temporal Characteristics. Urban Sci. 2020, 4, 54. [Google Scholar] [CrossRef]
- Feng, R.; Wang, F.; Wang, K.; Wang, H.; Li, L. Urban Ecological Land and Natural-Anthropogenic Environment Interactively Drive Surface Urban Heat Island: An Urban Agglomeration-Level Study in China. Environ. Int. 2021, 157, 106857. [Google Scholar] [CrossRef]
- Zhou, D.; Zhao, S.; Liu, S.; Zhang, L.; Zhu, C. Surface Urban Heat Island in China’s 32 Major Cities: Spatial Patterns and Drivers. Remote Sens. Environ. 2014, 152, 51–61. [Google Scholar] [CrossRef]
- Jin, K.; Wang, F.; Wang, S. Assessing the Spatiotemporal Variation in Anthropogenic Heat and Its Impact on the Surface Thermal Environment over Global Land Areas. Sustain. Cities Soc. 2020, 63, 102488. [Google Scholar] [CrossRef]
- Qian, J.; Meng, Q.; Zhang, L.; Schlink, U.; Hu, X.; Gao, J. Characteristics of Anthropogenic Heat with Different Modeling Ideas and Its Driving Effect on Urban Heat Islands in Seven Typical Chinese Cities. Sci. Total Environ. 2023, 886, 163989. [Google Scholar] [CrossRef]
- Alqasemi, A.S.; Hereher, M.E.; Kaplan, G.; Al-Quraishi, A.M.F.; Saibi, H. Impact of COVID-19 Lockdown upon the Air Quality and Surface Urban Heat Island Intensity over the United Arab Emirates. Sci. Total Environ. 2021, 767, 144330. [Google Scholar] [CrossRef] [PubMed]
- Safarrad, T.; Ghadami, M.; Dittmann, A. Effects of COVID-19 Restriction Policies on Urban Heat Islands in Some European Cities: Berlin, London, Paris, Madrid, and Frankfurt. Int. J. Environ. Res. Public Health 2022, 19, 6579. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, T.; Das, D.; Hamdi, R.; Khan, A.; Niyogi, D. Large-Scale Urban Heating and Pollution Domes over the Indian Subcontinent. Remote Sens. 2023, 15, 2681. [Google Scholar] [CrossRef]
- Revathy, S.M.; Rangaraj, A.G.; Srinath, Y.; Boopathi, K.; Shobana Devi, A.; Balaraman, K.; Prasad, D.M.R. Impact on Solar Radiation Parameters in India during COVID-19 Lockdown: A Case Study. Int. J. Sustain. Energy 2021, 40, 806–820. [Google Scholar] [CrossRef]
- Mazhar, U.; Jin, S.; Bilal, M.; Ali, M.A.; Khan, R. Reduction of Surface Radiative Forcing Observed from Remote Sensing Data during Global COVID-19 Lockdown. Atmos. Res. 2021, 261, 105729. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Liu, Q.; Wang, L.; Liu, Q.; Fan, W.; Lu, M.; Wen, J. Characterizing the Pixel Footprint of Satellite Albedo Products Derived from MODIS Reflectance in the Heihe River Basin, China. Remote Sens. 2015, 7, 6886–6907. [Google Scholar] [CrossRef]
- Lindberg, F.; Grimmond, C.S.B.; Yogeswaran, N.; Kotthaus, S.; Allen, L. Impact of City Changes and Weather on Anthropogenic Heat Flux in Europe 1995–2015. Urban Clim. 2013, 4, 1–15. [Google Scholar] [CrossRef]
- Ahmed, G.; Zan, M. Impact of COVID-19 Restrictions on Air Quality and Surface Urban Heat Island Effect within the Main Urban Area of Urumqi, China. Environ. Sci. Pollut. Res. 2022, 30, 16333–16345. [Google Scholar] [CrossRef]
- Cai, Z.; Tang, Y.; Zhan, Q. A Cooled City? Comparing Human Activity Changes on the Impact of Urban Thermal Environment before and after City-Wide Lockdown. Build. Environ. 2021, 195, 107729. [Google Scholar] [CrossRef] [PubMed]
- Sahani, N.; Goswami, S.K.; Saha, A. The Impact of COVID-19 Induced Lockdown on the Changes of Air Quality and Land Surface Temperature in Kolkata City, India. Spat. Inf. Res. 2020, 29, 519–534. [Google Scholar] [CrossRef]
- Scheifinger, H.; Menzel, A.; Koch, E.; Peter, C.; Ahas, R. Atmospheric Mechanisms Governing the Spatial and Temporal Variability of Phenological Phases in Central Europe. Int. J. Climatol. 2002, 22, 1739–1755. [Google Scholar] [CrossRef]
- Tobler, W.R. A Computer Movie Simulating Urban Growth in the Detroit Region. Econ. Geogr. 1970, 46, 234. [Google Scholar] [CrossRef]
- Raya, A.B.; Hasibuan, H.S.; Sodri, A. Thermal Comfort-Based Spatial Planning Model in Jakarta Transit-Oriented Development (TOD). Atmosphere 2022, 13, 565. [Google Scholar] [CrossRef]
- Wey, W.-M. Smart Growth and Transit-Oriented Development Planning in Site Selection for a New Metro Transit Station in Taipei, Taiwan. Habitat Int. 2015, 47, 158–168. [Google Scholar] [CrossRef]
- Jacobson, J.; Forsyth, A. Seven American TODs: Good Practices for Urban Design in Transit-Oriented Development Projects. J. Transp. Land Use 2008, 1, 51–88. [Google Scholar] [CrossRef]
Category | Variables | Temporal and Spatial Resolution | Data Source |
---|---|---|---|
LST–MODIS day | LST_Day_1 km | daily, 1 km | National Aeronautics and Space Administration |
AOD–MODIS | Optical_Depth_055 | daily, 1 km | National Aeronautics and Space Administration |
NO2–Sentinel 5 | tropospheric_NO2_column_number_density | daily, 1 km | European Space Agency |
Land cover–CORINE | CLC2018 | minimum mapped unit of 25 ha | European Space Agency |
Weather station | air temperature global radiation | hourly daily | Czech Hydrometeorological Institute |
Zone | Area (km2) | Population Count | Population Density (Inhab/km2) | ||
---|---|---|---|---|---|
Inner City | 173.6 | 35.0% | 727,589 | 60.9% | 4651 |
Outer City | 115.1 | 23.2% | 370,106 | 27.9% | 3216 |
Periphery | 207.5 | 41.8% | 146,656 | 11.1% | 707 |
Prague (total) | 496.2 | 100.0% | 1,324,277 | 100.0% | 2669 |
Zone | Reference | Lockdown | Change (°C) | Change (%) | Change (%)/Population Density (%) |
---|---|---|---|---|---|
Inner City | 0.6 | 0.5 | 0.1 | −17% | −31 |
Outer City | 0.6 | 0.6 | 0 | 0 | 0 |
Periphery | −0.2 | −0.4 | −0.2 | −100% | −1213 |
NO2 (μmol/m²) | AOD | |||||||
---|---|---|---|---|---|---|---|---|
Zone | Reference | Lockdown | Change | Change (%) | Reference | Lockdown | Change | Change (%) |
Inner City | 147.7 | 111.1 | −36.6 | −32.9 | 0.103 | 0.092 | −0.011 | −10.8 |
Outer City | 132.4 | 103.9 | −28.4 | −27.3 | 0.106 | 0.093 | −0.012 | −11.8 |
Periphery | 124.2 | 99.1 | −25.2 | −25.4 | 0.105 | 0.091 | −0.014 | −13.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dogan, T.; Urban, A.; Hanel, M. Effect of COVID-19 Lockdown on Urban Heat Island Dynamics in Prague, Czechia. Remote Sens. 2024, 16, 1113. https://doi.org/10.3390/rs16071113
Dogan T, Urban A, Hanel M. Effect of COVID-19 Lockdown on Urban Heat Island Dynamics in Prague, Czechia. Remote Sensing. 2024; 16(7):1113. https://doi.org/10.3390/rs16071113
Chicago/Turabian StyleDogan, Tugba, Aleš Urban, and Martin Hanel. 2024. "Effect of COVID-19 Lockdown on Urban Heat Island Dynamics in Prague, Czechia" Remote Sensing 16, no. 7: 1113. https://doi.org/10.3390/rs16071113
APA StyleDogan, T., Urban, A., & Hanel, M. (2024). Effect of COVID-19 Lockdown on Urban Heat Island Dynamics in Prague, Czechia. Remote Sensing, 16(7), 1113. https://doi.org/10.3390/rs16071113